JP3185819B2 - Outdoor electromagnetic environment measurement device - Google Patents

Outdoor electromagnetic environment measurement device

Info

Publication number
JP3185819B2
JP3185819B2 JP23867992A JP23867992A JP3185819B2 JP 3185819 B2 JP3185819 B2 JP 3185819B2 JP 23867992 A JP23867992 A JP 23867992A JP 23867992 A JP23867992 A JP 23867992A JP 3185819 B2 JP3185819 B2 JP 3185819B2
Authority
JP
Japan
Prior art keywords
electromagnetic interference
electromagnetic environment
interference wave
electromagnetic
antenna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP23867992A
Other languages
Japanese (ja)
Other versions
JPH0688845A (en
Inventor
国主男 高木
哲欣 富永
正男 馬杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP23867992A priority Critical patent/JP3185819B2/en
Publication of JPH0688845A publication Critical patent/JPH0688845A/en
Application granted granted Critical
Publication of JP3185819B2 publication Critical patent/JP3185819B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、車載用ナビゲーション
システムを用いて、道路周辺の電磁妨害波の放射源位置
やその近傍の等電界線分布を推定する屋外電磁環境計測
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an outdoor electromagnetic environment measuring device for estimating the position of a radiation source of electromagnetic interference waves around a road and the distribution of isoelectric lines in the vicinity thereof using a vehicle-mounted navigation system.

【0002】[0002]

【従来の技術】図6は、車載計測器を用いた従来の屋外
電磁環境計測装置の構成例を示すブロック図である。
2. Description of the Related Art FIG. 6 is a block diagram showing a configuration example of a conventional outdoor electromagnetic environment measuring device using a vehicle-mounted measuring instrument.

【0003】図において、屋外電磁環境計測装置は、移
動車60の屋根等に搭載される電磁環境測定用アンテナ
61および地磁気センサ62と、移動車内に搭載される
電磁妨害波計測部63,走行距離検出部64,位置検出
部65,電磁環境計測部66およびデータ処理部67に
より構成される。
In FIG. 1, an outdoor electromagnetic environment measuring device includes an electromagnetic environment measuring antenna 61 and a geomagnetic sensor 62 mounted on a roof of a moving vehicle 60, an electromagnetic interference wave measuring section 63 mounted in the moving vehicle, and a traveling distance. It comprises a detecting unit 64, a position detecting unit 65, an electromagnetic environment measuring unit 66, and a data processing unit 67.

【0004】電磁妨害波計測部63はスペクトルアナラ
イザや電界強度計を有し、電磁環境測定用アンテナ61
に受信された電磁妨害波信号を入力し、電界強度等の電
磁妨害波計測データを電磁環境計測部66に出力する。
位置検出部65は、地磁気センサ62から移動車60の
移動位置における方位情報を入力し、走行距離検出部6
4から移動車60の車輪の回転に応じて出力される移動
距離情報を入力し、移動車60の現在位置データを電磁
環境計測部66に出力する。電磁環境計測部66は、電
磁妨害波計測データと移動車60の現在位置データとを
整合させ、位置に対応付けた電磁環境計測データをデー
タ処理部67に出力する。データ処理部67は、電磁環
境計測データの蓄積および表示処理を行う。
An electromagnetic interference wave measuring unit 63 has a spectrum analyzer and an electric field strength meter, and has an antenna 61 for measuring an electromagnetic environment.
And outputs the received electromagnetic interference signal such as electric field strength to the electromagnetic environment measuring unit 66.
The position detecting unit 65 receives direction information of the moving vehicle 60 at the moving position from the geomagnetic sensor 62 and
4, the moving distance information output according to the rotation of the wheels of the moving vehicle 60 is input, and the current position data of the moving vehicle 60 is output to the electromagnetic environment measuring unit 66. The electromagnetic environment measurement unit 66 matches the electromagnetic interference wave measurement data with the current position data of the mobile vehicle 60, and outputs the electromagnetic environment measurement data associated with the position to the data processing unit 67. The data processing unit 67 stores and displays electromagnetic environment measurement data.

【0005】このような屋外電磁環境計測装置を用い
て、道路に沿った電磁環境を道路位置と対応付けて計測
し、地図等に表示させる操作は以下のようになる。地図
等で既知の建物等がある道路上の基準点から道路上を移
動車60で走行し、位置検出部65で基準点に対する移
動車60の現在位置を検出する。一方、電磁妨害波計測
部63でその地点における電界強度(あるいは磁界強
度)等の電磁妨害波計測データを計測する。さらに、電
磁環境計測部66で電磁妨害波計測データと移動車60
の現在位置データとを整合させ、位置に対応付けた電磁
環境計測データをデータ処理部67に表示させる。この
ような操作を道路上の異なる複数の地点において行うこ
とにより、道路に沿った任意の地点の電磁環境を地図等
に表示させることができる。
Using such an outdoor electromagnetic environment measuring device, the operation of measuring the electromagnetic environment along the road in association with the road position and displaying it on a map or the like is as follows. A traveling vehicle 60 travels on a road from a reference point on a road where a known building or the like exists on a map or the like, and a position detection unit 65 detects the current position of the traveling vehicle 60 with respect to the reference point. On the other hand, the electromagnetic interference wave measurement unit 63 measures electromagnetic interference wave measurement data such as electric field intensity (or magnetic field intensity) at that point. Further, the electromagnetic environment measurement section 66 measures the electromagnetic interference wave measurement data and the moving vehicle 60.
And the data processing unit 67 displays the electromagnetic environment measurement data associated with the position. By performing such an operation at a plurality of different points on the road, the electromagnetic environment at an arbitrary point along the road can be displayed on a map or the like.

【0006】[0006]

【発明が解決しようとする課題】ところで、従来の屋外
電磁環境計測装置の構成では、電磁妨害波を計測する各
道路位置が、移動車60の移動距離とその地点の方位と
に基づいて得られた基準点からの相対位置に過ぎない。
したがって、基準点から遠くになるにつれてその誤差が
大きくなる。
By the way, in the configuration of the conventional outdoor electromagnetic environment measuring apparatus, each road position for measuring the electromagnetic interference wave can be obtained based on the moving distance of the moving vehicle 60 and the azimuth of the point. It is only a relative position from the reference point.
Therefore, the error increases as the distance from the reference point increases.

【0007】また、従来構成では、道路上のそれぞれの
地点における電磁妨害波計測データとその道路位置との
対応付けはできるが、電磁妨害波の到来方向やその周波
数については考慮されていない。したがって、例えば電
磁界強度レベルが大きい複数の周波数の電磁妨害波が存
在するような状況では、各周波数の電磁妨害波の放射源
位置や、放射源から測定点を含むエリアの等電界線分布
を推定することができなかった。
Further, in the conventional configuration, although it is possible to correlate the electromagnetic interference wave measurement data at each point on the road with the road position, the arrival direction and the frequency of the electromagnetic interference wave are not considered. Therefore, for example, in a situation where there are electromagnetic interference waves of a plurality of frequencies having large electromagnetic field strength levels, the position of the radiation source of the electromagnetic interference waves of each frequency and the isoelectric field distribution of the area including the measurement point from the radiation source are determined. Could not be estimated.

【0008】本発明は、道路上の任意点における電磁妨
害波の計測により、道路周辺にある複数の電磁妨害波の
放射源位置や、これらの放射源近傍エリアの等電界線分
布を高精度で推定することができる屋外電磁環境計測装
置を提供することを目的とする。
According to the present invention, by measuring electromagnetic interference waves at an arbitrary point on a road, the positions of the radiation sources of a plurality of electromagnetic interference waves around the road and the distribution of the isoelectric field in the area near these radiation sources can be determined with high accuracy. It is an object to provide an outdoor electromagnetic environment measuring device that can be estimated.

【0009】[0009]

【課題を解決するための手段】本発明は、移動車に搭載
された電磁妨害波計測手段で計測された電磁妨害波計測
データと、移動車の位置検出手段で検出された位置情報
とを整合させ、各道路位置に対応した電磁環境計測デー
タを計測表示する屋外電磁環境計測装置において、前記
電磁妨害波計測手段は、指向性を有する電磁環境計測用
アンテナと、電磁環境計測用アンテナを水平方向および
垂直方向に回転させる回転手段と、電磁環境計測用アン
テナを垂直方向に昇降させる昇降手段とを備え、電磁環
境計測用アンテナの回転角度から電磁妨害波の水平方向
および垂直方向の最大到来角度を検出し、電磁妨害波到
来方向を含む電磁妨害波計測データを出力する構成であ
り、前記位置検出手段は、計測地点の水平位置を衛星測
位システム(GPS)を用いて検出し、計測地点の垂直
位置を前記電磁環境計測用アンテナの昇降手段が出力す
る昇降位置情報から検出する構成であることを特徴とす
る。
According to the present invention, there is provided a method of matching electromagnetic interference wave measurement data measured by an electromagnetic interference wave measuring means mounted on a mobile vehicle with position information detected by a position detecting means of the mobile vehicle. In the outdoor electromagnetic environment measuring apparatus for measuring and displaying the electromagnetic environment measurement data corresponding to each road position, the electromagnetic interference wave measuring means includes a directional electromagnetic environment measuring antenna and an electromagnetic environment measuring antenna in a horizontal direction. And a rotating means for rotating vertically and an elevating means for vertically moving the antenna for measuring the electromagnetic environment, wherein the maximum angle of arrival of the electromagnetic interference wave in the horizontal and vertical directions is determined from the rotation angle of the antenna for measuring the electromagnetic environment. The position detecting means detects the horizontal position of the measurement point by using a satellite positioning system (GP). ) Was detected using, characterized in that the vertical position of the measurement point is a configuration that detects the vertical position information output by the elevating means of the electromagnetic environment measuring antenna.

【0010】[0010]

【作用】本発明は、車載用ナビゲーションシステムとし
て実用化されている衛星測位システム(GPS)を用
い、また電磁環境計測用アンテナの昇降手段から昇降位
置情報を得ることにより、電磁妨害波を計測する電磁環
境計測用アンテナの水平位置および垂直位置を正確に得
ることができる。
According to the present invention, an electromagnetic interference wave is measured by using a satellite positioning system (GPS) which is put into practical use as an on-vehicle navigation system, and by obtaining elevation position information from an elevation means of an electromagnetic environment measurement antenna. The horizontal and vertical positions of the electromagnetic environment measurement antenna can be accurately obtained.

【0011】さらに、水平方向および垂直方向に回転自
在な指向性アンテナで電磁妨害波計測データを計測し、
電磁妨害波到来方向を含めて計測位置と整合させること
により、道路周辺の電磁妨害波の放射源位置や、その近
傍エリアの等電界線分布を推定することができる。
Further, electromagnetic interference wave measurement data is measured by a directional antenna which is rotatable in a horizontal direction and a vertical direction,
By matching with the measurement position including the direction of arrival of the electromagnetic interference wave, it is possible to estimate the position of the source of the electromagnetic interference wave around the road and the distribution of the isoelectric field in the vicinity area.

【0012】[0012]

【実施例】図1は、本発明の屋外電磁環境計測装置の第
一実施例の構成を示すブロック図である。
FIG. 1 is a block diagram showing the configuration of a first embodiment of the outdoor electromagnetic environment measuring apparatus according to the present invention.

【0013】図において、指向性を有する電磁環境計測
用アンテナ11は、水平θ方向および垂直φ方向にそれ
ぞれの面内で所定角度だけ回転自在な構成であり、さら
に昇降器12によって垂直方向に所定の高さの範囲で昇
降する構成である。複数のGPS衛星13からの測位電
波を受信するGPS用アンテナ14およびその受信信号
から位置を検出する位置検出部15は、公知の衛星測位
システム(GPS)を用いて構成される。本実施例の位
置検出部15は、電磁環境計測用アンテナ11の昇降器
12から昇降位置情報を入力し、衛星測位システム(G
PS)を用いて得られた水平位置に加えて、垂直位置も
検出する構成になっている。計測・位置信号整合部16
は、電磁環境計測用アンテナ11で得られた電磁妨害波
計測データと、位置検出部15から出力される位置信号
とを整合させ、各計測位置における電磁妨害波計測デー
タを出力する。
In FIG. 1, an electromagnetic environment measuring antenna 11 having directivity is configured to be rotatable by a predetermined angle in each plane in a horizontal θ direction and a vertical φ direction, and furthermore, by a lift 12 in a vertical direction. It moves up and down within the range of height. A GPS antenna 14 for receiving positioning radio waves from a plurality of GPS satellites 13 and a position detecting unit 15 for detecting a position from the received signal are configured using a known satellite positioning system (GPS). The position detection unit 15 of the present embodiment inputs the elevation position information from the elevator 12 of the antenna 11 for measuring the electromagnetic environment, and inputs the information to the satellite positioning system (G
The vertical position is detected in addition to the horizontal position obtained by using (PS). Measurement / position signal matching unit 16
Aligns the electromagnetic interference wave measurement data obtained by the electromagnetic environment measurement antenna 11 with the position signal output from the position detection unit 15 and outputs the electromagnetic interference wave measurement data at each measurement position.

【0014】電磁妨害波到来方向検出部17は、地磁気
センサ62から出力される方位信号と、電磁環境計測用
アンテナ11の水平θ方向および垂直φ方向の回転位置
信号とを入力し、電磁環境計測用アンテナ11を回転さ
せて得られる電磁妨害波の最大到来角度を検出し、電磁
妨害波の到来方向情報を出力する。電磁妨害波到来方向
作画部18は、計測・位置信号整合部16から出力され
る各計測位置における電磁妨害波計測データと、電磁妨
害波到来方向検出部17から出力される電磁妨害波の到
来方向情報とを整合させ、対応する作画情報を作成して
表示部19に表示させる。
The electromagnetic interference wave arrival direction detecting unit 17 receives the azimuth signal output from the geomagnetic sensor 62 and the rotational position signals of the antenna 11 for measuring the electromagnetic environment in the horizontal θ direction and the vertical φ direction, and measures the electromagnetic environment. Detecting the maximum angle of arrival of the electromagnetic interference wave obtained by rotating the antenna 11 for use, and outputting the arrival direction information of the electromagnetic interference wave. The electromagnetic interference wave arrival direction drawing unit 18 calculates the electromagnetic interference wave measurement data at each measurement position output from the measurement / position signal matching unit 16 and the arrival direction of the electromagnetic interference wave output from the electromagnetic interference wave arrival direction detection unit 17. The information is matched, and corresponding drawing information is created and displayed on the display unit 19.

【0015】以下、図2を参照して道路周辺にある電磁
妨害波の放射源位置を推定する方法について説明する。
なお、図2(a) は電磁妨害波の放射源位置の水平位置を
推定する方法を説明する平面図であり、図2(b) は電磁
妨害波の放射源位置の垂直位置を推定する方法を説明す
る立面図である。
Hereinafter, a method for estimating the position of the radiation source of the electromagnetic interference wave around the road will be described with reference to FIG.
FIG. 2 (a) is a plan view for explaining a method of estimating the horizontal position of the radiation source position of the electromagnetic interference wave, and FIG. 2 (b) is a method of estimating the vertical position of the radiation source position of the electromagnetic interference wave. FIG.

【0016】図において、移動車60を図2(a) の道路
上の任意の地点Aに停止させ、GPS用アンテナ14で
GPS衛星13からの測位電波を受信してその位置を確
定する。
In FIG. 2, a moving vehicle 60 is stopped at an arbitrary point A on the road shown in FIG. 2A, and a positioning radio wave from a GPS satellite 13 is received by a GPS antenna 14 to determine its position.

【0017】次に、この地点において電磁環境計測用ア
ンテナ11を水平θ方向に回転させると、電磁妨害波到
来方向検出部17で到来電波レベルが最大になる水平角
度を求めることができる。すなわち、電磁妨害波到来方
向検出部17としてスペクトルアナライザのような周波
数レベル計を用いた場合には、図3に示すように、到来
電波レベルが周波数軸上に観測される。ここで、電磁環
境計測用アンテナ11の水平回転角θ1 〜θ3 に対し
て、所定の周波数fm で到来電波レベルが最大となる検
出レベルがV1 〜V3 のように変化したとすると、周波
数fm に対する電磁妨害波の最大到来水平角度θ3 を求
めることができる。
Next, when the electromagnetic environment measurement antenna 11 is rotated in the horizontal θ direction at this point, the electromagnetic interference wave arrival direction detection unit 17 can obtain the horizontal angle at which the level of the arriving radio wave is maximized. That is, when a frequency level meter such as a spectrum analyzer is used as the electromagnetic interference wave arrival direction detection unit 17, the arrival radio wave level is observed on the frequency axis as shown in FIG. Here, with respect to the horizontal rotation angle theta 1 through? 3 electromagnetic environment measurement antenna 11, the radio waves coming level at a given frequency f m is the detection level becomes maximum and changes as V 1 ~V 3 it can be obtained the maximum arrival horizontal angle theta 3 of electromagnetic interference for a frequency f m.

【0018】したがって、電磁妨害波到来方向作画部1
8では、地磁気センサ62によるN極方位を基準に最大
到来水平角度θ3 から水平角度θA を求め、図2(a) に
示すようなナビゲーション表示画面上で直線A−hA
作図する。
Therefore, the electromagnetic interference wave arrival direction drawing unit 1
In 8, it obtains a horizontal angle theta A from the maximum arrival horizontal angle theta 3 relative to the N pole orientation by the geomagnetic sensor 62, plotting a straight line A-h A on the navigation display screen as shown in FIG. 2 (a).

【0019】次に、地点Aと異なる地点Bおよび地点C
に移動車60を移し、同様に電磁環境計測用アンテナ1
1を回転させ、それぞれの地点における電磁妨害波の最
大到来水平角度に対するN極方位からの水平角度θB
θC を求め、直線B−hB ,C−hC を作図する。
Next, point B and point C different from point A
The moving vehicle 60 is moved to the
1 and the horizontal angle θ B from the N pole direction to the maximum horizontal angle of arrival of the electromagnetic interference wave at each point.
Obtain θ C and draw straight lines B-h B and C-h C.

【0020】ところで、それぞれの地点において測定さ
れた電磁妨害波の最大到来水平角度は、近傍の建物等に
よる反射その他の要因によって正しい方向を示していな
い場合がある。そのときには水平角度θA ,θB ,θC
に誤差が生じるので、これらの作図線A−hA ,B−h
B ,C−hC は一点で交差しなくなり、図に示すように
交点P,Q,Rをもつのが一般的となる。しかし、これ
らの交点付近に電磁妨害波の放射源があると推定するこ
とは可能であり、例えば3地点で囲む三角形PQRの重
心Mの地点に周波数fm の電磁妨害波の放射源があると
推定することができる。
By the way, the maximum arrival horizontal angle of the electromagnetic interference wave measured at each point may not indicate the correct direction due to reflection by a nearby building or other factors. Then the horizontal angles θ A , θ B , θ C
Since an error occurs, these construction lines A-h A, B-h
B, C-h C is no longer intersect at one point, the intersection P as shown in FIG, Q, to have a R becomes common. However, it is possible to estimate that in the vicinity of these intersections there is a radiation source of electromagnetic interference, for example, the point of the center of gravity M of the triangle PQR surrounded by 3 points is electromagnetic interference radiation source frequency f m Can be estimated.

【0021】また同様に、地点A,B,Cにおいて電磁
環境計測用アンテナ11を垂直φ方向に回転させると、
電磁妨害波到来方向検出部17で到来電波レベルが最大
になる垂直角度を求めることができる。電磁妨害波到来
方向作画部18では、水平度計等から得られる水平方向
Hを基準に垂直角度φA,φB,φC を求め、図2(b)に
示すようなナビゲーション表示画面上で直線A−vA
B−vB ,C−vC を作図する。さらに、これらの直線
の交点から、同様にして垂直方向における周波数fm
電磁妨害波の放射源を推定することができる。
Similarly, when the antenna 11 for measuring the electromagnetic environment is rotated in the vertical φ direction at the points A, B, and C,
The vertical angle at which the level of the arriving radio wave is maximized can be obtained by the electromagnetic interference wave arrival direction detector 17. The electromagnetic interference wave arrival direction drawing unit 18 obtains vertical angles φ A , φ B , and φ C based on the horizontal direction H obtained from a level meter or the like, and displays the vertical angles on a navigation display screen as shown in FIG. The straight line A−v A ,
B-v B, plotting the C-v C. Furthermore, it is possible from the intersection of these straight lines, to estimate the electromagnetic interference radiation source frequency f m in the vertical direction in the same manner.

【0022】なお、以上の説明では、3地点における計
測データをもとに電磁妨害波の放射源を推定する方法に
ついて示したが、計測地点をさらに多くすれば、電磁妨
害波の放射源位置の推定精度を向上させることができ
る。
In the above description, the method of estimating the radiation source of the electromagnetic interference wave based on the measurement data at the three points has been described. However, if the number of measurement points is further increased, the position of the radiation source position of the electromagnetic interference wave is estimated. The estimation accuracy can be improved.

【0023】次に、図4を参照して道路周辺にある電磁
妨害波の放射源位置からの等電界線分布を推定する方法
について説明する。図において、周波数fm ,fn の電
磁妨害波の放射源位置M,Nは、上述した方法により地
点A,B,Cからの計測によって推定されたものとす
る。ここで、各地点A,B,Cで周波数fm の電磁妨害
波に対する測定電界強度をEA ,EB,EC とすると、
作図線A−hA ,B−hB ,C−hC 上に等電界点EM
を与える放射源位置Mからの距離rA ,rB ,rC は、 EM =EA /rA =EB /rB =EC /rC の関係から、EM をパラメータとして推定することがで
きる。なお、周波数fnの電磁妨害波の放射源位置Nか
らの等電界線分布についても同様に推定することができ
る。
Next, a method for estimating the distribution of the isoelectric field from the position of the radiation source of the electromagnetic interference wave around the road will be described with reference to FIG. In the figure, the frequency f m, the radiation source position M of the electromagnetic interference of f n, N is assumed to have been estimated point A, B, by the measurement from C by the method described above. Here, each point A, B, measuring the electric field intensity E A for electromagnetic interference frequency f m in C, E B, when the E C,
Construction lines A-h A, B-h B, C-h C equal field point on E M
The distances r A , r B , and r C from the radiation source position M which gives the following are estimated from the relationship of E M = E A / r A = E B / r B = E C / r C using E M as a parameter. be able to. Incidentally, it is possible to estimate the same for equal field lines distribution from electromagnetic interference radiation source positions N of the frequency f n.

【0024】図5は、本発明の屋外電磁環境計測装置の
第二実施例の構成を示すブロック図である。図におい
て、指向性を有する電磁環境計測用アンテナ11は、水
平θ方向および垂直φ方向にそれぞれの面内で所定角度
だけ回転自在な構成であり、電磁妨害波の到来方向の計
測のみに用いられる。電磁妨害波の電界強度は、3軸直
交の電磁環境計測用アンテナ51により計測される。こ
の電磁環境計測用アンテナ51およびGPS用アンテナ
14は、昇降器12によって垂直方向に所定の高さの範
囲で昇降する構成である。位置検出部15は、昇降器1
2から昇降位置情報を入力し、衛星測位システム(GP
S)を用いて得られた水平位置に加えて、垂直位置も検
出する構成になっている。計測・位置信号整合部16
は、電磁環境計測用アンテナ51で得られた電磁妨害波
計測データと、位置検出部15から出力される位置信号
とを整合させ、各計測位置における電磁妨害波計測デー
タを出力する。電磁妨害波到来方向検出部17,電磁妨
害波到来方向作画部18および表示部19は、第一実施
例と同様に構成される。
FIG. 5 is a block diagram showing the configuration of a second embodiment of the outdoor electromagnetic environment measuring apparatus according to the present invention. In the figure, an electromagnetic environment measuring antenna 11 having directivity is configured to be rotatable by a predetermined angle in each plane in a horizontal θ direction and a vertical φ direction, and is used only for measuring an arrival direction of an electromagnetic interference wave. . The electric field strength of the electromagnetic interference wave is measured by an electromagnetic environment measuring antenna 51 orthogonal to three axes. The electromagnetic environment measuring antenna 51 and the GPS antenna 14 are configured to be vertically moved by the elevator 12 within a predetermined height range. The position detecting unit 15 includes the elevator 1
2 and input the elevation information from the satellite positioning system (GP
The vertical position is detected in addition to the horizontal position obtained by using S). Measurement / position signal matching unit 16
Aligns the electromagnetic interference wave measurement data obtained by the electromagnetic environment measurement antenna 51 with the position signal output from the position detection unit 15, and outputs the electromagnetic interference wave measurement data at each measurement position. The electromagnetic interference wave arrival direction detection unit 17, the electromagnetic interference wave arrival direction drawing unit 18, and the display unit 19 are configured in the same manner as in the first embodiment.

【0025】本実施例では、指向性を有する電磁環境計
測用アンテナ11で電磁妨害波の到来方向を検出し、電
磁妨害波計測データは回転が不要な3軸直交の電磁環境
計測用アンテナ51により計測する構成となっている。
したがって、計測・位置信号整合部16では、電磁妨害
波計測データの合成値を容易に求めることができる。
In this embodiment, the direction of arrival of an electromagnetic interference wave is detected by an electromagnetic environment measurement antenna 11 having directivity, and the electromagnetic interference wave measurement data is converted by a three-axis orthogonal electromagnetic environment measurement antenna 51 which does not require rotation. It is configured to measure.
Therefore, the measurement / position signal matching unit 16 can easily obtain a composite value of the electromagnetic interference wave measurement data.

【0026】[0026]

【発明の効果】以上説明したように本発明は、衛星測位
システム(GPS)を用いて計測地点の水平位置を検出
し、電磁環境計測用アンテナの昇降によって計測地点の
垂直位置を検出することにより、計測地点の正確な特定
を可能にすることができる。また、指向性を有する電磁
環境計測用アンテナを用いて電磁妨害波の到来方向を検
出し、計測位置と整合させることにより、複数の周波数
の電磁妨害波がある場合でもその放射源位置や、その近
傍エリアの等電界線分布を推定することができる。
As described above, the present invention detects a horizontal position of a measurement point by using a satellite positioning system (GPS), and detects a vertical position of the measurement point by moving up and down an antenna for measuring an electromagnetic environment. , It is possible to accurately specify the measurement point. In addition, the direction of arrival of the electromagnetic interference wave is detected using an antenna for electromagnetic environment measurement having directivity, and by matching it with the measurement position, even if there are electromagnetic interference waves of multiple frequencies, the position of the radiation source and its It is possible to estimate the distribution of the isoelectric field in the vicinity area.

【0027】なお、衛星測位システム(GPS)を用い
た車載用ナビゲーションシステムの画面上で電磁妨害波
の到来方向を作図表示させることにより、容易に電磁妨
害波の放射源位置や等電界線分布を推定することができ
る。
The direction of arrival of the electromagnetic interference wave is plotted and displayed on the screen of a vehicle-mounted navigation system using a satellite positioning system (GPS), so that the position of the radiation source of the electromagnetic interference wave and the distribution of the isoelectric field can be easily determined. Can be estimated.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の屋外電磁環境計測装置の第一実施例の
構成を示すブロック図。
FIG. 1 is a block diagram showing a configuration of a first embodiment of an outdoor electromagnetic environment measuring device of the present invention.

【図2】道路周辺にある電磁妨害波の放射源位置を推定
する方法について説明する図。
FIG. 2 is a view for explaining a method of estimating a radiation source position of an electromagnetic interference wave around a road.

【図3】電磁妨害波到来方向検出部17の検出波形例を
示す図。
FIG. 3 is a diagram showing an example of a detection waveform of an electromagnetic interference wave arrival direction detection unit 17;

【図4】道路周辺にある電磁妨害波の放射源位置からの
等電界線分布を推定する方法について説明する図。
FIG. 4 is a diagram for explaining a method of estimating an isoelectric field distribution from a position of a radiation source of an electromagnetic interference wave around a road.

【図5】本発明の屋外電磁環境計測装置の第二実施例の
構成を示すブロック図。
FIG. 5 is a block diagram showing the configuration of a second embodiment of the outdoor electromagnetic environment measuring device of the present invention.

【図6】車載計測器を用いた従来の屋外電磁環境計測装
置の構成例を示すブロック図。
FIG. 6 is a block diagram showing a configuration example of a conventional outdoor electromagnetic environment measuring device using a vehicle-mounted measuring instrument.

【符号の説明】[Explanation of symbols]

11,51 電磁環境計測用アンテナ 12 昇降器 13 GPS衛星 14 GPS用アンテナ 15 位置検出部 16 計測・位置信号整合部 17 電磁妨害波到来方向検出部 18 電磁妨害波到来方向作画部 19 表示部 60 移動車60 61 電磁環境測定用アンテナ 62 地磁気センサ 63 電磁妨害波計測部 64 走行距離検出部 65 位置検出部 66 電磁環境計測部 67 データ処理部 11, 51 Electromagnetic environment measurement antenna 12 Elevator 13 GPS satellite 14 GPS antenna 15 Position detection unit 16 Measurement / position signal matching unit 17 Electromagnetic interference wave arrival direction detection unit 18 Electromagnetic interference wave arrival direction drawing unit 19 Display unit 60 Move Car 60 61 Electromagnetic environment measuring antenna 62 Geomagnetic sensor 63 Electromagnetic interference wave measuring unit 64 Travel distance detecting unit 65 Position detecting unit 66 Electromagnetic environment measuring unit 67 Data processing unit

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平5−302944(JP,A) 特開 平6−3392(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01R 29/08 G01S 5/14 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-5-302944 (JP, A) JP-A-6-3392 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G01R 29/08 G01S 5/14

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 移動車に搭載された電磁妨害波計測手段
で計測された電磁妨害波計測データと、移動車の位置検
出手段で検出された位置情報とを整合させ、各道路位置
に対応した電磁環境計測データを計測表示する屋外電磁
環境計測装置において、 前記電磁妨害波計測手段は、指向性を有する電磁環境計
測用アンテナと、電磁環境計測用アンテナを水平方向お
よび垂直方向に回転させる回転手段と、電磁環境計測用
アンテナを垂直方向に昇降させる昇降手段とを備え、電
磁環境計測用アンテナの回転角度から電磁妨害波の水平
方向および垂直方向の最大到来角度を検出し、電磁妨害
波到来方向を含む電磁妨害波計測データを出力する構成
であり、 前記位置検出手段は、計測地点の水平位置を衛星測位シ
ステム(GPS)を用いて検出し、計測地点の垂直位置
を前記電磁環境計測用アンテナの昇降手段が出力する昇
降位置情報から検出する構成であることを特徴とする屋
外電磁環境計測装置。
1. An electromagnetic interference wave measurement data measured by an electromagnetic interference wave measuring means mounted on a moving vehicle is matched with position information detected by a position detecting means of the moving vehicle so as to correspond to each road position. In an outdoor electromagnetic environment measuring device that measures and displays electromagnetic environment measurement data, the electromagnetic interference wave measuring unit includes a directional electromagnetic environment measuring antenna, and a rotating unit that rotates the electromagnetic environment measuring antenna in horizontal and vertical directions. And an elevating means for vertically moving the antenna for electromagnetic environment measurement, detecting the maximum arrival angle of the electromagnetic interference wave in the horizontal and vertical directions from the rotation angle of the antenna for electromagnetic environment measurement, The position detecting means detects a horizontal position of a measurement point using a satellite positioning system (GPS), and performs measurement. Outdoor electromagnetic environment measurement apparatus, characterized in that the vertical position is configured to detect the vertical position information output by the elevating means of the electromagnetic environment measurement antenna points.
JP23867992A 1992-09-07 1992-09-07 Outdoor electromagnetic environment measurement device Expired - Lifetime JP3185819B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23867992A JP3185819B2 (en) 1992-09-07 1992-09-07 Outdoor electromagnetic environment measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23867992A JP3185819B2 (en) 1992-09-07 1992-09-07 Outdoor electromagnetic environment measurement device

Publications (2)

Publication Number Publication Date
JPH0688845A JPH0688845A (en) 1994-03-29
JP3185819B2 true JP3185819B2 (en) 2001-07-11

Family

ID=17033698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23867992A Expired - Lifetime JP3185819B2 (en) 1992-09-07 1992-09-07 Outdoor electromagnetic environment measurement device

Country Status (1)

Country Link
JP (1) JP3185819B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3036551A1 (en) * 2013-08-20 2016-06-29 Eskom Holdings Soc Limited A fault location detection system and method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009058460A (en) * 2007-09-03 2009-03-19 Nec Tokin Corp Antenna elevator and spurious radiation electromagnetic wave measurement system using same
WO2010097842A1 (en) * 2009-02-27 2010-09-02 Necトーキン株式会社 Antenna lifting device and electromagnetic wave measuring system
JP6633877B2 (en) * 2015-09-25 2020-01-22 シャープ株式会社 Moving vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3036551A1 (en) * 2013-08-20 2016-06-29 Eskom Holdings Soc Limited A fault location detection system and method

Also Published As

Publication number Publication date
JPH0688845A (en) 1994-03-29

Similar Documents

Publication Publication Date Title
US5252912A (en) System for warning aircraft pilot of potential impact with a power line and generating time-to-time impact signal
US11487038B2 (en) Operating method of a metal detector capable of measuring target depth
JPS5991311A (en) Electronic compass for transport means
JPS587574A (en) Navigating device
JPH11178043A (en) Position detection method
US7107849B2 (en) Vibration source probe system
JP3477116B2 (en) Method and apparatus for detecting partial discharge occurrence position of distribution line
JP3185819B2 (en) Outdoor electromagnetic environment measurement device
EP2040029A1 (en) A multi mode active surveying pole
JPH10141968A (en) Navigation device for moving body, current position deciding method thereof, and medium in which current position deciding program is stored
JP2001116850A (en) Method and device for detecting underground pipe
JPH08105745A (en) Method and apparatus for correction of azimuth error of terrestrial magnetism sensor
CN111856509A (en) Positioning method, positioning device and mobile equipment
CN115728833A (en) Direct-buried cable path detection vehicle and detection method thereof
AU2020279821B2 (en) Underground line locator system with real time kinematic and global satellite positioning
JP2866078B2 (en) Excavation propulsion position detecting device and position detecting method
CN111157944B (en) Distance measuring device and mobile carrier based on double antennas
JPH0618582A (en) Tracking and position measuring type radio-controlled electromagnetic environment measuring system
JPH05203717A (en) Object position deciding method
RU2662246C1 (en) Measurement method of length of underground pipeline
TW202045948A (en) Method and system of magnetic positioning
JPH0744831U (en) Radio wave position detector
JPH0523363B2 (en)
JPH0558121B2 (en)
JPS63261928A (en) On-vehicle receiver

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090511

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090511

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 12