JP3184774B2 - Continuous heating furnace - Google Patents

Continuous heating furnace

Info

Publication number
JP3184774B2
JP3184774B2 JP04167597A JP4167597A JP3184774B2 JP 3184774 B2 JP3184774 B2 JP 3184774B2 JP 04167597 A JP04167597 A JP 04167597A JP 4167597 A JP4167597 A JP 4167597A JP 3184774 B2 JP3184774 B2 JP 3184774B2
Authority
JP
Japan
Prior art keywords
injection port
fuel injection
zone
fuel
billet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP04167597A
Other languages
Japanese (ja)
Other versions
JPH10219354A (en
Inventor
孝之 稲見
勝己 間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanken Sangyo Co Ltd
Original Assignee
Sanken Sangyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanken Sangyo Co Ltd filed Critical Sanken Sangyo Co Ltd
Priority to JP04167597A priority Critical patent/JP3184774B2/en
Publication of JPH10219354A publication Critical patent/JPH10219354A/en
Application granted granted Critical
Publication of JP3184774B2 publication Critical patent/JP3184774B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Air Supply (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、複数の加熱帯域に
区画され、且つ800℃以上の予熱空気が用いられる連
続加熱炉に関するものであって、鋼片に対する熱伝達量
・雰囲気を帯域毎に最適になるようにしたものに関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a continuous heating furnace which is divided into a plurality of heating zones and uses preheated air of 800.degree. C. or more. Regarding what has been optimized.

【0002】[0002]

【従来の技術】連続加熱炉1は、図11に示すように、
例えば鋼片90の搬入口の帯域にあたる加熱帯1P・鋼
片90の搬入口の帯域と搬出口の帯域に挾まれた帯域に
あたる加熱帯2H・鋼片の搬出口の帯域にあたる加熱帯
3U等の複数の加熱帯域に区画されており、近年は、そ
の熱効率を高めるために、800℃以上の予熱空気を用
いて燃料を燃焼させるバーナ2を備えたものが使用され
るようになった。そのバーナ2は、例えば、図12に示
すように、炉壁1aに設けられた800℃以上の予熱空
気2cを噴射する空気噴出口2aと、その周囲に設けら
れた複数の燃料噴射口2bとを備え、それぞれ1次燃料
2d、2次燃料2eが、空気噴出口2a、燃料噴射口2
bに供給され、何れの口から噴射された燃料も、空気噴
出口2aから噴射される予熱空気2cと混合し、燃焼
し、火炎を形成し、その発生する熱によって鋼片90が
加熱されるよう構成されている。
2. Description of the Related Art As shown in FIG.
For example, a heating zone 1P corresponding to the zone of the entrance of the slab 90, a heating zone 2H corresponding to a zone sandwiched between the zone of the entrance of the slab 90 and the zone of the exit, and a heating zone 3U corresponding to the zone of the exit of the slab. It is divided into a plurality of heating zones, and in recent years, in order to enhance its thermal efficiency, a type equipped with a burner 2 for burning fuel using preheated air at 800 ° C. or higher has been used. As shown in FIG. 12, for example, the burner 2 includes an air outlet 2a provided on the furnace wall 1a for injecting preheated air 2c of 800 ° C. or higher, and a plurality of fuel injection ports 2b provided therearound. And the primary fuel 2d and the secondary fuel 2e are supplied by the air injection port 2a and the fuel injection port 2a, respectively.
b, and the fuel injected from any of the ports is mixed with the preheated air 2c injected from the air outlet 2a, burns, forms a flame, and the generated heat heats the billet 90. It is configured as follows.

【0003】また従来の連続加熱炉1では、いずれの帯
域でも、バーナ2を構成する空気噴出口2a、燃料噴射
口2bの鋼片90に対する位置関係が同一であり、しか
も、空気噴出口2a、燃料噴射口2bは、鋼片90に火
炎が接触しないよう配置されている。そのうえ、鋼片9
0に近い側、遠い側に設けられた燃料噴射口2bのいず
れにも、均等に燃料が供給されるよう構成されている。
Further, in the conventional continuous heating furnace 1, the positional relationship between the air injection port 2a and the fuel injection port 2b constituting the burner 2 with respect to the billet 90 is the same in any zone. The fuel injection port 2 b is arranged so that the flame does not contact the billet 90. Besides, billet 9
The fuel is uniformly supplied to both the fuel injection ports 2b provided on the side closer to 0 and the side farther from 0.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、例えば
鋼片90の表面の酸化スケールの生成の抑制を目的に、
還元性雰囲気が形成されるよう、全体として空気比は1
よりも小さい値に保持されるため、排ガス中の未燃焼成
分の発生量が増加し、それがそのまま大気中に放出され
ると環境を汚染するという問題を生じる。また、その環
境問題を避けるためには、未燃焼成分を燃焼するバーナ
を別個に設ける必要がある。
However, for the purpose of suppressing the formation of oxide scale on the surface of the billet 90, for example,
As a whole, the air ratio is 1 so that a reducing atmosphere is formed.
Since it is kept at a smaller value, the amount of unburned components in the exhaust gas increases, and if it is released into the atmosphere as it is, there is a problem that the environment is polluted. In order to avoid the environmental problem, it is necessary to separately provide a burner for burning unburned components.

【0005】他方、全体として空気比が1よりも著しく
高い値に保持されると、過剰空気による燃焼排ガス量が
増加し、熱効率が低下すると共に、鋼片90の表面の酸
化スケールの生成が増加するという問題点がある。
On the other hand, when the air ratio is maintained at a value significantly higher than 1, the amount of flue gas due to excess air increases, the thermal efficiency decreases, and the generation of oxide scale on the surface of the billet 90 increases. There is a problem that.

【0006】そこで本発明の目的とするところは、熱効
率が高く、排ガス中の未燃焼成分の発生量が殆ど無く、
従って環境を汚染することもなく、そのうえ、帯域毎
に、鋼片に対して実質的に影響を与える、鋼片に近い側
が最適の雰囲気に保持されるよう構成された連続加熱炉
を提供することにある。
[0006] Therefore, an object of the present invention is to provide a high thermal efficiency and a small amount of unburned components in exhaust gas.
Accordingly, to provide a continuous heating furnace configured to maintain an optimum atmosphere on the side close to the billet, which does not pollute the environment and substantially affects the billet in each zone. It is in.

【0007】[0007]

【課題を解決するための手段】上記の目的を達するため
に、請求項1の発明の連続加熱炉は、1つの炉体内が複
数の帯域に区画され、例えば3帯域、鋼片(90)の搬
入口の帯域にあたる加熱帯1(P),鋼片(90)の搬
入口の帯域と搬出口の帯域に挾まれた帯域にあたる加熱
帯2(H),鋼片(90)の搬出口の帯域にあたる加熱
帯3(U),の場合を想定すると、その各帯域の炉壁に
少なくとも1つのバーナ(10)が配設され、そのバー
ナ(10)の各々が、800℃以上の予熱空気(2c)
または、800℃以上の予熱空気(2c)及び1次燃料
(2d)を噴射可能な空気噴出口(20)と,その空気
噴出口(20)に対して、鋼片(90)に近い側および
遠い側に設けられた、それぞれ2次燃料(2e)を噴射
可能な近接燃料噴射口(30)および遠隔燃料噴射口
(40)と,近接燃料噴射口(30)に付設された第1
調節弁(35)と,遠隔燃料噴射口(40)に付設され
た第2調節弁(45)と,を備えるとともに、第1調節
弁(35)および第2調節弁(45)を介して、鋼片
(90)の搬入口の加熱帯1(P)においては近接燃料
噴射口(30)への燃料供給量が遠隔燃料噴射口(4
0)へのそれに略等しく設定され、鋼片(90)の搬入
口の帯域と搬出口の帯域に挾まれた加熱帯2(H)にお
いては近接燃料噴射口(30)への燃料供給量が遠隔燃
料噴射口(40)へのそれよりも大きくされ還元性雰囲
気で鋼片(90)を加熱するよう設定され、鋼片(9
0)の搬出口の加熱帯3(U)においては近接燃料噴射
口(30)への燃料供給量が遠隔燃料噴射口(40)へ
のそれよりも小さくされ酸化性雰囲気で鋼片(90)を
加熱するよう設定され、しかも複数の帯域(P,H,
U)毎のバーナ(10)の中心と鋼片(90)との距離
(L1,L2,L3)を、鋼片(90)の搬入口の帯域
(P)から搬出口の帯域(U)にかけて大きくなるよう
に各帯域のバーナ(10)の位置が設定された(L1<
L2<L3)ことを特徴とするものである。
In order to achieve the above object, a continuous heating furnace according to the first aspect of the present invention is configured such that one furnace body is divided into a plurality of zones, for example, three zones, a billet (90). Heating zone 1 (P), which corresponds to the zone of the entrance, heating zone 2 (H), which is a zone sandwiched between the zone of the entrance of the billet (90) and the zone of the exit, and the zone of the exit for the billet (90). Assuming the case of the heating zone 3 (U), at least one burner (10) is disposed on the furnace wall of each zone, and each of the burners (10) has a preheated air (2c) of 800 ° C. or higher. )
Alternatively, an air outlet (20) capable of injecting preheated air (2c) and primary fuel (2d) at 800 ° C. or higher, and a side closer to the billet (90) with respect to the air outlet (20). A near fuel injection port (30) and a remote fuel injection port (40) provided on the far side and capable of injecting the secondary fuel (2e), respectively, and a first fuel injection port (30) provided on the close fuel injection port (30).
A control valve (35) and a second control valve (45) attached to the remote fuel injection port (40) are provided, and via the first control valve (35) and the second control valve (45), In the heating zone 1 (P) at the entrance of the billet (90), the amount of fuel supplied to the adjacent fuel injection port (30) is reduced by the remote fuel injection port (4).
0), and in the heating zone 2 (H) sandwiched between the zone of the entrance of the billet (90) and the zone of the exit, the fuel supply to the adjacent fuel injection port (30) is reduced. The slab (9) is set to heat the slab (90) in a larger and reducing atmosphere than to the remote fuel injection port (40).
In the heating zone 3 (U) at the carry-out port of (0), the amount of fuel supplied to the adjacent fuel injection port (30) is made smaller than that to the remote fuel injection port (40), and the billet (90) is oxidized. To be heated , and a plurality of zones (P, H,
U) Distance between the center of the burner (10) and the billet (90)
(L1, L2, L3) is changed to the zone of the entrance of the billet (90).
(P) to become larger from the carry-out exit band (U)
The position of the burner (10) of each band is set to (L1 <
L2 <L3) .

【0008】請求項2の発明の連続加熱炉は、1つの炉
体内が複数の帯域(P,H,U)に区画され、その各帯
域(P,H,U)の炉壁に少なくとも1つのバーナ(1
0)が配設され、そのバーナ(10)の各々が、800
℃以上の予熱空気(2c)または、800℃以上の予熱
空気(2c)及び1次燃料(2d)を噴射可能な空気噴
出口(20)と,その空気噴出口(20)に対して、鋼
片(90)に近い側および遠い側に設けられた、それぞ
れ2次燃料(2e)を噴射可能な近接燃料噴射口(3
0)および遠隔燃料噴射口(40)と,近接燃料噴射口
(30)および遠隔燃料噴射口(40)に付設された燃
料供給量比率調節弁(55)と,を備えるとともに、燃
料供給量比率調節弁(55)を介して、鋼片(90)の
搬入口の帯域(P)においては近接燃料噴射口(30)
への燃料供給量が遠隔燃料噴射口(40)へのそれに略
等しく設定され、鋼片(90)の搬入口の帯域(P)と
搬出口の帯域(U)に挾まれた帯域(H)においては近
接燃料噴射口(30)への燃料供給量が遠隔燃料噴射口
(40)へのそれよりも大きくされ還元性雰囲気で鋼片
(90)を加熱するよう設定され、鋼片(90)の搬出
口の帯域(U)においては近接燃料噴射口(30)への
燃料供給量が遠隔燃料噴射口(40)へのそれよりも小
さくされ酸化性雰囲気で鋼片(90)を加熱するよう設
定され、しかも複数の帯域(P,H,U)毎のバーナ
(10)の中心と鋼片(90)との距離(L1,L2,
L3)を、鋼片(90)の搬入口の帯域(P)から搬出
口の帯域(U)にかけて大きくなるように各帯域のバー
ナ(10)の位置が設定された(L1<L2<L3)こ
を特徴とするものである。上記請求項1および2に記
載の1次燃料,2次燃料には例えばガスや重油,灯油等
の油が含まれる。
In the continuous heating furnace according to the second aspect of the present invention, one furnace is divided into a plurality of zones (P, H, U), and at least one zone is provided on a furnace wall of each zone (P, H, U). Burner (1
0) is arranged and each of its burners (10) is 800
The pre-heated air (2c) or higher at 800 ° C. or the pre-heated air (2c) at 800 ° C. or higher and the primary fuel (2d) can be injected into the air outlet (20). Proximity fuel injection holes (3) provided on the side closer to and farther from the piece (90) and capable of injecting the secondary fuel (2e), respectively.
0) and a remote fuel injection port (40), and a fuel supply rate control valve (55) attached to the close fuel injection port (30) and the remote fuel injection port (40). Through the control valve (55), in the zone (P) at the entrance of the billet (90), the proximity fuel injection port (30)
The fuel supply amount to the remote fuel injection port (40) is set substantially equal to that to the remote fuel injection port (40), and the zone (H) sandwiched between the zone (P) at the entrance of the billet (90) and the zone (U) at the exit. In the above, the fuel supply amount to the adjacent fuel injection port (30) is set to be larger than that to the remote fuel injection port (40), and the billet (90) is set to be heated in a reducing atmosphere. In the outlet zone (U), the fuel supply to the adjacent fuel injection port (30) is made smaller than that to the remote fuel injection port (40) to heat the billet (90) in an oxidizing atmosphere. Set and burner for each band (P, H, U)
The distance between the center of (10) and the billet (90) (L1, L2,
L3) is carried out from the zone (P) at the entrance of the billet (90).
Bars in each band to increase over the mouth band (U)
(L1 <L2 <L3)
It is characterized by the following. The primary fuel and the secondary fuel according to the first and second aspects include, for example, gas, heavy oil, and oil such as kerosene.

【0009】上記の課題を解決するための手段に記載さ
れた括弧内の記号は図面及び後述する発明の実施の形態
に記載された記号に対応するものである。
The symbols in parentheses described in the means for solving the above problems correspond to the symbols described in the drawings and the embodiments of the invention described later.

【0010】本発明によれば、先ず鋼片の搬入口の帯
域、例えば加熱帯1においては、近接燃料噴射口への燃
料供給量が、遠隔燃料噴射口へのそれに略等しく設定さ
れ、鋼片に近い近接燃料噴射口の側の火炎の温度が高
く、鋼片との温度差も大きいため、鋼片への熱伝達量が
高く、鋼片の温度は急上昇する。次に鋼片の搬入口の帯
域と搬出口の帯域に挾まれた帯域、例えば加熱帯2にお
いては、近接燃料噴射口への燃料供給量が、遠隔燃料噴
射口へのそれよりも大きいため、鋼片に近い近接燃料噴
射口の側の火炎の温度が高く、鋼片との温度差も大きい
ため、鋼片への熱伝達量が高く、鋼片の温度は上昇す
る。しかも、鋼片に近い近接燃料噴射口の側の空気量が
不足し、未燃焼成分が発生し、還元性雰囲気となるた
め、鋼片の表面の酸化スケールの生成は抑制される。最
後に鋼片の搬出口の帯域、例えば加熱帯3においては、
近接燃料噴射口への燃料供給量が、遠隔燃料噴射口への
それよりも小さいため、鋼片に近い近接燃料噴射口の側
の火炎の温度が低く、鋼片との温度差も小さいため、鋼
片への熱伝達量が低く、鋼片表面の温度は殆ど上がらな
いが、内外の温度の均一化が進む。近接燃料噴射口の側
の空気量が過剰となり、鋼片の周囲は酸化性雰囲気とな
り、予熱帯、加熱帯で鋼片表面に生成した薄く、剥離し
難い酸化スケールが酸化され、その剥離性が高められ
る。
According to the present invention , first, in the zone of the entrance of the billet, for example, in the heating zone 1, the amount of fuel supplied to the adjacent fuel injection port is set substantially equal to that of the remote fuel injection port. Since the temperature of the flame on the side of the fuel injection port close to the slab is high and the temperature difference with the slab is large, the amount of heat transfer to the slab is high and the temperature of the slab rapidly rises. Next, in a zone sandwiched between the zone of the entrance of the billet and the zone of the exit, for example, in the heating zone 2, the fuel supply to the adjacent fuel injection port is larger than that to the remote fuel injection port. Since the temperature of the flame near the fuel injection port close to the billet is high and the temperature difference from the billet is large, the amount of heat transferred to the billet is high, and the billet temperature rises. In addition, the amount of air on the side of the fuel injection port close to the billet is insufficient, unburned components are generated, and the atmosphere becomes a reducing atmosphere, so that the generation of oxide scale on the surface of the billet is suppressed. Finally, in the zone of the exit of the billet, for example, in the heating zone 3,
Since the amount of fuel supplied to the adjacent fuel injection port is smaller than that to the remote fuel injection port, the temperature of the flame on the side of the close fuel injection port close to the billet is low, and the temperature difference with the billet is also small. The amount of heat transferred to the billet is low, and the temperature on the billet surface hardly rises, but the inside and outside temperatures become more uniform. The amount of air on the side of the adjacent fuel injection port becomes excessive, and the surroundings of the billet become an oxidizing atmosphere, and the thin, hard-to-peel oxide scale formed on the billet surface in the pre-tropical zone and the heating zone is oxidized, and its peelability is reduced. Enhanced.

【0011】また火炎の長さは近接燃料噴射口への燃料
供給量が、遠隔燃料噴射口へのそれに略等しく設定され
た鋼片の搬入口の帯域の場合が最も短く、近接燃料噴射
口への燃料供給量が、遠隔燃料噴射口へのそれよりも大
きいもの、あるいは小さいもの程、長いものとなる。
The length of the flame is shortest when the fuel supply amount to the adjacent fuel injection port is in the zone of the loading port of the billet set to be substantially equal to that to the remote fuel injection port. The larger or smaller the fuel supply amount of the remote fuel injection port, the longer the fuel supply amount.

【0012】他方、いずれの帯域も、空気噴出口より供
給される空気量が、バーナ全体としては空気比が1より
僅かに大きくなるよう設定されることにより、燃料供給
量が大きい域は、部分的に未燃焼成分が一旦発生する
が、火炎の先端に向かって空気との混合が進み、最終的
には完全燃焼する。そのため、燃焼排ガス量も少なく、
熱効率が高く、環境を汚染することもない。
On the other hand, in each zone, the amount of air supplied from the air injection port is set so that the air ratio of the burner as a whole is slightly larger than 1. Although unburned components are once generated, mixing with air proceeds toward the tip of the flame, and eventually complete combustion occurs. Therefore, the amount of combustion exhaust gas is small,
It has high thermal efficiency and does not pollute the environment.

【0013】また空気比が1より僅かに高い値に保持さ
れるので熱効率が高い。そのうえ、バーナの中心と鋼片
との距離が、鋼片の搬入口の帯域から搬出口の帯域にか
けて、例えば加熱帯1,加熱帯2,加熱帯3の順に大き
くなっていて、加熱帯1の近接燃料噴射口の側に形成さ
れる火炎と鋼片との距離が小さいため、加熱帯1におけ
る鋼片への熱伝達量が大きくなると共に、温度上昇速度
が大きくなる。反対に加熱帯3の遠隔燃料噴射口の側に
形成される火炎が、鋼片からは遠くなり、天井に近くな
り、その熱が天井で炉内全体に反射されるため、鋼片へ
の熱伝達むらが少なくなり、鋼片の温度が均一化され
る。
[0013] a high thermal efficiency since the air ratio is maintained slightly higher than 1. In addition, the distance between the center of the burner and the billet increases in the order of, for example, heating zone 1, heating zone 2, heating zone 3 from the zone of the entrance of the billet to the zone of the exit, and the heating zone 1 Since the distance between the flame formed on the side of the adjacent fuel injection port and the billet is small, the amount of heat transfer to the billet in the heating zone 1 increases, and the temperature rise rate increases. On the other hand, the flame formed on the side of the remote fuel injection port of the heating zone 3 is far from the steel slab and close to the ceiling, and the heat is reflected by the ceiling to the whole inside of the furnace. Transmission unevenness is reduced, and the temperature of the billet is made uniform.

【0014】[0014]

【発明の実施の形態】本発明の実施の形態例について図
面を参照して説明する。図1は本発明の第1の実施の形
態例に係わる連続加熱炉を示す縦断面図、図2は図1の
加熱帯1Pの一部分を示す横断面図、図3は図1の加熱
帯2Hの一部分を示す横断面図、図4は図1の均熱帯3
Uの一部分を示す横断面図である。
Embodiments of the present invention will be described with reference to the drawings. 1 is a longitudinal sectional view showing a continuous heating furnace according to a first embodiment of the present invention, FIG. 2 is a transverse sectional view showing a part of a heating zone 1P in FIG. 1, and FIG. 3 is a heating zone 2H in FIG. 1. FIG. 4 is a cross-sectional view showing a part of FIG.
It is a cross-sectional view which shows a part of U.

【0015】本発明の第1の実施の形態例に係わる連続
加熱炉80は、鋼片90の移動方向に、鋼片90を予熱
する加熱帯1Pと,鋼片90を還元性雰囲気で加熱する
加熱帯2Hと,鋼片90を酸化性雰囲気で加熱し鋼片9
0内の温度を均一化する加熱帯3Uと,の3帯域に区画
されている。しかも、その各帯域の炉壁81、鋼片90
の上下方に、以下のように構成されるバーナ10が配設
されている。すなわち、800℃以上の予熱空気2cま
たは、800℃以上の予熱空気2c及び1次燃料2dを
噴射可能な空気噴出口20(同レベルに複数の空気噴出
口を設けてもよい)を中心にして、鋼片90に近い側
に、2次燃料2eを噴射可能な近接燃料噴射口30が、
鋼片90から遠い側に、同じ2次燃料2eが噴射可能な
遠隔燃料噴射口40がそれぞれ配置されている。そのう
え近接燃料噴射口30(同レベルに複数の近接燃料噴射
口を設けてもよい)には燃料供給量を調節可能な第1調
節弁35が付設され、遠隔燃料噴射口40(同レベルに
複数の遠隔燃料噴射口を設けてもよい)には燃料供給量
を調節可能な第2調節弁45が付設されている。1次燃
料,2次燃料としては例えばガスや重油,灯油等の油が
使分される。なお800℃以上の予熱空気2cは蓄熱式
バーナ,蓄熱器,あるいは換熱器などを使用することに
よって得ることができる。
In the continuous heating furnace 80 according to the first embodiment of the present invention, a heating zone 1P for preheating the slab 90 and a slab 90 are heated in a reducing atmosphere in the moving direction of the slab 90. The heating zone 2H and the slab 90 are heated in an oxidizing atmosphere to
It is divided into three zones: a heating zone 3U for making the temperature within 0 uniform. Moreover, the furnace wall 81 and the billet 90 in each zone
A burner 10 configured as described below is provided above and below. That is, centering on the preheated air 2c at 800 ° C. or higher, or the air outlet 20 capable of injecting the preheated air 2c at 800 ° C. or higher and the primary fuel 2d (a plurality of air outlets may be provided at the same level). On the side close to the billet 90, the proximity fuel injection port 30 capable of injecting the secondary fuel 2e is provided.
Remote fuel injection ports 40 capable of injecting the same secondary fuel 2e are arranged on the side far from the billet 90, respectively. In addition, the proximity fuel injection port 30 (a plurality of proximity fuel injection ports may be provided at the same level) is provided with a first control valve 35 capable of adjusting the fuel supply amount, and the remote fuel injection port 40 (a plurality of proximity fuel injection ports are provided at the same level). May be provided with a second control valve 45 capable of adjusting the fuel supply amount. As the primary fuel and the secondary fuel, for example, oil such as gas, heavy oil, and kerosene is used. The preheated air 2c at 800 ° C. or higher can be obtained by using a regenerative burner, a regenerator, or a heat exchanger.

【0016】さらに、別々に調節しうる第1,第2調節
弁35,45を介して、各帯域の近接燃料噴射口30へ
の燃料供給量Q1と遠隔燃料噴射口40への燃料供給量
Q2との関係は以下のように設定されている。すなわ
ち、加熱帯1Pは近接燃料噴射口30への燃料供給量Q
1が、遠隔燃料噴射口40への燃料供給量Q2に略等し
く設定され、加熱帯2Hは近接燃料噴射口30への燃料
供給量Q1が、遠隔燃料噴射口40への燃料供給量Q2
よりも大きくなるように設定され、加熱帯3Uは近接燃
料噴射口30への燃料供給量Q1が、遠隔燃料噴射口4
0への燃料供給量Q2よりも小さくなるように設定され
ている。なお、第1,第2調節弁35,45の開度設定
(0〜100)は自動でも手動でもよく、コントローラ
ーにより例えば燃焼条件に応じて制御するようにしても
よい。
Further, the fuel supply amount Q1 to the adjacent fuel injection port 30 and the fuel supply amount Q2 to the remote fuel injection port 40 in each band are controlled via first and second control valves 35 and 45 which can be separately controlled. Is set as follows. That is, the heating zone 1P is the fuel supply amount Q to the adjacent fuel injection port 30.
1 is set to be substantially equal to the fuel supply amount Q2 to the remote fuel injection port 40, and in the heating zone 2H, the fuel supply amount Q1 to the adjacent fuel injection port 30 is changed to the fuel supply amount Q2 to the remote fuel injection port 40.
The heating zone 3U is set so that the fuel supply amount Q1 to the adjacent fuel injection port 30 is smaller than the remote fuel injection port 4.
It is set to be smaller than the fuel supply amount Q2 to zero. The opening degree setting (0 to 100) of the first and second control valves 35 and 45 may be automatic or manual, or may be controlled by a controller according to, for example, combustion conditions.

【0017】具体的に説明すると、先ず加熱帯1Pの入
口側においては、近接燃料噴射口30への燃料供給量Q
1が、遠隔燃料噴射口40へのそれQ2に等しく(例え
ばQ1:Q2=50:50)なるよう設定されているた
め、鋼片90に近い近接燃料噴射口30の側の火炎の温
度が高く、鋼片90との温度差も大きい。このため、鋼
片90への熱伝達量が高く、鋼片90の温度は急激に上
昇する。なお、この域では鋼片90の温度が比較的に低
いため酸化スケールの生成は少ない。また、火炎の長さ
は後述する加熱帯2H,加熱帯3Uと比較して短い。
More specifically, first, on the inlet side of the heating zone 1P, the fuel supply amount Q
1 is set equal to Q2 to the remote fuel injection port 40 (for example, Q1: Q2 = 50: 50), so that the temperature of the flame on the side of the close fuel injection port 30 close to the billet 90 increases. Also, the temperature difference from the billet 90 is large. For this reason, the amount of heat transfer to the billet 90 is high, and the temperature of the billet 90 rises sharply. In this region, the temperature of the billet 90 is relatively low, so that the generation of oxide scale is small. Further, the length of the flame is shorter than the heating zone 2H and the heating zone 3U described later.

【0018】さらに、鋼片90の温度がかなり上昇し
た、加熱帯2Hに近い側では、近接燃料噴射口30への
燃料供給量Q1が、遠隔燃料噴射口40へのそれQ2よ
りも大きく(例えばQ1:Q2=100:0)なるよう
設定されているため、近接燃料噴射口30の側の空気量
が不足し、燃焼速度が低下し、火炎が長くなり、その温
度が低下するとともに、燃料は不完全燃焼となり、未燃
焼成分が発生する。この火炎は温度は低いが、その輻射
度が高く、鋼片90に近いため、熱伝達量は比較的高
く、短時間に所望の温度に達する。しかし、火炎温度が
低いため、その到達温度は低く、過熱されて、溶融等を
起すことはない。しかも、雰囲気は還元性となるため、
酸化スケールの生成も抑制される。しかしながら、空気
噴出口20より供給される空気量は、バーナ10全体と
としては空気比が1より僅かに大きくなるよう供給され
ているため、近接燃料噴射口30の側には、部分的に未
燃焼成分が一旦発生するが、火炎の先端に向かって空気
との混合が進み、最終的には完全に燃焼する。従って、
燃焼排ガス量も少なく、熱効率が高く、環境を汚染する
こともない。なお、燃焼安定化のため、空気噴出口20
に少量の1次燃料を供給してもよい。図3ではQ1:Q
2=100:0として運転したが、80:20,70:
30など任意に設定することができる。また、加熱帯1
Pから加熱帯2Hになるに従ってQ1とQ2との比率を
Q1:Q2=50:50から60:40,70:30,
80:20,90:10,100:100と徐々にあげ
ていってもよい。
Further, on the side near the heating zone 2H where the temperature of the billet 90 has risen considerably, the fuel supply amount Q1 to the adjacent fuel injection port 30 is larger than that of the remote fuel injection port 40 (for example, Q1: Q2 = 100: 0), the amount of air on the side of the proximity fuel injection port 30 is insufficient, the combustion speed is reduced, the flame is lengthened, the temperature is reduced, and the fuel is reduced. Incomplete combustion occurs and unburned components are generated. Although this flame has a low temperature, its irradiance is high, and since it is close to the billet 90, the heat transfer amount is relatively high and reaches the desired temperature in a short time. However, since the flame temperature is low, the temperature reached is low, and there is no possibility of overheating and melting. Moreover, since the atmosphere is reducing,
The formation of oxide scale is also suppressed. However, the amount of air supplied from the air injection port 20 is supplied such that the air ratio is slightly larger than 1 as a whole with the burner 10, and therefore, the air amount is partially not supplied to the proximity fuel injection port 30. Although the combustion component is generated once, the mixing with the air proceeds toward the front end of the flame, and finally, the flame is completely burned. Therefore,
The amount of flue gas is small, the thermal efficiency is high, and the environment is not polluted. In order to stabilize the combustion, the air jet 20
May be supplied with a small amount of primary fuel. In FIG. 3, Q1: Q
The operation was performed with 2 = 100: 0, but 80:20, 70:
30 can be arbitrarily set. In addition, heating zone 1
As the heating zone changes from P to heating zone 2H, the ratio of Q1 and Q2 is changed from Q1: Q2 = 50: 50 to 60:40, 70:30,
The ratio may be gradually increased to 80:20, 90:10, and 100: 100.

【0019】次に加熱帯2Hにおいては、近接燃料噴射
口30への燃料供給量Q1が、遠隔燃料噴射口40への
それQ2よりも大きい(例えばQ1:Q2=100:
0)ため、鋼片90に近い近接燃料噴射口30の側の火
炎の温度・輻射度が高く、鋼片90との温度差も大きい
ため、鋼片90への熱伝達量が高く、鋼片90の温度は
上昇する。しかも、鋼片90に近い近接燃料噴射口30
の側の空気量が不足し、未燃焼成分が発生し、還元性雰
囲気となるため、鋼片90の表面の酸化スケールの生成
は抑制される。また、火炎は長くなる。
Next, in the heating zone 2H, the fuel supply amount Q1 to the adjacent fuel injection port 30 is larger than that to the remote fuel injection port 40 (for example, Q1: Q2 = 100:
0) Therefore, the temperature and irradiance of the flame on the side of the proximity fuel injection port 30 close to the billet 90 are high, and the temperature difference from the billet 90 is large. The temperature of 90 rises. In addition, the proximity fuel injection port 30 close to the billet 90
Is insufficient, unburned components are generated, and the atmosphere becomes a reducing atmosphere, so that the generation of oxide scale on the surface of the billet 90 is suppressed. Also, the flame becomes longer.

【0020】最後に加熱帯3Uにおいては、近接燃料噴
射口30への燃料供給量Q1が、遠隔燃料噴射口40へ
のそれQ2よりも小さい(例えばQ1:Q2=0:10
0)ため、鋼片90に近い近接燃料噴射口30の側の火
炎の温度が低く、鋼片90との温度差も小さいため、鋼
片90への熱伝達量が低く、鋼片90の表面温度は殆ど
上がらないが、内外の温度の均一化が進む。また、加熱
帯2Hと同様に長くなる。しかも、近接燃料噴射口30
の側の空気量が過剰となり、鋼片90の周囲は酸化性雰
囲気となり、加熱帯1P、加熱帯2Hで鋼片90表面に
生成した薄く、剥離し難い酸化スケールが酸化され、そ
の剥離性が高められる。他方、遠隔燃料噴射口40の側
に形成される火炎は、鋼片90からは遠く、天井に近
く、その熱は天井で炉内全体に反射されるため、鋼片9
0への熱伝達むらが少なくなり、鋼片90の均熱化を助
長する。
Finally, in the heating zone 3U, the fuel supply amount Q1 to the adjacent fuel injection port 30 is smaller than that Q2 to the remote fuel injection port 40 (for example, Q1: Q2 = 0: 10).
0), the temperature of the flame on the side of the fuel injection port 30 close to the billet 90 is low, and the temperature difference with the billet 90 is small, so that the amount of heat transferred to the billet 90 is low, and the surface of the billet 90 Although the temperature hardly rises, the temperature inside and outside is made more uniform. In addition, the length becomes longer like the heating zone 2H. Moreover, the proximity fuel injection port 30
Side becomes excessive, the surroundings of the slab 90 become an oxidizing atmosphere, and the thin, hard-to-peel oxide scale formed on the surface of the slab 90 in the heating zone 1P and the heating zone 2H is oxidized. Enhanced. On the other hand, the flame formed on the side of the remote fuel injection port 40 is far from the steel slab 90 and close to the ceiling, and its heat is reflected by the ceiling to the whole inside of the furnace.
The heat transfer unevenness to zero is reduced, and the uniformity of the billet 90 is promoted.

【0021】なお、前述のように、いずれの帯域も、空
気噴出口20より供給される空気量が、バーナ10全体
としては空気比が1より僅かに大きくなるよう設定され
ることにより、燃料供給量が大きい域は、部分的に未燃
焼成分が一旦発生するが、火炎の先端に向かって空気と
の混合が進み、最終的には完全燃焼する。そのため、燃
焼排ガス量も少なく、熱効率が高く、環境を汚染するこ
ともない。
As described above, in any of the zones, the amount of air supplied from the air outlet 20 is set so that the air ratio of the burner 10 as a whole is slightly larger than 1. In a region where the amount is large, unburned components are partially generated once, but mixing with air proceeds toward the front end of the flame, and eventually complete combustion occurs. Therefore, the amount of combustion exhaust gas is small, the thermal efficiency is high, and the environment is not polluted.

【0022】次に第2の実施の形態例について図5乃至
図8により説明すると、上述の第2の実施の形態例の構
成に加えて、図5に示すように、加熱帯1Pにおけるバ
ーナ10の中心と鋼片90との距離L1、加熱帯2Hに
おけるバーナ10の中心と鋼片90との距離L2及び加
熱帯3Uにおけるバーナ10の中心と鋼片90との距離
L3の関係が、L1<L2<L3となるよう各帯域にお
けるバーナ10の位置(高さ)が設定されている。それ
によって、上述の作用効果に加えて、加熱帯1Pの近接
燃料噴射口30の側に形成される火炎と鋼片90との距
離が小さいため、加熱帯1Pにおける鋼片90への熱伝
達量が大きくなるとともに、温度上昇速度が大きくな
り、予熱または加熱に要する時間が短縮される。また、
反対に加熱帯3Uの遠隔燃料噴射口40の側に形成され
る火炎が、鋼片90からは遠くなり、天井に近くなり、
その熱が天井で炉内全体に反射されるため、鋼片90へ
の熱伝達むらが少なくなり、鋼片90の温度の均一化が
促進される。
Next, a second embodiment will be described with reference to FIGS. 5 to 8. In addition to the configuration of the above-described second embodiment, as shown in FIG. The relationship of the distance L1 between the center of the burner 10 and the slab 90 in the heating zone 2H, the distance L2 between the center of the burner 10 and the slab 90 in the heating zone 2H, and the distance L3 between the center of the burner 10 and the slab 90 in the heating zone 3U is L1 < The position (height) of the burner 10 in each band is set so that L2 <L3. Thereby, in addition to the above-described operation and effect, the distance between the flame formed on the side of the proximity fuel injection port 30 of the heating zone 1P and the billet 90 is small, so that the heat transfer amount to the billet 90 in the heating zone 1P is small. Increases, the rate of temperature rise increases, and the time required for preheating or heating is reduced. Also,
On the contrary, the flame formed on the side of the remote fuel injection port 40 of the heating zone 3U is far from the billet 90, close to the ceiling,
Since the heat is reflected from the ceiling to the entire inside of the furnace, uneven heat transfer to the billet 90 is reduced, and the temperature of the billet 90 is made uniform.

【0023】次に第3の実施の形態例を図9により説明
すると、上記連続加熱炉80の鋼片90の移動方向に平
行な相対する炉壁81,81に、それぞれ互いに相対
し、対をなすようバーナ10,10が配置されている。
しかも、相対するバーナ10,10の稼動、休止が、所
定の時間間隔をおいて交互に繰り返されるよう、すなわ
ち交番に一方のバーナ10が稼動するよう燃焼加熱条件
が以下のように設定されている。すなわち、相対するバ
ーナ10,10のいずれか一方が一定時間稼動し、一方
の炉壁81から他方の炉壁81に向って、空気、燃料が
噴射され、その間他方が休止する。次いで反対に、稼動
していた一方のバーナ10が同じ時間休止し、その間他
方が稼動し、他方の炉壁81から一方の炉壁81に向っ
て、空気、燃料が噴射される。なお、各バーナ10の全
体の空気比は1より僅かに高い値に保持される。
Next, a third embodiment will be described with reference to FIG. 9. Referring to FIG. 9, opposing furnace walls 81, 81 parallel to the moving direction of the steel slab 90 of the continuous heating furnace 80 are opposed to each other. Burners 10, 10 are arranged so as to make it easier.
Moreover, the combustion heating conditions are set as follows so that the opposing burners 10, 10 are alternately operated and stopped at predetermined time intervals, that is, one of the burners 10 is operated alternately. . That is, one of the opposing burners 10, 10 operates for a certain period of time, and air and fuel are injected from one furnace wall 81 toward the other furnace wall 81, while the other is stopped. Then, on the contrary, one of the operating burners 10 is stopped for the same time, while the other is operating, and air and fuel are injected from the other furnace wall 81 toward the one furnace wall 81. The overall air ratio of each burner 10 is maintained at a value slightly higher than 1.

【0024】各バーナ10によって形成される火炎は、
その燃焼条件の設定によってそれぞれ異なるが、いずれ
も空気、燃料が噴射される側の炉壁81から、相対する
炉壁81に向って、温度・形状、雰囲気等が変化し、特
有の分布を有する。そのため、鋼片90に対する幅方向
の加熱が均一でなく、加熱むらが生じるおそれがある。
それに対して、相対するバーナ10,10の稼動、休止
が、所定の時間間隔をおいて交互に繰り返されるよう設
定されることにより、温度・形状、雰囲気等の分布が所
定の時間間隔をおいて逆向きとなり、鋼片90の幅方向
の不均一加熱が平準化されるため、鋼片90の加熱むら
が解消される。なお、バーナ10,10を被加熱体90
を挟んで相対する平行な炉壁81,81にそれぞれ対を
なすよう配置するものだけでなく、平行な炉壁81,8
1のうちいずれか一方の炉壁81(両方でもよい)に隣
接して配置するようにしてもよい。
The flame formed by each burner 10 is:
The temperature, shape, atmosphere, and the like change from the furnace wall 81 on the side where air and fuel are injected toward the opposing furnace wall 81, and have a unique distribution. . For this reason, heating in the width direction of the steel slab 90 is not uniform, and uneven heating may occur.
On the other hand, by setting the opposing burners 10 and 10 to alternately operate and stop at predetermined time intervals, the distribution of the temperature, shape, atmosphere, and the like is changed at predetermined time intervals. The direction is reversed, and uneven heating in the width direction of the billet 90 is leveled, so that uneven heating of the billet 90 is eliminated. Note that the burners 10 and 10 are
Not only those arranged in pairs on the parallel furnace walls 81, 81 opposed to each other, but also the parallel furnace walls 81, 8
It may be arranged adjacent to any one of the furnace walls 81 (or both).

【0025】最後に第4の実施の形態例を図10により
説明する。上述した第1乃至第3の実施の形態例では、
近接燃料噴射口30への燃料供給量を必要に応じて調節
可能な第1調節弁35と、それとは別に遠隔燃料噴射口
40への燃料供給量を必要に応じて調節可能な第2調節
弁45をそれぞれ付設したものであるが、これにかえ
て、図10に示すように、燃料供給量比率調節弁55を
使用して、第1調節弁35と第2調節弁45の働きを1
つの弁で行えるようにし、近接燃料噴射口30および遠
隔燃料噴射口40への燃料供給量の比率を必要に応じて
調節可能にしてもよい。それによって、被加熱体90に
対して実質的に影響を与える、被加熱体90に近い側を
酸化性または還元性(この中間性のものも含む)の任意
の雰囲気に調節可能である。なお、燃料供給量比率調節
弁55の開度設定(0〜100)は自動でも手動でもよ
く、コントローラーにより例えば燃焼条件に応じて制御
するようにしてもよい。
Finally, a fourth embodiment will be described with reference to FIG. In the first to third embodiments described above,
A first control valve 35 that can adjust the amount of fuel supplied to the adjacent fuel injection port 30 as needed, and a second control valve that can separately adjust the amount of fuel supplied to the remote fuel injection port 40 as needed The fuel supply amount ratio control valve 55 is used as shown in FIG. 10 to change the functions of the first control valve 35 and the second control valve 45 to one.
One valve may be used, and the ratio of the amount of fuel supplied to the proximity fuel injection port 30 and the remote fuel injection port 40 may be adjusted as needed. Thereby, the side close to the object to be heated 90 which substantially affects the object to be heated 90 can be adjusted to any oxidizing or reducing (including this intermediate) atmosphere. The opening degree setting (0 to 100) of the fuel supply amount ratio adjusting valve 55 may be automatic or manual, and may be controlled by a controller according to, for example, combustion conditions.

【0026】なお本実施形態例の連続加熱炉80は、1
つの炉体内が複数の帯域に区画された、一例として3帯
域、すなわち鋼片90の搬入口の帯域にあたる加熱帯1
P,鋼片90の搬入口の帯域と搬出口の帯域に挾まれた
帯域にあたる加熱帯2H,鋼片90の搬出口の帯域にあ
たる加熱帯3U,の場合を想定して説明したが、特にこ
れに限られることなく2帯域でも、あるいは4帯域以上
のものでも適用されるものである。
It is to be noted that the continuous heating furnace 80 of this embodiment
One furnace body is divided into a plurality of zones, for example, three zones, that is, a heating zone 1 corresponding to a zone of the entrance of the billet 90.
P, the heating zone 2H corresponding to the zone between the entrance zone and the exit zone of the billet 90 and the heating zone 3U corresponding to the exit zone of the billet 90 have been described. The present invention is not limited to this, and is applicable to two bands or four or more bands.

【0027】[0027]

【発明の効果】以上のとおり本発明によれば、鋼片の加
熱目的に応じて、帯域毎に近接燃料噴射口への燃料供給
量の、遠隔燃料噴射口へのそれに対する比率が適正に設
定されているため、鋼片の加熱目的に応じた熱伝達量が
得られるとともに、鋼片に対して実質的に影響を与え
る、鋼片に近い側の雰囲気が適正に保持される。しかも
いずれの帯域も、空気噴出口より供給される空気量が、
バーナ全体としては空気比が1より僅かに大きくなるよ
う設定されることにより、燃料供給量が大きい域は、部
分的に未燃焼成分が一旦発生するが、火炎の先端に向か
って空気との混合が進み、最終的には完全燃焼する。そ
のため、燃焼排ガス量も少なく、熱効率が高く、環境を
汚染することもない。近接燃料噴射口への燃料供給量
の、遠隔燃料噴射口へのそれに対する比率を変化させる
ことによって火炎の長さも変更可能である。特に請求項
2に記載の発明によれば、2つの調節弁が1つの燃料供
給量比率調節弁にかえられるので部品点数が軽減され
る。
As described above , according to the present invention, the ratio of the amount of fuel supplied to the adjacent fuel injection port to that of the remote fuel injection port is appropriately set for each zone according to the purpose of heating the billet. Therefore, a heat transfer amount corresponding to the purpose of heating the steel slab is obtained, and the atmosphere near the steel slab, which substantially affects the steel slab, is appropriately maintained. Moreover, in each zone, the amount of air supplied from the air ejection port is
By setting the air ratio slightly higher than 1 for the burner as a whole, unburned components are generated once in a region where the fuel supply is large, but mixed with air toward the tip of the flame. And eventually burn completely. Therefore, the amount of combustion exhaust gas is small, the thermal efficiency is high, and the environment is not polluted. The length of the flame can also be changed by changing the ratio of the fuel supply to the proximate fuel injection port to that of the remote fuel injection port. In particular, according to the second aspect of the present invention, since two control valves are replaced with one fuel supply ratio control valve, the number of parts is reduced.

【0028】そのうえ、バーナの中心と鋼片との距離
が、鋼片の加熱目的に応じて、各帯域毎に適正に設定さ
れているため、鋼片の加熱目的に応じた最適の熱伝達量
が得られるとともに、鋼片に対して実質的に影響を与え
る、鋼片に近い側の雰囲気が最適に保持される。
In addition, since the distance between the center of the burner and the billet is appropriately set for each zone according to the purpose of heating the billet, the optimum heat transfer amount according to the purpose of heating the billet is set. Is obtained, and the atmosphere close to the billet, which substantially affects the billet, is optimally maintained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態例に係わる連続加熱
炉を示す縦断面図である。
FIG. 1 is a longitudinal sectional view showing a continuous heating furnace according to a first embodiment of the present invention.

【図2】図1の加熱帯1Pの一部分を示す横断面図であ
る。
FIG. 2 is a cross-sectional view showing a part of a heating zone 1P of FIG.

【図3】図1の加熱帯2Hの一部分を示す横断面図であ
る。
FIG. 3 is a cross-sectional view showing a part of a heating zone 2H of FIG.

【図4】図1の加熱帯3Uの一部分を示す横断面図であ
る。
FIG. 4 is a cross-sectional view showing a part of the heating zone 3U of FIG.

【図5】本発明の第2の実施の形態例に係わる連続加熱
炉を示す縦断面図である。
FIG. 5 is a longitudinal sectional view showing a continuous heating furnace according to a second embodiment of the present invention.

【図6】図5の加熱帯1Pの一部分を示す横断面図であ
る。
FIG. 6 is a cross-sectional view showing a part of the heating zone 1P of FIG.

【図7】図5の加熱帯2Hの一部分を示す横断面図であ
る。
FIG. 7 is a cross-sectional view showing a part of the heating zone 2H of FIG.

【図8】図5の加熱帯3Uの一部分を示す横断面図であ
る。
FIG. 8 is a cross-sectional view showing a part of the heating zone 3U of FIG.

【図9】本発明の第3の実施の形態例に係わる連続加熱
炉の一部分を示す横断面図である。
FIG. 9 is a cross-sectional view showing a part of a continuous heating furnace according to a third embodiment of the present invention.

【図10】本発明の第4の実施の形態例に係わる連続加
熱炉の一部分を示す横断面図である。
FIG. 10 is a cross-sectional view showing a part of a continuous heating furnace according to a fourth embodiment of the present invention.

【図11】従来例を示す縦断面図である。FIG. 11 is a longitudinal sectional view showing a conventional example.

【図12】図11の一部分を示す横断面図である。FIG. 12 is a cross sectional view showing a part of FIG. 11;

【符号の説明】[Explanation of symbols]

1 連続加熱炉 1a 炉壁 2 バーナ 2a 空気噴出口 2b 燃料噴射口 2c 空気 2d 1次燃料 2e 2次燃料 10 バーナ 20 空気噴出口 30 近接燃料噴射口 35 第1調節弁 40 遠隔燃料噴射口 45 第2調節弁 55 燃料供給量比率調節弁 80 連続加熱炉 81 炉壁 90 鋼片 L1 距離 L2 距離 L3 距離 Q1 燃料供給量 Q2 燃料供給量 P 加熱帯1 H 加熱帯2 U 加熱帯3 DESCRIPTION OF SYMBOLS 1 Continuous heating furnace 1a Furnace wall 2 Burner 2a Air injection port 2b Fuel injection port 2c Air 2d Primary fuel 2e Secondary fuel 10 Burner 20 Air injection port 30 Proximity fuel injection port 35 First control valve 40 Remote fuel injection port 45 2 control valve 55 fuel supply ratio control valve 80 continuous heating furnace 81 furnace wall 90 steel slab L1 distance L2 distance L3 distance Q1 fuel supply Q2 fuel supply P heating zone 1 H heating zone 2 U heating zone 3

フロントページの続き (56)参考文献 特公 昭55−14966(JP,B2) 特公 昭54−13610(JP,B2) 特公 昭56−1371(JP,B2) 実公 昭57−7926(JP,Y2) (58)調査した分野(Int.Cl.7,DB名) C21D 9/00 101 C21D 1/52 Continuation of the front page (56) References JP-B 55-14966 (JP, B2) JP-B 54-13610 (JP, B2) JP-B 56-1371 (JP, B2) Jiko 57-7926 (JP , Y2) (58) Field surveyed (Int. Cl. 7 , DB name) C21D 9/00 101 C21D 1/52

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】1つの炉体内が複数の帯域に区画され、そ
の各帯域の炉壁に少なくとも1つのバーナが配設され、
そのバーナの各々が、800℃以上の予熱空気または、
800℃以上の予熱空気及び1次燃料を噴射可能な空気
噴出口と,その空気噴出口に対して、鋼片に近い側およ
び遠い側に設けられた、それぞれ2次燃料を噴射可能な
近接燃料噴射口および遠隔燃料噴射口と,近接燃料噴射
口に付設された第1調節弁と,遠隔燃料噴射口に付設さ
れた第2調節弁と,を備えるとともに、第1調節弁およ
び第2調節弁を介して、鋼片の搬入口の帯域においては
近接燃料噴射口への燃料供給量が遠隔燃料噴射口へのそ
れに略等しく設定され、鋼片の搬入口の帯域と搬出口の
帯域に挾まれた帯域においては近接燃料噴射口への燃料
供給量が遠隔燃料噴射口へのそれよりも大きくされ還元
性雰囲気で鋼片を加熱するよう設定され、鋼片の搬出口
の帯域においては近接燃料噴射口への燃料供給量が遠隔
燃料噴射口へのそれよりも小さくされ酸化性雰囲気で鋼
片を加熱するよう設定され、しかも前記複数の帯域毎の
バーナの中心と鋼片との距離を、鋼片の搬入口の帯域か
ら搬出口の帯域にかけて大きくなるように各帯域のバー
ナの位置が設定されたことを特徴とする連続加熱炉。
1. A furnace body is divided into a plurality of zones, and at least one burner is disposed on a furnace wall of each zone.
Each of the burners is preheated air at 800 ° C. or higher, or
An air outlet capable of injecting preheated air and primary fuel at 800 ° C. or higher, and adjacent fuel provided on the side closer to and farther from the steel slab with respect to the air outlet, each of which can inject secondary fuel. An injection port and a remote fuel injection port, a first control valve provided to the proximity fuel injection port, and a second control valve provided to the remote fuel injection port, and a first control valve and a second control valve. In the billet inlet zone, the fuel supply amount to the adjacent fuel injection port is set substantially equal to that to the remote fuel injection port, and is sandwiched between the billet inlet and outlet zone. In the zone where the fuel is supplied to the adjacent fuel injection port is set to be larger than that to the remote fuel injection port and the slab is heated in a reducing atmosphere, and in the zone where the slab is discharged, the proximity fuel injection is performed. Fuel supply to the remote fuel injection It is smaller than is configured to heat the steel strip in an oxidizing atmosphere, moreover for each of the plurality of bands
Determine the distance between the center of the burner and the billet
Bar in each zone so that it increases from
A continuous heating furnace characterized in that the position of the furnace is set .
【請求項2】1つの炉体内が複数の帯域に区画され、そ
の各帯域の炉壁に少なくとも1つのバーナが配設され、
そのバーナの各々が、800℃以上の予熱空気または、
800℃以上の予熱空気及び1次燃料を噴射可能な空気
噴出口と,その空気噴出口に対して、鋼片に近い側およ
び遠い側に設けられた、それぞれ2次燃料を噴射可能な
近接燃料噴射口および遠隔燃料噴射口と,近接燃料噴射
口および遠隔燃料噴射口に付設された燃料供給量比率調
節弁と,を備えるとともに、燃料供給量比率調節弁を介
して、鋼片の搬入口の帯域においては近接燃料噴射口へ
の燃料供給量が遠隔燃料噴射口へのそれに略等しく設定
され、鋼片の搬入口の帯域と搬出口の帯域に挾まれた帯
域においては近接燃料噴射口への燃料供給量が遠隔燃料
噴射口へのそれよりも大きくされ還元性雰囲気で鋼片を
加熱するよう設定され、鋼片の搬出口の帯域においては
近接燃料噴射口への燃料供給量が遠隔燃料噴射口へのそ
れよりも小さくされ酸化性雰囲気で鋼片を加熱するよう
設定され、しかも前記複数の帯域毎のバーナの中心と鋼
片との距離を、鋼片の搬入口の帯域から搬出口の帯域に
かけて大きくなるように各帯域のバーナの位置が設定さ
れたことを特徴とする連続加熱炉。
2. A furnace body is divided into a plurality of zones, and at least one burner is disposed on a furnace wall of each zone.
Each of the burners is preheated air at 800 ° C. or higher, or
An air outlet capable of injecting preheated air and primary fuel at 800 ° C. or higher, and adjacent fuel provided on the side closer to and farther from the steel slab with respect to the air outlet, each of which can inject secondary fuel. An injection port and a remote fuel injection port, and a fuel supply rate control valve attached to the adjacent fuel injection port and the remote fuel injection port. In the zone, the amount of fuel supplied to the adjacent fuel injection port is set substantially equal to that to the remote fuel injection port, and in the zone sandwiched between the billet inlet and outlet zones, the fuel supply to the adjacent fuel injection port is The fuel supply is set to be larger than that to the remote fuel injection port and the steel slab is set to be heated in a reducing atmosphere. Smaller than that to the mouth It is set so as to heat the steel strip in an oxidizing atmosphere, yet the center and steel of the burner for each of the plurality of bands
The distance from the slab to the slab entrance zone
The burner position of each band is set so that
Continuous heating furnace, characterized in that it is.
JP04167597A 1997-02-10 1997-02-10 Continuous heating furnace Expired - Lifetime JP3184774B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04167597A JP3184774B2 (en) 1997-02-10 1997-02-10 Continuous heating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04167597A JP3184774B2 (en) 1997-02-10 1997-02-10 Continuous heating furnace

Publications (2)

Publication Number Publication Date
JPH10219354A JPH10219354A (en) 1998-08-18
JP3184774B2 true JP3184774B2 (en) 2001-07-09

Family

ID=12614998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04167597A Expired - Lifetime JP3184774B2 (en) 1997-02-10 1997-02-10 Continuous heating furnace

Country Status (1)

Country Link
JP (1) JP3184774B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130137055A1 (en) * 2009-10-23 2013-05-30 Osaka Gas Co., Ltd. Combustion Device for Melting Furnace and Melting Furnace

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100827869B1 (en) 1999-08-16 2008-05-07 가부시키가이샤 에누에프케이 홀딩스 Device and method for feeding fuel
EP1205710B1 (en) 1999-08-17 2006-02-08 Nippon Furnace Kogyo Kabushiki Kaisha Combustion method and burner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130137055A1 (en) * 2009-10-23 2013-05-30 Osaka Gas Co., Ltd. Combustion Device for Melting Furnace and Melting Furnace
US9109836B2 (en) * 2009-10-23 2015-08-18 Osaka Gas Co., Ltd. Combustion device for melting furnace and melting furnace

Also Published As

Publication number Publication date
JPH10219354A (en) 1998-08-18

Similar Documents

Publication Publication Date Title
JP2683545B2 (en) Combustion method in furnace
EP0878681A2 (en) Firing control apparatus and firing control method
US8469699B2 (en) Staged combustion method for producing asymmetric flames
US6764304B2 (en) Furnace having increased energy efficiency and reduced pollutant formation
RU2387924C2 (en) Method of staged fuel combustion in oxygen-containing atmosphere by using pre-heated reagents
CN101517100B (en) Method of reheating in a furnace using a fuel of low calorific power, and furnace using this method
JP3184774B2 (en) Continuous heating furnace
JPH08208240A (en) Glass-melting oven
JP2006132826A (en) Igniting multi-burner and ignition system for sintering machine, and method of heating sintered raw material
JP3396922B2 (en) Continuous heating furnace and combustion method thereof
JPH0828830A (en) High temperature air burner
KR100417156B1 (en) Combustion apparatus and melting furnace for nonferrous metals
JPH10219355A (en) Combustion device and combustion method thereof
CN215637175U (en) Dual-purpose burner
JP3237345B2 (en) Heating furnace heating method
JP3709775B2 (en) Regenerative burner and combustion method thereof
JP3337584B2 (en) Heating furnace combustion method
JP3371652B2 (en) heating furnace
JPH11132463A (en) Burner for heating furnace
JP3107352B2 (en) Hot air burner
CN211176787U (en) Burner with a burner head
JPH08134534A (en) Heating furnace
CN106052377A (en) Fuel gas cupola furnace
JP2894174B2 (en) Combustion control method for continuous heating furnace
JPH0324592Y2 (en)

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100427

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100427

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160427

Year of fee payment: 15

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term