JP3187547B2 - Pyrolysis of heavy oil - Google Patents

Pyrolysis of heavy oil

Info

Publication number
JP3187547B2
JP3187547B2 JP23973292A JP23973292A JP3187547B2 JP 3187547 B2 JP3187547 B2 JP 3187547B2 JP 23973292 A JP23973292 A JP 23973292A JP 23973292 A JP23973292 A JP 23973292A JP 3187547 B2 JP3187547 B2 JP 3187547B2
Authority
JP
Japan
Prior art keywords
pressure
oil
pyrolysis
heavy oil
heavy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23973292A
Other languages
Japanese (ja)
Other versions
JPH0688079A (en
Inventor
義孝 緒方
秀次 福山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Engineering Corp
Original Assignee
Toyo Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Engineering Corp filed Critical Toyo Engineering Corp
Priority to JP23973292A priority Critical patent/JP3187547B2/en
Publication of JPH0688079A publication Critical patent/JPH0688079A/en
Application granted granted Critical
Publication of JP3187547B2 publication Critical patent/JP3187547B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、重質油、特に石油系重
質油を熱分解して付加価値の高いガソリンおよびヂーゼ
ル留分を製造するとともに燃料用残油を製造する方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing high value-added gasoline and diesel fractions by pyrolyzing heavy oils, particularly petroleum heavy oils, and for producing fuel residual oils.

【0002】[0002]

【従来の技術】重質油を有用な軽質留分、例えば、より
付加価値の高いガソリンおよびヂーゼル留分に変換する
方法は種々提案されている。重質油の処理に、触媒およ
び水素を使用するプロセスがあるが、重質油中に多量に
含有される重金属およびアスファルテンによる触媒の劣
化、高価な水素の使用と多大なエネルギー消費のため経
済性に問題がある。一方、熱分解法は触媒・水素を使用
しないため処理費が安価なことから広く利用されてい
る。
BACKGROUND OF THE INVENTION Various methods have been proposed for converting heavy oils into useful light fractions, such as higher value added gasoline and diesel fractions. There is a process that uses a catalyst and hydrogen in the processing of heavy oil, but economical due to the deterioration of the catalyst due to heavy metals and asphaltenes contained in heavy oil in large amounts, the use of expensive hydrogen, and a large amount of energy consumption There is a problem. On the other hand, the thermal decomposition method is widely used because it does not use a catalyst and hydrogen and thus has a low processing cost.

【0003】熱分解改質方法としては、デイレード・コ
ーキング法(Hydrocarbon Processing Vol.69, No.
11、1990年11月、P.105)とビスブレーキ
ング法(Hydrocarbon Processing Vol.69, No.1
1、1990年11月、P.104)が良く知られてい
る。
[0003] As a pyrolysis reforming method, a delayed carbonization method (Hydrocarbon Processing Vol. 69, No.
11, November 1990; 105) and the visbreaking method (Hydrocarbon Processing Vol. 69, No. 1)
1, November 1990, p. 104) are well known.

【0004】デイレード・コーキング法では製品として
固体のコークスを得る方法であるため、燃焼可能な残油
は得られない。従来の燃料油燃焼設備で燃焼可能な残油
を得るためにはビスブレーキング法でなければ対応でき
ない。
[0004] The delayed coking method is a method of obtaining solid coke as a product, so that a combustible residual oil cannot be obtained. In order to obtain residual oil that can be burned by conventional fuel oil combustion equipment, it can only be handled by the visbreaking method.

【0005】しかし、ビスブレーキング法では転換率を
ある程度以上に増加すると熱分解残査油の安定性が失わ
れ、アスファルテンの凝集・分離が進み、残油中にスラ
ッジを生成するのみならず、コーキングが起こり、安定
な装置の運転継続ができなくなるため生成した軽質分の
パーセントで示される変換率は極めて低く抑えられ20
−30%に留まる。
[0005] However, in the visbreaking method, when the conversion is increased to a certain degree or more, the stability of the pyrolysis residue is lost, asphaltene agglomerates and separates, and not only sludge is generated in the residue but also sludge is generated. Since coking occurs and the operation of the stable apparatus cannot be continued, the conversion rate, which is indicated by the percentage of generated light components, is extremely low.
Stays at -30%.

【0006】ビスブレーキング法以上の変換率と一般燃
料油用に適用可能な熱分解残油を得る熱分解方法とし
て、特開昭57−119986、特開昭57−2076
87、特開昭58−5390、特公昭62−5975
3、またDD−AP201804,202446,20
7923および208313、において新規方法が提案
されている。
As a thermal cracking method for obtaining a conversion rate higher than the visbreaking method and a thermal cracking residue applicable to general fuel oils, JP-A-57-119986 and JP-A-57-2076 are known.
87, JP-A-58-5390, JP-B-62-5975
3, and DD-AP201804, 202446, 20
7923 and 208313, a new method is proposed.

【0007】この新規方法によれば変換率の著しい向上
が認められるが、変換生成物分布は重質軽油留分の比率
が高く、より付加価値の高いガソリン、ヂーゼル留分の
取得比率が低いという問題がある。
[0007] According to this novel method, a remarkable improvement in the conversion rate is recognized, but the conversion product distribution is such that the ratio of the heavy gas oil fraction is high and the ratio of the higher value-added gasoline and diesel fractions is low. There's a problem.

【0008】現在そして将来の、原油を付加価値のより
高い製品に変換する要請にとって、この結果は精製業者
にとって不満足なものであり、重質油の処理において変
換率についての相当の改善を求めるとともに高いガソリ
ン・ヂーゼル油製品取得率にたいし多くの要請がある。
[0008] The present and future demand for converting crude oil to higher value-added products has been unsatisfactory for refiners, requiring significant improvements in conversion rates in the processing of heavy oils. There are many demands for high gasoline and diesel oil product acquisition rates.

【0009】[0009]

【発明が解決しようとする課題】重質油の熱分解法にお
いて、ビスブレーキング法より高い変換率で、ガソリ
ン、ヂーゼル留分の取得率が高く、且つ軽質生成物除去
後の熱分解残油が一般的な燃焼設備で燃焼できる熱分解
方法を提供するものである。
SUMMARY OF THE INVENTION In the thermal cracking method of heavy oil, the conversion rate of gasoline and diesel fraction is higher at a higher conversion rate than the visbreaking method, and the thermal cracking residual oil after removing light products is obtained. Provides a pyrolysis method that can be burned by general combustion equipment.

【0010】[0010]

【課題を解決するための手段】本発明の重質油の熱分解
法は、圧力調整手段によって、圧力5〜20kg/cm
2Gに調整されている外熱式管型加熱炉の管内に、重質
油を導入して温度480〜500℃、滞留時間30〜1
80秒の条件下で熱分解生成物を得る第一熱分解工程
と、前記第一熱分解工程の熱分解生物を、その中の重質
留分を分離することなく、該圧力調整手段によって大気
圧程度にまで減圧した後、該重質油に対して、10〜2
5wt%供給されるスチームを熱源とする多段気泡反応
塔に導入して温度380〜430℃、圧力0.1〜1.
0kg/cm2G、滞留時間30〜120分、且つ炭化
水素分圧は減圧下の条件下で、更に熱分解すると共に水
蒸気蒸留に付し、軽質留分と燃料用残油とを分離取得す
る第二熱分解工程とからなることを特徴としている。
According to the method of the present invention for cracking heavy oil, the pressure is adjusted to 5 to 20 kg / cm by pressure adjusting means.
Heavy oil is introduced into the tube of the externally heated tube heating furnace adjusted to 2 G, and the temperature is 480-500 ° C., and the residence time is 30-1.
A first pyrolysis step of obtaining a pyrolysis product under the conditions of 80 seconds; and a pyrolysis product of the first pyrolysis step is largely separated by the pressure adjusting means without separating a heavy fraction therein. After reducing the pressure to about atmospheric pressure, 10 to 2
It is introduced into a multistage bubble reaction tower using steam supplied as a heat source at a temperature of 380 to 430 ° C and a pressure of 0.1 to 1.
Under a condition of 0 kg / cm 2 G, residence time of 30 to 120 minutes, and hydrocarbon partial pressure under reduced pressure, it is further thermally decomposed and subjected to steam distillation to separate and obtain a light fraction and a fuel residual oil. And a second pyrolysis step.

【0011】本発明において使用される重質油は、石油
系重質油としては、重質油原油、タールサンド、常圧蒸
留残油、減圧蒸留残油等であり、また上記と同様の性状
を有する石油系以外の重質油である。
The heavy oil used in the present invention includes, as petroleum-based heavy oil, heavy oil crude oil, tar sands, residual oil at normal pressure, residual oil under reduced pressure, and the like. Is a heavy oil other than petroleum.

【0012】本発明において、原料重質油は連続的に第
1段階の管型加熱炉で加熱分解され、その分解生成物は
そのまま第2段階のストリッピングスチームを熱源とす
る多段気泡反応塔で引き続き熱分解されると同時に第1
段階および第2段階にて生成した軽質留分はスチームと
ともに多段気泡反応塔から必要以上の熱に曝されること
なく留出される。
In the present invention, the raw heavy oil is continuously thermally decomposed in a first-stage tubular heating furnace, and the decomposition product is directly used in a multi-stage bubble reactor using a second-stage stripping steam as a heat source. It is pyrolyzed at the same time as the first
The light fraction produced in the stage and the second stage is distilled together with steam from the multi-stage bubble reactor without being exposed to excessive heat.

【0013】第1段階の反応は液相・加圧下で、外熱式
管型加熱炉で実施される。
The reaction in the first stage is carried out in an externally heated tube furnace under a liquid phase and under pressure.

【0014】この反応でもっとも重要な点は、高変換率
を得ながら、しかも、コークスの生成を抑える条件下で
実施することである。このため反応条件である温度、圧
力、滞留時間を厳密に制御する必要がある。反応温度が
高いほど、その変換率は高くなるが、同時にコーキング
の発生も激しくなり、反応管の閉塞につながる。従っ
て、コークの生成を抑えるためには高温に曝される滞留
時間は極めて短く制御する必要がある。低い反応温度を
適用する場合にはその滞留時間は長くできるが変換率が
低くなり経済的に引き合わなくなる。
The most important point of this reaction is to carry out the reaction while obtaining a high conversion rate and at the same time suppressing the formation of coke. Therefore, it is necessary to strictly control the reaction conditions such as temperature, pressure and residence time. The higher the reaction temperature, the higher the conversion, but at the same time, the greater the occurrence of coking, which leads to blockage of the reaction tube. Therefore, in order to suppress the formation of coke, the residence time exposed to a high temperature needs to be controlled to be extremely short. If a low reaction temperature is applied, the residence time can be extended, but the conversion is low and it is not economically feasible.

【0015】このような状況で選択できる反応条件は自
ずから制限されてくるが、本発明で採用される条件は、
圧力5−20kg/cm2 G、反応温度480−500
℃で滞留時間は30秒−180秒である。
The reaction conditions that can be selected in such a situation are naturally limited, but the conditions employed in the present invention are as follows:
Pressure 5-20 kg / cm 2 G, Reaction temperature 480-500
The residence time at 30C is 30 seconds-180 seconds.

【0016】しかし、個々の重質油はその重質油固有の
コーキングを起こす温度、時間が存在するので、実際に
適用される反応条件は個々の重質油の物性に応じて適切
な条件を選択することが高変換率を得て、コーキングに
よる反応管の閉塞を防ぐために必要である。
However, since each heavy oil has a temperature and a time at which coking unique to the heavy oil exists, the reaction conditions actually applied must be set to appropriate conditions according to the physical properties of the heavy oil. Selection is necessary to obtain high conversion and to prevent clogging of the reaction tube by coking.

【0017】第2段階は、ストリッピングスチームを熱
源とする多段気泡反応塔でほぼ大気圧下(原料炭化水素
分圧は減圧)で行われる。第1段階で熱分解を受けた生
成物を更に分解するため、通常の高温の加熱を継続する
ならばコークはいっそう生成しやすくなる。このような
状況で第2段階に適用可能な条件は第1段階からの分解
生成物を分離することなく、そのまま第2段階に導入
し、反応温度380−430℃、圧力0.1−1.0k
g/cm2 G、滞留時間30分−120分、吹き込みス
チーム量は原料にたいし10−25wt%である。
The second stage is carried out in a multi-stage bubble reactor using stripping steam as a heat source under substantially atmospheric pressure (the partial pressure of the starting hydrocarbon is reduced). Coke is more likely to form if normal high-temperature heating is continued to further decompose the products that have undergone thermal decomposition in the first stage. Under these circumstances, the conditions applicable to the second stage are as follows: the decomposition products from the first stage are introduced into the second stage without separation, and the reaction temperature is 380-430 ° C., the pressure is 0.1-1. 0k
g / cm 2 G, residence time 30 minutes to 120 minutes, and the amount of steam to be blown in the raw material is 10 to 25 wt%.

【0018】第2段階を実施するための好適な装置は、
例えば、垂直の筒状反応器中に、 1)上下に間隔をおいて複数段の多孔板が設置され、 2)反応器の気液分離部分の内壁に付着する飛沫が、蓄
積しコークス化する事を防止するため、気液分離部分の
内壁面上を摺動するスクレーパーを設け、 3)同様に、反応器の底部に析出炭素の粒塊が沈積して
堆積することを防止し、析出炭素が反応器底部に達した
被処理油に平均に混合して排出されるためのアジテータ
ーを設けたものである。
A preferred apparatus for performing the second step is
For example, in a vertical cylindrical reactor, 1) a plurality of perforated plates are installed at intervals above and below, 2) droplets adhering to the inner wall of the gas-liquid separation portion of the reactor accumulate and coke. In order to prevent this, a scraper that slides on the inner wall surface of the gas-liquid separation part is provided. 3) Similarly, to prevent the sedimentary carbon particles from being deposited and deposited on the bottom of the reactor, Is provided with an agitator for mixing and discharging the oil to be treated reaching the bottom of the reactor on average.

【0019】本発明の1実施態様を図1を参照して以下
に説明する。
One embodiment of the present invention will be described below with reference to FIG.

【0020】図1は本発明の1実施例のフローシートで
ある。1は外熱式管型加熱炉、2は多段気泡反応塔、3
は原料のフィードライン、4は供給ライン、5は軽質油
抜き出しライン、6は残油抜き出しライン、7はスチー
ム供給ライン、8は調圧弁である。
FIG. 1 is a flow sheet according to one embodiment of the present invention. 1 is an externally heated tubular heating furnace, 2 is a multistage bubble reactor, 3
Is a feed line for the raw material, 4 is a supply line, 5 is a light oil extraction line, 6 is a residual oil extraction line, 7 is a steam supply line, and 8 is a pressure regulating valve.

【0021】原料重質油は原料フィードライン3から連
続的に外熱式管型加熱炉1に導入されて反応温度450
−550℃、圧力5−20kg/cm2 G、で10秒−
2分加熱し熱分解をおこなわせ分解生成物を分離するこ
となく、そのまま供給ライン4、調圧弁8を経て多段気
泡反応塔2に導入される。
The raw material heavy oil is continuously introduced from the raw material feed line 3 into the externally heated tubular heating furnace 1 and has a reaction temperature of 450.
−550 ° C., pressure 5-20 kg / cm 2 G, 10 seconds −
It is introduced into the multi-stage bubble reaction tower 2 via the supply line 4 and the pressure regulating valve 8 without heating and thermal decomposition for 2 minutes to separate decomposition products without separation.

【0022】ここで外熱式管型加熱炉1にて相当量の熱
分解を受けた原料油はさらにスチーム供給ライン7から
のスチームの導入によって380−430℃に保たれ、
滞留時間30分−120分、圧力0.1−1.0kg/
cm2 Gの条件下でさらに熱分解される。
Here, the raw oil which has undergone a considerable amount of thermal decomposition in the externally heated tubular heating furnace 1 is further maintained at 380-430 ° C. by introducing steam from the steam supply line 7.
Residence time 30 minutes-120 minutes, pressure 0.1-1.0 kg /
It is further pyrolyzed under the condition of cm 2 G.

【0023】生成したガスおよび揮発性の分解油蒸気は
多段気泡反応塔2の上部からスチームとともに抜き出さ
れ軽質油抜き出しライン5を経て分溜塔(図示せず)に
導入され、ここでガス、ナフサ、灯油、軽油の各留分に
分離される。
The generated gas and volatile cracked oil vapor are extracted together with steam from the upper part of the multi-stage bubble reactor 2 and introduced into a fractionation tower (not shown) through a light oil extraction line 5 where gas, It is separated into naphtha, kerosene and light oil fractions.

【0024】多段気泡反応塔2において副生した液状の
熱分解残油は残油抜き出しライン6を通って抜き出され
る。
The liquid pyrolysis residual oil by-produced in the multistage bubble reactor 2 is extracted through a residual oil extraction line 6.

【0025】重質油の熱分解の第1段階を液相・加圧下
で、外熱式管型加熱炉1を用いて実施することによりガ
ソリン・ヂーゼル油の取得率が向上する。その後常圧下
でストリッピングスチームを熱源とする多段気泡反応塔
2での熱分解によりさらに変換率を上げることにより、
全体のガソリン・ヂーゼル油の取得率が高くなる。第1
段階及び第2段階で分解生成した軽質留分は塔下部より
スチームを吹き込むことにより、必要以上の熱に曝すこ
となく系外に抜き出し軽質留分の取得率が向上するので
ある。
By performing the first stage of the thermal decomposition of heavy oil in the liquid phase and under pressure using the externally heated tubular heating furnace 1, the rate of obtaining gasoline and diesel oil is improved. Thereafter, the conversion rate is further increased by pyrolysis in a multistage bubble reaction tower 2 using stripping steam as a heat source under normal pressure,
The overall gasoline and diesel oil acquisition rate will increase. First
By blowing steam from the lower part of the tower, the light fraction decomposed and generated in the second step and the second step is extracted out of the system without exposing it to unnecessary heat, thereby improving the light fraction acquisition rate.

【0026】残留残油は第2段階のスチームの吹き込み
による激しい流動状態に曝され、生成したコークも微小
なコロイド状になって残査油中に分散安定化されるた
め、一般燃料油燃焼装置にて燃焼可能な安定した残油と
なり、閉塞、その他も起こさず長時間の連続運転が可能
となっている。
The residual residual oil is exposed to a violent flow state due to the second stage steam injection, and the generated coke is also finely colloidal and dispersed and stabilized in the residual oil. It becomes a stable residual oil that can be burned at, and continuous operation for a long time without clogging or other occurrences is possible.

【0027】[0027]

【実施例】実施例1 熱分解原料として下記組成の減圧残油を用い。図1に示
すプロセスフローにより実施した。反応条件および反応
結果を表1に示した。
Example 1 A vacuum residue having the following composition was used as a raw material for thermal decomposition. This was performed according to the process flow shown in FIG. The reaction conditions and the reaction results are shown in Table 1.

【0028】 原料物性(減圧残油) 比重(SP,Gr)(15/4℃) 1.005 蒸留特性(Distillation) 初留点(IBP) 377℃ 5vol.% 498℃ 10vol.% 523℃ 15vol.% 532℃ 硫黄(wt.%) 3.30 窒素(wt.%) 0.43 粘度(cP) 811 100℃において 52 135℃において コンラドソン残炭(CCR)(wt.%) 16.65 n−ヘキサン不溶分( n7 Insolv.)(wt.%) 5.2 ニッケル(wt.ppm) 74 バナジュウム(wt.ppm) 210 実施例2〜4 実施例1と同一の減圧残油を原料として、第1段階,第
2段階の温度条件を変えて実施した。
Raw material properties (residue under reduced pressure) Specific gravity (SP, Gr) (15/4 ° C.) 1.005 Distillation characteristics (Distillation) Initial boiling point (IBP) 377 ° C. 5 vol. % 498 ° C 10 vol. % 523 ° C 15 vol. % 532 ° C Sulfur (wt.%) 3.30 Nitrogen (wt.%) 0.43 Viscosity (cP) 811 at 100 ° C 52 at 135 ° C Conradson Residual Coal (CCR) (wt.%) 16.65 n-hexane Insolubles ( n C 7 Insolv.) (Wt.%) 5.2 Nickel (wt. Ppm) 74 Vanadium (wt. Ppm) 210 Examples 2 to 4 Using the same vacuum residue as in Example 1, The test was performed while changing the temperature conditions of the first and second stages.

【0029】反応条件および反応結果を表1に示した。The reaction conditions and the reaction results are shown in Table 1.

【0030】[0030]

【表1】 比較例1 外熱式管型加熱炉で実施例1と同じ原料の熱分解をビス
ブレーキング法で実施した。熱分解は、実施例1の第1
段階と同一反応条件とした。反応条件および反応結果を
表1に示した。
[Table 1] Comparative Example 1 The same raw material as in Example 1 was thermally decomposed by a visbreaking method in an externally heated tubular heating furnace. Pyrolysis is the first of Example 1.
The same reaction conditions as in the steps were used. The reaction conditions and the reaction results are shown in Table 1.

【0031】比較例2 多段気泡反応塔で実施例1と同じ原料の熱分解を、ビス
ブレーキング法以上の変換率と一般燃料油用に適用可能
な熱分解油を得る従来法で実施した。熱分解は実施例1
の第2段階と同一反応条件とした。反応条件および反応
結果を表1に示した。
COMPARATIVE EXAMPLE 2 Pyrolysis of the same raw material as in Example 1 was carried out in a multistage bubble reactor according to a conventional method to obtain a conversion rate higher than the visbreaking method and a pyrolysis oil applicable to general fuel oil. Pyrolysis Example 1
The reaction conditions were the same as in the second step. The reaction conditions and the reaction results are shown in Table 1.

【0032】実施例1、および比較例2の分解残油の軟
化点(環球法)Ring & Softening Pointは90℃であ
る。
The softening point (ring and ball method) of the cracked residual oil of Example 1 and Comparative Example 2 is 90 ° C.

【0033】上記実施例1〜4の結果より本発明の熱分
解法は比較例1のビスブレーカーの変換率15%よりも
高い変換率49.5〜56.5%でかつ比較例2の多段
気泡反応塔でのナフサ・軽質軽油(LGO)取得率1
6.5%より高い取得率22.3〜25.6%を得た。
From the results of Examples 1 to 4, the thermal decomposition method of the present invention showed that the conversion rate of the bisbreaker of Comparative Example 1 was 49.5 to 56.5%, which was higher than the conversion rate of 15%, and that the multistage of Comparative Example 2 was Acquisition rate of naphtha and light gas oil (LGO) in bubble reactor 1
An acquisition rate of 22.3 to 25.6% higher than 6.5% was obtained.

【0034】[0034]

【発明の効果】以上説明したように本発明は重質油を第
1段階を加圧下で外部燃焼式管型加熱炉にて熱分解し、
分解生成物を分離することなく第2段階の多段気泡反応
塔でスチームストリッピング下で大気圧下で熱分解する
2段熱分解法を採用することにより、ビスブレーカー法
以上の変換率で、高ガソリン・ヂーゼル油取得率を得ら
れると共に、一般的に燃料油として使用可能な残油を得
ることができる。
As explained above, according to the present invention, heavy oil is thermally decomposed in a first stage under pressure in an external combustion type tubular heating furnace.
By adopting a two-stage pyrolysis method in which pyrolysis is performed under atmospheric pressure under steam stripping in a second-stage multistage bubble reaction tower without separating decomposition products, a conversion rate higher than that of the bisbreaker method is achieved. A gasoline / diesel oil acquisition rate can be obtained, and a residual oil that can be generally used as fuel oil can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1のフローシートである。FIG. 1 is a flow sheet of Example 1 of the present invention.

【符号の説明】[Explanation of symbols]

1 外熱式管型加熱炉 2 多段気泡反応塔 3 原料フィードライン 4 供給ライン 5 軽質油抜き出しライン 6 残油抜き出しライン 7 スチーム供給ライン 8 調圧弁 DESCRIPTION OF SYMBOLS 1 Externally heated tubular heating furnace 2 Multistage bubble reaction tower 3 Raw material feed line 4 Supply line 5 Light oil extraction line 6 Residual oil extraction line 7 Steam supply line 8 Pressure control valve

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭62−124191(JP,A) 特開 昭63−301295(JP,A) 特開 昭61−12789(JP,A) 特開 昭50−89402(JP,A) 特開 昭61−261391(JP,A) 特開 昭57−207687(JP,A) 特開 昭59−71389(JP,A) (58)調査した分野(Int.Cl.7,DB名) C10G 51/02 C10G 9/00 - 9/42 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-62-124191 (JP, A) JP-A-63-301295 (JP, A) JP-A-61-12789 (JP, A) JP-A Sho 50- 89402 (JP, A) JP-A-61-261391 (JP, A) JP-A-57-207687 (JP, A) JP-A-59-71389 (JP, A) (58) Fields investigated (Int. 7 , DB name) C10G 51/02 C10G 9/00-9/42

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 圧力調整手段によって、圧力5〜20k
g/cm2Gに調整されている外熱式管型加熱炉の管内
に、重質油を導入して温度480〜500℃、滞留時間
30〜180秒の条件下で熱分解生成物を得る第一熱分
解工程と、前記第一熱分解工程の熱分解生物を、その中
の重質留分を分離することなく、該圧力調整手段によっ
て大気圧程度にまで減圧した後、該重質油に対して、1
0〜25wt%供給されるスチームを熱源とする多段気
泡反応塔に導入して温度380〜430℃、圧力0.1
〜1.0kg/cm2G、滞留時間30〜120分、且
つ炭化水素分圧は減圧下の条件下で、更に熱分解すると
共に水蒸気蒸留に付し、軽質留分と燃料用残油とを分離
取得する第二熱分解工程とからなることを特徴とする重
質油の熱分解法。
1. A pressure adjusting means for controlling a pressure of 5 to 20 k
Heavy oil is introduced into a tube of an externally heated tubular heating furnace adjusted to g / cm 2 G to obtain a pyrolysis product at a temperature of 480 to 500 ° C. and a residence time of 30 to 180 seconds. After the first pyrolysis step and the pyrolysis product of the first pyrolysis step are depressurized to about atmospheric pressure by the pressure adjusting means without separating a heavy fraction therein, the heavy oil For 1
It is introduced into a multi-stage bubble reaction tower using steam supplied as a heat source at a temperature of 380 to 430 ° C. and a pressure of 0.1 to 25 wt%.
1.01.0 kg / cm 2 G, residence time 30-120 minutes, and hydrocarbon partial pressure under reduced pressure, further pyrolyzed and subjected to steam distillation to separate light fraction and fuel residual oil. A method for pyrolyzing heavy oil, comprising a second pyrolysis step of separating and obtaining.
JP23973292A 1992-09-08 1992-09-08 Pyrolysis of heavy oil Expired - Fee Related JP3187547B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23973292A JP3187547B2 (en) 1992-09-08 1992-09-08 Pyrolysis of heavy oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23973292A JP3187547B2 (en) 1992-09-08 1992-09-08 Pyrolysis of heavy oil

Publications (2)

Publication Number Publication Date
JPH0688079A JPH0688079A (en) 1994-03-29
JP3187547B2 true JP3187547B2 (en) 2001-07-11

Family

ID=17049111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23973292A Expired - Fee Related JP3187547B2 (en) 1992-09-08 1992-09-08 Pyrolysis of heavy oil

Country Status (1)

Country Link
JP (1) JP3187547B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10577540B2 (en) * 2018-06-06 2020-03-03 Rj Lee Group, Inc. Method and apparatus for steam separation of pyrolysis oils

Also Published As

Publication number Publication date
JPH0688079A (en) 1994-03-29

Similar Documents

Publication Publication Date Title
KR101831041B1 (en) Process for producing distillate fuels and anode grade coke from vacuum resid
US6726832B1 (en) Multiple stage catalyst bed hydrocracking with interstage feeds
US8007662B2 (en) Direct feed/effluent heat exchange in fluid catalytic cracking
EP0456058B1 (en) Refining of heavy slurry oil fractions
JP6484593B2 (en) How to upgrade the residual oil feedstock
US6048448A (en) Delayed coking process and method of formulating delayed coking feed charge
US20150368572A1 (en) Fluidized bed coking with fuel gas production
US7033486B2 (en) Residuum conversion process
US4477334A (en) Thermal cracking of heavy hydrocarbon oils
US9334452B2 (en) Two-stage, close-coupled, dual-catalytic heavy oil hydroconversion process
US4487686A (en) Process of thermally cracking heavy hydrocarbon oils
US4240898A (en) Process for producing high quality pitch
US4551232A (en) Process and facility for making coke suitable for metallurgical purposes
US4859284A (en) Combined process for the separation and continuous coking of high softening point asphaltenes
JP3187547B2 (en) Pyrolysis of heavy oil
US4522703A (en) Thermal treatment of heavy hydrocarbon oil
CN1122705C (en) Process for thermal cracking of residual hydrocarbon oil
CN1101846C (en) Process for the conversion of a residual hydrocarbon oil
US4390409A (en) Co-processing of residual oil and coal
US4267031A (en) Coking process
US4040943A (en) Combination thermal cracking and coking process
GB2138840A (en) Thermal cracking of heavy hydrocarbon oils
KR20020051940A (en) Petroleum processing method and device therefor
US5024752A (en) Upgrading of resids by liquid phase mild coking
EP0396384A2 (en) Hydrocracking of asphaltene-rich bitumen residuums

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090511

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090511

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees