JP3187457B2 - Optical transmitting / receiving element and optical transmitting / receiving device using the same - Google Patents

Optical transmitting / receiving element and optical transmitting / receiving device using the same

Info

Publication number
JP3187457B2
JP3187457B2 JP18020991A JP18020991A JP3187457B2 JP 3187457 B2 JP3187457 B2 JP 3187457B2 JP 18020991 A JP18020991 A JP 18020991A JP 18020991 A JP18020991 A JP 18020991A JP 3187457 B2 JP3187457 B2 JP 3187457B2
Authority
JP
Japan
Prior art keywords
light
electrode
receiving
receiving element
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18020991A
Other languages
Japanese (ja)
Other versions
JPH053341A (en
Inventor
稔 野村
敦史 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP18020991A priority Critical patent/JP3187457B2/en
Publication of JPH053341A publication Critical patent/JPH053341A/en
Application granted granted Critical
Publication of JP3187457B2 publication Critical patent/JP3187457B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)
  • Optical Communication System (AREA)
  • Light Receiving Elements (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、光通信又は光計測、光
信号処理等の技術分野に使用する光送受信素子及びこの
素子を用いた光送受信装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical transmitting / receiving element used in technical fields such as optical communication or optical measurement and optical signal processing, and an optical transmitting / receiving apparatus using this element.

【0002】[0002]

【従来の技術】光通信装置、測定装置では同一伝送路
(光ファイバ、空間ビーム等)をデュアル・ウェイ(二
方向)のものとし、送信と受信に共用するために送信と
受信を時分割的に切り替えて使用することが多い。図5
に従来の光送受信装置の一実施例を示す。
2. Description of the Related Art In optical communication equipment and measuring equipment, the same transmission line (optical fiber, spatial beam, etc.) is used as a dual way (two directions), and transmission and reception are performed in a time-division manner so as to be shared for transmission and reception. Often used by switching to. FIG.
FIG. 1 shows an embodiment of a conventional optical transceiver.

【0003】送信用の発光素子19と、受信用の受光素
子18はそれぞれ別の素子を使用しているため、伝送用
光ファイバ12からの光信号を、レンズ11により一度
平行光に変換した後に、ビームスプリッタ16で分岐す
るか、あるいは方向性結合器などの光分岐手段16を伝
送路に挿入して分岐し、一方は発光素子19へ、他方は
受光用光学系17により受光素子18へと集光する必要
があった。
Since the light emitting element 19 for transmission and the light receiving element 18 for reception use different elements, the optical signal from the transmission optical fiber 12 is once converted into parallel light by the lens 11 and then converted to parallel light. The light is split by a beam splitter 16 or an optical splitter 16 such as a directional coupler is inserted into a transmission path and split, and one is split to a light emitting element 19 and the other is split to a light receiving element 18 by a light receiving optical system 17. It needed to be focused.

【0004】また、信号の安定化、高信頼化を図るため
に、別個に発光出力モニタ用受光器9を用意し、これを
発光素子19の光出力の1部と結合させて、モニタ−用
増幅器10により信号を増幅した後、その信号を発光駆
動源8にフィードバックさせることによって送信出力を
安定化することも行われている。
In order to stabilize the signal and improve the reliability, a light emitting output monitoring light receiver 9 is separately provided, and this light receiving device 9 is combined with a part of the light output of the light emitting element 19 to be used for monitoring. After the signal is amplified by the amplifier 10, the transmission output is stabilized by feeding back the signal to the light emission drive source 8.

【0005】発光素子、受光素子が別であるために光路
を分岐するための光素子等が必要であり、構成が複雑に
なるという問題があった。送信と受信を同一の波長で行
っている場合は波長フィルタ等で分離することもでき
ず、送信信号も受信信号も分岐手段のために3dBの損
失を生ぜざるを得なかった。
[0005] Since the light emitting element and the light receiving element are separate, an optical element for branching the optical path is required, and there has been a problem that the configuration is complicated. When transmission and reception are performed at the same wavelength, they cannot be separated by a wavelength filter or the like, and the transmission signal and the reception signal must generate a loss of 3 dB due to the branching means.

【0006】光通信、計測に用いられる発光素子は、可
逆性を持ち発光部より光を入射することにより受光素子
として使用できることが一般に知られている。この特性
を利用して発光素子、受光素子に同一の物を使用するこ
とにより素子のみならず光学系の構成を簡略化しようと
いう試みもされていた。
It is generally known that a light emitting element used for optical communication and measurement has reversibility and can be used as a light receiving element by allowing light to enter from a light emitting section. Attempts have been made to simplify the structure of not only the element but also the optical system by using the same material for the light emitting element and the light receiving element utilizing this characteristic.

【0007】しかしながら、光送受信素子は、例えば半
導体レーザを受光素子として使用する場合には、その
(受光器としての)性能は暗電流、寄生容量、変換効率
の点で単体の受光素子には遠く及ばなかった。例えば、
3元物質InGaAsを使った受光器の場合には、暗電
流は数nA〜100nA程度、寄生容量は数pFである
のに対し、半導体レ−ザを用いた受光器の場合には、バ
イアス電圧2Vのとき暗電流は数μA、寄生容量は50
pF前後であり、実用には供し難かった。
However, when a semiconductor laser is used as a light receiving element, for example, the performance of the optical transmitting and receiving element is far from a single light receiving element in terms of dark current, parasitic capacitance, and conversion efficiency. Did not reach. For example,
In the case of a photodetector using the ternary substance InGaAs, the dark current is about several nA to about 100 nA and the parasitic capacitance is several pF, whereas in the case of a photodetector using a semiconductor laser, the bias voltage is At 2 V, the dark current is several μA, and the parasitic capacitance is 50
It was around pF, and it was difficult to provide for practical use.

【0008】[0008]

【発明が解決しようとする課題】この発明の目的は、第
一に、これまでに成功をみていない半導体発光素子(レ
−ザ・ダイオ−ド)と同一の素子を受光素子としても使
用可能な構造として実現することであり、第二に、この
発光兼受光の機能をもつ素子を用いて、通信あるいは計
測システムにおいて使用するために 送信機兼受信機
を単一素子で構成する。送信レベルの安定化させる機
能を備える。送信レベルを監視できる機能を備える。
ことを特徴とした光送受信装置を実現することである。
SUMMARY OF THE INVENTION The object of the present invention is, firstly, to use, as a light receiving element, the same element as a semiconductor light emitting element (laser diode) which has not been successful until now. Second, a transmitter and a receiver are configured by a single element for use in a communication or measurement system by using the element having the function of emitting and receiving light. It has a function to stabilize the transmission level. It has a function to monitor the transmission level.
An object of the present invention is to realize an optical transmitting and receiving apparatus characterized by the above.

【0009】[0009]

【課題を解決するための手段】半導体発光素子の活性層
の長さ方向に二つの電極を設け、受光素子としても作用
する第1の電極(前方電極)の長さを極めて短いものと
して、寄生容量と暗電流を小さくし、これまで実用され
ていなかった二電極形の発光兼受光素子を実現し、併せ
て、二つの電極と、制御系との組合せの構成を採用でき
るものとした。
SUMMARY OF THE INVENTION Two electrodes are provided in the length direction of an active layer of a semiconductor light emitting element, and the length of a first electrode (front electrode), which also functions as a light receiving element, is extremely short. By reducing the capacitance and dark current, a two-electrode light-emitting and light-receiving element, which has not been put to practical use, has been realized. In addition, a combination of two electrodes and a control system can be adopted.

【0010】[0010]

【作用】これらの素子及び装置を実現するために若干の
予備的な考察をしておく。1) 半導体レーザを受光器
として考えた場合、その受光部分の面積は発光の効率を
あげるためには小さくせざるを得ない(1μm× 0.1μ
m程度)が、発光素子としての結合系を受光に際しても
共通に使えるので、大きな不利益とはならない。
Some preliminary considerations will be given to realize these elements and devices. 1) When a semiconductor laser is considered as a light receiver, the area of the light receiving portion must be small (1 μm × 0.1 μm) in order to increase the light emission efficiency.
m) can be used in common for light reception by a coupling system as a light emitting element, so that there is no great disadvantage.

【0011】2) 半導体レーザと伝送用光ファイバと
の結合効率を2〜3dB程度に抑える必要があるが、発
光と受光とは光路を共通にしているために分岐結合器な
どが不要になり、発光の場合は光分岐結合器による3d
Bの損失を減らすことができる。受光の場合でも、光結
合損失の2〜3dBは分岐損失3dBと相殺される。
2) It is necessary to suppress the coupling efficiency between the semiconductor laser and the transmission optical fiber to about 2 to 3 dB. However, since the light emission and the light reception have a common optical path, a branch coupler is not required. In the case of light emission, 3d by an optical branching coupler
B loss can be reduced. Even in the case of light reception, 2-3 dB of optical coupling loss is offset by 3 dB of branch loss.

【0012】3) しかし、寄生容量、暗電流を改善す
るに際し、発光時における所定の発光効率及び光出力を
得るためには、半導体レーザは通常300μm程度に設
計されるために活性層長を極端に短くすることはできな
い。しかしながら、光電変換部分の長さを短縮できれ
ば、寄生容量も暗電流もほぼその短縮された長さ(活性
層長)に比例して減少させることができる。
3) However, in order to improve the parasitic capacitance and dark current, in order to obtain a predetermined luminous efficiency and light output during light emission, the semiconductor laser is usually designed to have a length of about 300 μm. Cannot be shortened. However, if the length of the photoelectric conversion portion can be reduced, both the parasitic capacitance and the dark current can be reduced substantially in proportion to the reduced length (active layer length).

【0013】4) 半導体レ−ザの活性層は励起をして
いない場合は、発光波長以下の波長を有する光に対し、
吸収係数は 数1000/cm と非常に大きいことが
知られている。(文献 " Absorption and electroabsor
ption spectra of an In1-X GaX P1-YAsY /InP doubl
e heterostructure" K. Satzke and G. Weiser,J.Appl.
Phys.63(11), 1 June 1988, PP5485 〜5490)。
4) When the active layer of the semiconductor laser is not excited, light having a wavelength equal to or less than the emission wavelength is used.
It is known that the absorption coefficient is as large as several thousand / cm. (Reference "Absorption and electroabsor
ption spectra of an In 1-X Ga X P 1-Y As Y / InP doubl
e heterostructure "K. Satzke and G. Weiser, J. Appl.
Phys. 63 (11), 1 June 1988, PP5485-5490).

【0014】例えば、閉じ込め係数0.2、吸収係数3
000/cmの活性層の端面から光を入射した場合、活
性層の長さが約50μmで入力光の約95%、30μm
で入力光の約85%が吸収されてしまうので、これ以
上、活性層長が長くても受光感度はほとんど変わらな
い。むしろ発生した電力が電極を通して非感光部分の励
起に使用され、外部取り出し電力が減少してしまう。
For example, confinement coefficient 0.2, absorption coefficient 3
When light is incident from the end face of the active layer of about 000 / cm, the length of the active layer is about 50 μm, and about 95% of the input light, 30 μm
In this case, about 85% of the input light is absorbed, so that even if the active layer length is longer, the light receiving sensitivity hardly changes. Rather, the generated power is used to excite non-photosensitive portions through the electrodes, reducing the power taken out.

【0015】そこで、半導体レ−ザの電極を少なくと
も、信号光入出力側の電極(第1の電極あるいは前方電
極ともいう。)と、該信号光入出力側と反対の電極(第
2の電極あるいは後方電極ともいう。)とに2分割し、
第1の電極の長さは、その端面から受光した光を、例え
ば30μmとし、発光器(発光素子)として使用すると
きは第1の電極と第2の電極に電流を流し、受光器(受
光素子)として使用するときは第1の電極のみを使用
し、第2の電極は無バイアス又はほぼ接地バイアスに保
持する。こうすることで、従来に比べて寄生容量や暗電
流を約1/10以下に減少できる。図2に半導体レーザ
の等価回路を示す。
Therefore, the electrodes of the semiconductor laser are at least electrodes on the signal light input / output side (also referred to as first electrodes or front electrodes) and electrodes opposite to the signal light input / output side (second electrodes). Or, it is also called a rear electrode.)
The length of the first electrode is 30 μm, for example, when the light received from the end face is used. When the first electrode is used as a light emitting device (light emitting element), a current flows through the first electrode and the second electrode, and the light receiving device (light receiving device) When used as an element, only the first electrode is used, and the second electrode is kept at no bias or almost at ground bias. By doing so, the parasitic capacitance and dark current can be reduced to about 1/10 or less as compared with the related art. FIG. 2 shows an equivalent circuit of the semiconductor laser.

【0016】5) 負荷抵抗Rを50Ωとするときの最
大受信周波数fは、f=1/2πRCで与えられるた
め、従来の技術では寄生容量50pFのとき約60MHz
であったのに比べ、本発明では、寄生容量が1/10の
5pFになることで10倍の約600MHzまでのびるこ
とがわかる。また、起電力の吸収による感度低下を防止
する。
5) Since the maximum receiving frequency f when the load resistance R is 50Ω is given by f = 1 / πRC, the conventional technology has a parasitic capacitance of about 60 MHz when the parasitic capacitance is 50 pF.
In contrast, in the present invention, it can be seen that the parasitic capacitance is increased by a factor of 10 to about 600 MHz by reducing the parasitic capacitance to 1/10 of 5 pF. In addition, a reduction in sensitivity due to absorption of electromotive force is prevented.

【0017】6) 一方、2つの電極をもつ半導体レー
ザは、発光器として使用する時に、前方電極に流す電流
を一定とし、後方電極に流れる電流を変化させることに
よって、強度変調を掛けることができる。この半導体レ
ーザに電流を注入している状態で、発光素子の活性層内
の光量が変化すると、その端子電圧が変化することは報
告されている(『自己結合半導体レーザの端子電圧変
化』(電子情報通信学会技術研究報告OQE80−8
3)三橋慶喜、島田潤一、三塚秀一)。
6) On the other hand, when a semiconductor laser having two electrodes is used as a light emitting device, intensity modulation can be performed by keeping the current flowing to the front electrode constant and changing the current flowing to the rear electrode. . It has been reported that the terminal voltage changes when the amount of light in the active layer of the light emitting element changes while current is injected into the semiconductor laser (see “Terminal voltage change of self-coupled semiconductor laser” (Electronics ITE Technical Report OQE80-8
3) Yoshiki Mitsuhashi, Junichi Shimada, Shuichi Mitsuka).

【0018】この報告にヒントを得て、発明者らは、発
光器として使用するときには、後方電極の電流のみを変
化させることにより強度変調をかけ、前方電極には一定
電流を流し、この前方電極の端子電圧を検出することに
よって、この電極部の光量変化に応じた電圧変化を検出
し、発光量のモニタを兼ねることができることに気が付
いた。これによって、別個に発光量検出用のモニタ受光
器を設置する必要がなくなり、構成がシンプルになり、
経済化を図ることができるこの発明の構成を生み出すこ
とができた。
Taking a hint from this report, when used as a light-emitting device, the present inventors apply intensity modulation by changing only the current of the rear electrode, and apply a constant current to the front electrode. It has been found that by detecting the terminal voltage, a voltage change corresponding to the change in the light amount of the electrode portion can be detected, and the light emission amount can be monitored. This eliminates the need to install a separate monitor light receiver for the amount of emitted light, simplifying the configuration,
The configuration of the present invention that can be economical can be produced.

【0019】[0019]

【実施例】本発明に係る光送受信素子の構成の一実施例
を図1に、その半導体レーザによる等価回路を図2に、
本発明に係る光送受信装置の構成の一実施例を図3及び
図4に示す。本発明の光送受信素子(半導体レーザ)
は、その電極が導波路方向に前方電極(第1の電極)3
と後方電極(第2の電極)4とに分割されている。第1
の電極3と第2の電極4は、活性層2を含むダブルヘテ
ロ構造の半導体部1に接合し、隔離している。前方電極
3を、例えば30μm程度とする。最大でも50μm
それより長くすることは寄生容量、暗電流の増大を招
き、受光のためには有害無益であることが実験結果から
わかった。電極3、4がクランク状になっているのはワ
イヤボンデングのためのスペースである。後方電極4に
は発光駆動源8が接続され、後方電極4、発光駆動源
8、発光出力モニタ用受光器9及びモニタ用増幅器10
により自動光出力制御(APC)回路が組まれている。
前方電極3は切替器5の切替えにより、送信時には同様
に発光駆動源8から出力された送信用変調信号が接続さ
れ、受信時には逆電圧が加えられると共に受光信号増幅
器6を介して受光信号処理回路7が接続される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an embodiment of the configuration of an optical transceiver according to the present invention, and FIG. 2 shows an equivalent circuit using the semiconductor laser.
One embodiment of the configuration of the optical transceiver according to the present invention is shown in FIGS. Optical transmitting / receiving element (semiconductor laser) of the present invention
Means that the electrode is a front electrode (first electrode) 3 in the waveguide direction.
And a rear electrode (second electrode) 4. First
The electrode 3 and the second electrode 4 are bonded to and separated from the semiconductor portion 1 having a double hetero structure including the active layer 2. The front electrode 3 is, for example, about 30 μm. In 50μm at most
If it is longer , parasitic capacitance and dark current will increase.
Come, that for receiving the more harm than good has been found from the experimental results. The electrodes 3 and 4 having a crank shape are spaces for wire bonding. A light emission driving source 8 is connected to the rear electrode 4, and the rear electrode 4, the light emission driving source 8, the light emitting output monitoring light receiver 9, and the monitoring amplifier 10 are provided.
, An automatic light output control (APC) circuit is assembled.
The front electrode 3 is connected to the transmission modulation signal similarly output from the light emission drive source 8 at the time of transmission by switching of the switch 5, applies a reverse voltage at the time of reception, and receives a light reception signal processing circuit via the light reception signal amplifier 6. 7 is connected.

【0020】この場合、前方電極3が後方電極4に比較
して短かいので、前方電極3には変調信号をのせず、一
定電流とし、後方電極4のみに変調をかけても変調感度
はあまり低下しない。前方電極3に 全体の発振しきい
値×前方電極3長/全体電極長 以上の電流を流してお
けば発振時の出力も十分取れる。受信時、後方電極4は
信号受信の妨げにならないように切替器5により、無バ
イアス又はほぼ接地付近の一定バイアス(接地バイアス
ともいう。)を保持する。
In this case, since the front electrode 3 is shorter than the rear electrode 4, no modulation signal is applied to the front electrode 3 and a constant current is applied. Does not drop. If a current equal to or greater than the total oscillation threshold value × the length of the front electrode 3 / the total electrode length is passed through the front electrode 3, a sufficient output during oscillation can be obtained. At the time of reception, the rear electrode 4 maintains no bias or a constant bias near the ground (also referred to as a ground bias) by the switch 5 so as not to hinder signal reception.

【0021】これによって受光時は活性層2が受光器と
して働き、発光時と同一の光結合手段11によって発光
時とほぼ同一の結合効率で伝送用光ファイバ12からの
受信光を電気信号に変換する。この電気信号は、受光信
号増幅器6によって所定のレベルまで増幅されて受光信
号処理回路7によって受信処理される。送信時において
は、前方電極3には必ずしも変調信号ではなく、一定レ
ベルのバイアス電流を流しておいても良く、その効果は
変わらない。
Thus, at the time of light reception, the active layer 2 functions as a light receiver, and the light received from the transmission optical fiber 12 is converted into an electric signal by the same optical coupling means 11 at the time of light emission with almost the same coupling efficiency as at the time of light emission. I do. This electric signal is amplified to a predetermined level by the light receiving signal amplifier 6 and received by the light receiving signal processing circuit 7. At the time of transmission, a constant level bias current may be applied to the front electrode 3 instead of the modulation signal, and the effect remains unchanged.

【0022】また、発光出力が余り要求されない場合
は、前方電極3に電流を流さなくてもレーザ発振を行う
ことができる。この場合は、発光、受光の信号を切り替
えるための切替器5が不要となり、また、モニタ信号は
受光信号と同一の処理ですむため、回路が簡素化され
る。
When the light emission output is not required much, laser oscillation can be performed without supplying a current to the front electrode 3. In this case, the switch 5 for switching between the light emission signal and the light reception signal is not required, and the monitor signal is processed in the same manner as the light reception signal, so that the circuit is simplified.

【0023】本発明による光送受信装置の場合は図4に
示すように、送信時は前方電極3には切替器5によって
バイアス電流供給器(定電流源)13が接続され、後方
電極4は発光駆動源8へ接続される。このとき、後方電
極4での変調によって活性層2内の光量が変化すると、
前方電極3の端子電圧が変化する。この端子電圧の変化
が切替器5を介して受光信号増幅器6から発光駆動源8
へと接続され、後方電極4を駆動することにより、自動
光出力制御(APC)回路を組むことができる。前方電
極3の端子電圧の検出は、バイアス電流による一定電圧
も含まれるので、切替器5では、直流成分をカットし、
変調光の光量変化に応じた電圧変化分のみを受光信号増
幅器6へと接続するものとする。
In the case of the optical transmitting / receiving apparatus according to the present invention, as shown in FIG. 4, during transmission, a bias current supply (constant current source) 13 is connected to the front electrode 3 by the switch 5 and the rear electrode 4 emits light. Ru is connected to the drive source 8. At this time, if the amount of light in the active layer 2 changes due to the modulation at the rear electrode 4,
The terminal voltage of the front electrode 3 changes. The change in the terminal voltage is transmitted from the light receiving signal amplifier 6 through the switch 5 to the light emission driving source 8.
, And by driving the rear electrode 4, an automatic light output control (APC) circuit can be assembled. Since the detection of the terminal voltage of the front electrode 3 includes a constant voltage due to the bias current, the switch 5 cuts the DC component,
It is assumed that only a voltage change corresponding to a change in the amount of modulated light is connected to the light receiving signal amplifier 6.

【0024】受信時は、図3の実施例の場合と同様、光
送受信素子の前方電極3を受光信号増幅器6を介して受
光信号処理回路7へと接続し、該光送受信素子の後方電
極4は無バイアス電位状態となるように接続する。発光
出力が余り大きくなくても良い場合は前方電極3に電流
を流さなくてもレーザ発振を行うことができる。この場
合は、発光、受光の信号を切り替えるための切替器5が
不要となり、また、モニタ信号は受光信号と同一の処理
ですむため、回路が簡素化できる。この実施例における
光結合手段14はレンズなどを用いなくとも先球ファイ
バレンズを用いても実現できることは言うまでもない。
At the time of reception, similarly to the embodiment of FIG. 3, the front electrode 3 of the optical transmitting / receiving element is connected to the light receiving signal processing circuit 7 via the light receiving signal amplifier 6, and the rear electrode 4 of the optical transmitting / receiving element is connected. Are connected so as to be in a bias-free potential state. When the light emission output does not need to be very large, laser oscillation can be performed without passing a current to the front electrode 3. In this case, the switch 5 for switching between the light emission signal and the light reception signal is not required, and the monitor signal can be processed in the same manner as the light reception signal, so that the circuit can be simplified. It goes without saying that the optical coupling means 14 in this embodiment can be realized without using a lens or the like and using a spherical fiber lens.

【0025】[0025]

【発明の効果】光通信装置、計測測定装置に用いられる
電気、光変換素子は、一般に可逆性を持ち、発光部より
光を入射することにより受光素子として使用できる。本
発明は、素子の電極を2分割することにより、素子を発
光、受光兼用として使用することができ、なおかつ、受
光時は単独の受光素子と遜色無い特性を発揮できるもの
である。発光素子、受光素子に同一の物を使用する結
果、素子数のみならず光学系が簡略化でき、また、分割
による損失がなくなるため、発光時の損失を3dB減ら
すことができる。光ファイバとの結合も、中間に光分岐
手段を挿入する必要がないので、先球加工をしたファイ
バに直接結合することも可能であり、さらに光学系が簡
素化される。また、発光時は、受光用の電極により、発
光信号のモニタが可能なため、モニタ用の受光素子及び
それに対する光学系が省略でき、大きな経済的効果が期
待できる。
The electric / optical conversion element used in the optical communication device and the measurement / measurement device generally has reversibility, and can be used as a light receiving element by receiving light from a light emitting section. According to the present invention, by dividing the electrode of the element into two, the element can be used for both light emission and light reception, and can exhibit characteristics comparable to those of a single light receiving element at the time of light reception. As a result of using the same light-emitting element and light-receiving element, not only the number of elements but also the optical system can be simplified, and the loss due to division is eliminated, so that the loss during light emission can be reduced by 3 dB. Since there is no need to insert a light branching means in the middle of the connection with the optical fiber, it is also possible to directly connect the optical fiber to the spherically processed fiber, and the optical system is further simplified. Further, at the time of light emission, the light-emitting signal can be monitored by the light-receiving electrode, so that the light-receiving element for monitoring and the optical system for it can be omitted, and a great economical effect can be expected.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の光送受信素子に係る構成の一実施例を
示す。
FIG. 1 shows an embodiment of a configuration relating to an optical transmitting / receiving element of the present invention.

【図2】半導体レーザの等価回路を示す。FIG. 2 shows an equivalent circuit of a semiconductor laser.

【図3、図4】本発明の光送受信装置に係る構成の一実
施例を示す。
FIGS. 3 and 4 show an embodiment of the configuration relating to the optical transmitting / receiving apparatus of the present invention.

【図5】従来技術の構成の一実施例を示す。FIG. 5 shows an embodiment of the configuration of the prior art.

【符号の説明】[Explanation of symbols]

1 半導体部 2 活性層 3 第1の電極(前方電極) 4 第2の電極(後方電極) 5 切替器 6 受光信号増幅器 7 受光信号処理回路 8 発光駆動源 9 発光出力モニタ用受光器 10 モニタ用増幅器 11 レンズ 12 伝送用光ファイバ 13 バイアス電流供給器 14 光結合手段(先球ファイバレンズ) 15 光量変化検出器 16 光分岐手段(ビ−ムスプリッタ) 17 受光用光学系 18 受光素子 19 発光素子 DESCRIPTION OF SYMBOLS 1 Semiconductor part 2 Active layer 3 1st electrode (front electrode) 4 2nd electrode (rear electrode) 5 Switch 6 Light reception signal amplifier 7 Light reception signal processing circuit 8 Light emission drive source 9 Light emission output monitor light receiver 10 For monitor Amplifier 11 Lens 12 Transmission optical fiber 13 Bias current supply device 14 Optical coupling means (Spherical fiber lens) 15 Light quantity change detector 16 Optical splitting means (beam splitter) 17 Light receiving optical system 18 Light receiving element 19 Light emitting element

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI H04B 10/06 10/14 10/26 10/28 (56)参考文献 特開 昭59−125660(JP,A) 特開 昭61−187286(JP,A) 特開 昭61−191091(JP,A) 特開 昭62−81784(JP,A) 特開 昭62−285484(JP,A) 特開 平2−299282(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01S 5/00 - 5/50 H01L 31/00 - 31/20 H01L 33/00 H04B 10/00 - 10/30 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI H04B 10/06 10/14 10/26 10/28 (56) References JP-A-59-125660 (JP, A) JP-A Sho JP-A-61-187286 (JP, A) JP-A-61-191091 (JP, A) JP-A-62-81784 (JP, A) JP-A-62-285484 (JP, A) JP-A-2-299282 (JP, A A) (58) Field surveyed (Int. Cl. 7 , DB name) H01S 5/00-5/50 H01L 31/00-31/20 H01L 33/00 H04B 10/00-10/30

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 活性層(2)を含むダブルヘテロ構造の
半導体部(1)該半導体部に接合して信号光入出力
側に配置された受信信号を取り出すための第1の電極
(3)と、前記半導体部に接合し前記第1の電極とは導
波路方向に隔離されて配置された第2の電極(4)
有し、前記第1の電極の活性層上における導波路方向の
長さは前記第2の電極より短く、その長さが50μm以
下であることを特徴とする光送受信素子。
1. A semiconductor portion of the double hetero structure including an active layer (2) and (1), the signal light output joined to the semiconductor unit
A first electrode (3) arranged on the side for extracting a received signal and the first electrode joined to the semiconductor portion are connected to each other;
And a second electrode disposed Isolated waveguide direction (4), the length of the waveguide direction on the active layer of the first electrode is shorter than the second electrode, its length light emitting and receiving elements you wherein a is 50μm or less.
【請求項2】 請求項1記載の光送受信素子と、該光送
受信素子の駆動信号を出力する発光駆動源(8)と、前
記光送受信素子を発光器として使用するときは光送受
信素子の第1の電極(3)及び第2の電極(4)をとも
前記発光駆動源に接続し、前記光送受信素子を受光器
として使用するときは前記第1の電極を受光信号処理回
路(7)に接続し、かつ、前記第2の電極を無バイアス
電位状態とするように接続する切替器(5)とを備えた
光送受信装置。
[2 claim] and the light receiving element according to claim 1, wherein, the light emission driving source that outputs a driving signal of the light receiving element (8), of the light emitting and receiving elements when using the light emitting and receiving elements as the light emitter the first electrode (3) and a second electrode (4) both connected to the light emission driving source, the light-receiving signal processing circuit said first electrode when using the light emitting and receiving elements as the photodetector (7) connected to, and, switch (5) for connecting said second electrode to the non-bias potential state and a light receiving device provided with a.
【請求項3】 請求項1記載の光送受信素子と、該光送
受信素子の駆動信号を出力する発光駆動源(8)、前
記光送受信素子を発光器として使用するときは前記光送
受信素子の第1の電極(3)を定電流源(13)に接続
し、かつ、前記光送受信素子の第2の電極(4)を前記
発光駆動源に接続し、前記光送受信素子を受光器として
使用するときは前記第1の電極を受光信号処理回路
)に接続し、かつ、前記第2の電極を無バイアス
位状態とするように接続する切替器(5)と、前記第1
の電極の端子電圧を検出する手段で成る光量変化検出器
(15)とを備えた光送受信装置。
3. A light receiving device according to claim 1, the light transmission
A light-emitting drive source (8) for outputting a drive signal for a receiving element; and an optical drive when the optical transmitting / receiving element is used as a light emitting device.
Connect the first electrode (3) of the receiving element to the constant current source (13)
And the second electrode (4) of the optical transmitting and receiving element is
Connected to the light emission driving source, when using the light emitting and receiving elements as the photodetector connects the first electrodes on the light-receiving signal processing circuit (7), and no bias current to the second electrodes < br /> position switch that connects to the state (5), the first
Light amount change detector consisting of means for detecting the terminal voltage of the electrode (15) and a light receiving device provided with a.
JP18020991A 1991-06-25 1991-06-25 Optical transmitting / receiving element and optical transmitting / receiving device using the same Expired - Fee Related JP3187457B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18020991A JP3187457B2 (en) 1991-06-25 1991-06-25 Optical transmitting / receiving element and optical transmitting / receiving device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18020991A JP3187457B2 (en) 1991-06-25 1991-06-25 Optical transmitting / receiving element and optical transmitting / receiving device using the same

Publications (2)

Publication Number Publication Date
JPH053341A JPH053341A (en) 1993-01-08
JP3187457B2 true JP3187457B2 (en) 2001-07-11

Family

ID=16079309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18020991A Expired - Fee Related JP3187457B2 (en) 1991-06-25 1991-06-25 Optical transmitting / receiving element and optical transmitting / receiving device using the same

Country Status (1)

Country Link
JP (1) JP3187457B2 (en)

Also Published As

Publication number Publication date
JPH053341A (en) 1993-01-08

Similar Documents

Publication Publication Date Title
US5590145A (en) Light-emitting apparatus capable of selecting polarization direction, optical communication system, and polarization modulation control method
US7509052B2 (en) Optical receiver, optical transmitter and optical transceiver
JP4090402B2 (en) Semiconductor optical amplifier and optical module using the same
US5130762A (en) Integrated quantum well feedback structure
JPH02502053A (en) Dual-mode laser/detector diode for fiber optic transmission lines
KR100734874B1 (en) Bi-directional optical module
KR100563865B1 (en) A light emitting device and transistor
KR100810209B1 (en) Optical interconnect for half duplex type and optical device for the same
US6643308B2 (en) Semiconductor laser device and method for suppressing injection current
US5299057A (en) Monolithically integrated optical amplifier and photodetector tap
Tauke-Pedretti et al. High saturation power and high gain integrated photoreceivers
JP3187457B2 (en) Optical transmitting / receiving element and optical transmitting / receiving device using the same
Tiemeijer et al. High-output-power (+ 15 dBm) unidirectional 1310-nm multiple-quantum-well booster amplifier module
Giuliani et al. Multifunctional characteristics of 1.5-μm two-section amplifier-modulator-detector SOA
US5065207A (en) Optoelectronic circuit with diodes and waveguides
TWI400896B (en) Millimeter wave photoelectric switch launcher
TWI836348B (en) Monolithic photonic integrated circuit and opto-electronic system comprising the same
US5781347A (en) Optical device
JP2694803B2 (en) Optical semiconductor laser device wavelength stabilization method
US11874495B2 (en) Monolithic photonic integrated circuit and opto-electronic system comprising the same
US8401044B2 (en) Semiconductor light emitting element, driving method of semiconductor light emitting element, light emitting device, and optical pulse tester using light emitting device
Ayling et al. Novel integrated laser devices with greatly enhanced quantum efficiency and intrinsic RF matching for low loss, broad band opto-microwave applications
JPH09318853A (en) Optical transmission/reception equipment and optical communication network
Gnauck et al. A transimpedance APD optical receiver operating at 10 Gb/s
JP3276347B2 (en) Optical / electrical mutual conversion element, optical signal transmitting / receiving device, and optical signal transmitting / receiving system

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees