JP3183124B2 - Vehicle turning behavior control device - Google Patents

Vehicle turning behavior control device

Info

Publication number
JP3183124B2
JP3183124B2 JP25143395A JP25143395A JP3183124B2 JP 3183124 B2 JP3183124 B2 JP 3183124B2 JP 25143395 A JP25143395 A JP 25143395A JP 25143395 A JP25143395 A JP 25143395A JP 3183124 B2 JP3183124 B2 JP 3183124B2
Authority
JP
Japan
Prior art keywords
yaw rate
control
vehicle
driving force
braking force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP25143395A
Other languages
Japanese (ja)
Other versions
JPH0986378A (en
Inventor
廉夫 本山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP25143395A priority Critical patent/JP3183124B2/en
Publication of JPH0986378A publication Critical patent/JPH0986378A/en
Application granted granted Critical
Publication of JP3183124B2 publication Critical patent/JP3183124B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Motor Power Transmission Devices (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Regulating Braking Force (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は旋回性能の向上と、
旋回限界領域での車両挙動の安定化を図り得る車両の旋
回挙動制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention
The present invention relates to a vehicle turning behavior control device capable of stabilizing a vehicle behavior in a turning limit region.

【0002】[0002]

【関連する背景技術】車両の旋回時における挙動を制御
してその安定化を図る技術として、例えば特開平4-1855
62号公報に開示されるように、車両の旋回状態に応じて
車輪間の制動力に差を付ける制動力制御や、特開平5-13
1855号公報に開示されるように、車両の挙動に応じて左
右輪間の駆動力に差を付ける左右輪駆動力制御がある。
[Related Background Art] As a technique for controlling the behavior of a vehicle at the time of turning to stabilize the behavior, for example, Japanese Unexamined Patent Publication No.
As disclosed in Japanese Patent Application Publication No. 62-62, a braking force control for making a difference in braking force between wheels according to a turning state of a vehicle,
As disclosed in Japanese Patent Publication No. 1855, there is left and right wheel driving force control that makes a difference in driving force between left and right wheels according to the behavior of a vehicle.

【0003】上記制動力制御は、応答性が高く、また大
掛かりな付加物なしに大きなヨーモーメントを得ること
ができる、更には接地荷重の大きい旋回外輪に制動力を
付加することでスピン回避制御時の効果が大きい、また
その制御によって自動的に減速度が得られるので、オー
バースピードでコーナーに進入したときの安全性向上を
図り得る等の優れた効果を有する。これに対して左右輪
駆動力制御は、その制御時に減速度が殆ど発生しないの
で車両操舵上の違和感が小さく、通常走行時でも制御可
能である、また旋回中における左右輪接地荷重に応じた
駆動力配分ができるので駆動効率を高め得る、更には旋
回限界付近でのアンダーステアを抑制して旋回限界を向
上できる等の優れた特徴を有する。
The above-mentioned braking force control has a high responsiveness, a large yaw moment can be obtained without a large-scale addition, and a braking force is applied to a turning outer wheel having a large ground load so that a spin avoidance control can be performed. Is large, and since the deceleration is automatically obtained by the control, there are excellent effects such as improvement in safety when entering a corner with overspeed. On the other hand, in the left and right wheel drive force control, the deceleration hardly occurs at the time of the control, so that the uncomfortable feeling in the vehicle steering is small, and the control can be performed even during the normal traveling. Since the power distribution can be performed, the driving efficiency can be enhanced, and further, the understeer near the turning limit can be suppressed to improve the turning limit.

【0004】[0004]

【発明が解決しようとする課題】ところがその反面、制
動力制御にあっては、その制御時に減速度が生じるので
違和感が大きく、また旋回中における左右輪接地荷重に
応じた駆動力配分が可能ではあるが駆動効率の面での損
失が大きい、更には旋回限界付近でのアンダーステアを
抑制できるがロスが大きい等の不具合がある。また左右
輪駆動力制御にあっては、その機構の大きさが重量およ
び寸法面の点で大きく制限されるので、大きなヨーモー
メントを発生させることが困難であり、また一般に湿式
多板クラッチを用いて左右輪への駆動力配分制御を行う
ので応答性に劣り、更には上述したようにヨーモーメン
トの大きさと応答性に制約があるので、スピン回避制御
時に十分な効果を発揮できない等の不具合がある。
However, in the braking force control, on the other hand, a deceleration occurs during the control, so that a sense of incongruity is large, and it is not possible to distribute the driving force according to the right and left wheel contact loads during turning. However, there are disadvantages such as a large loss in terms of driving efficiency, and further, an understeer near the turning limit can be suppressed, but the loss is large. Also, in the left and right wheel driving force control, since the size of the mechanism is greatly restricted in terms of weight and size, it is difficult to generate a large yaw moment, and generally, a wet multi-plate clutch is used. Since the drive force distribution control is performed to the left and right wheels, the responsiveness is poor, and the size and response of the yaw moment are limited as described above. is there.

【0005】本発明はこのような事情を考慮してなされ
たもので、その目的は、違和感のない操縦性の確保と旋
回性能の向上を図ると共に、ヨーレイト偏差の大きい旋
回限界領域での車両挙動の安定化と安全性の向上を図る
ことの可能な車両の旋回挙動制御装置を提供することに
ある。
The present invention has been made in view of such circumstances, and an object of the present invention is to secure a controllability without a sense of incongruity and to improve the turning performance, and to improve a vehicle behavior in a turning limit region where a yaw rate deviation is large. It is an object of the present invention to provide a vehicle turning behavior control device capable of stabilizing the vehicle and improving safety.

【0006】[0006]

【課題を解決するための手段】上述した目的を達成する
べく本発明に係る車両の旋回挙動制御装置は、車両の左
右輪駆動力に差を付ける左右輪駆動力調整機構と、該車
両の各輪間に制動力差を付ける制動力調整機構とを備え
てなり、車速検出手段により検出される該車両の車速と
操舵量検出手段により検出される該車両の操舵量とに基
づいて目標ヨーレイトを算出し、この目標ヨーレイトと
ヨーレイト検出手段にて検出される車両のヨーレイトと
の差をヨーレイト偏差としてヨーレイト偏差算出手段に
て算出し、制御手段ではこのヨーレイト偏差に基づいて
前記左右輪駆動力調整機構および制動力調整機構を統合
的に制御するようにしたことを特徴とするものである。
In order to achieve the above object, a turning behavior control device for a vehicle according to the present invention comprises a left and right wheel driving force adjusting mechanism for making a difference between left and right wheel driving forces of the vehicle, and A braking force adjusting mechanism for providing a braking force difference between the wheels, and a target yaw rate based on the vehicle speed of the vehicle detected by the vehicle speed detecting means and the steering amount of the vehicle detected by the steering amount detecting means. The difference between the target yaw rate and the yaw rate of the vehicle detected by the yaw rate detecting means is calculated as a yaw rate deviation by the yaw rate deviation calculating means, and the control means controls the left and right wheel driving force adjusting mechanism based on the yaw rate deviation. And the braking force adjusting mechanism is integrally controlled.

【0007】つまり制御手段においては、左右輪駆動力
調整機構および制動力調整機構に対して共通の制御則に
基づいてヨーレイトをフィードバックすることでこれら
を統合的に制御し、以て両調整機構を制御干渉を招来す
ることなしに役割分担させて、それぞれの利点を発揮さ
せるようにしたものである。
That is, in the control means, the yaw rate is fed back to the left and right wheel driving force adjusting mechanism and the braking force adjusting mechanism based on a common control law so as to integrally control the yaw rate. The roles are shared without causing control interference, and the respective advantages are exhibited.

【0008】特に本発明においては、ヨーレイト偏差が
第1の閾値以上で、且つ第2の閾値未満のとき、制御手
段においては前記左右輪駆動力調整機構による左右輪駆
動力制御だけを行うことを特徴とするものである。つま
りヨーレイト偏差が小さい領域では左右輪駆動力制御だ
けを行い、制動力制御を行わないことで駆動効率面のロ
スを伴うことなく旋回性能を高めたことを特徴としてい
る。
In particular, in the present invention, when the yaw rate deviation is equal to or more than the first threshold value and less than the second threshold value, the control means performs only the right and left wheel driving force control by the right and left wheel driving force adjusting mechanism. It is a feature. That is, in a region where the yaw rate deviation is small, only the left and right wheel driving force control is performed, and the turning performance is enhanced without loss of driving efficiency by not performing the braking force control.

【0009】また本発明の好ましい態様は、請求項2に
記載するように、ヨーレイト偏差が第1および第2の閾
値以上のとき、制御手段においては左右輪駆動力調整機
構による左右輪駆動力制御および制動力調整機構による
制動力制御を同時に行うことを特徴としている。つまり
ヨーレイト偏差が大きい領域では左右輪駆動力制御と制
動力制御とを同時に行うことで旋回限界時における車両
の挙動制御性を高め、減速度効果と相俟って安全性を向
上させることを特徴としている。
[0009] A preferred embodiment of the present invention is defined in claim 2.
As described, when the yaw rate deviation is equal to or larger than the first and second thresholds, the control means simultaneously performs the left and right wheel driving force control by the left and right wheel driving force adjustment mechanism and the braking force control by the braking force adjustment mechanism. And In other words, in the region where the yaw rate deviation is large, the right and left wheel driving force control and the braking force control are performed simultaneously to enhance the controllability of the behavior of the vehicle at the time of turning limit and to improve safety in conjunction with the deceleration effect. And

【0010】更には前記制御手段においては、前記ヨー
レイト偏差が第2の閾値を越えて大きくなるに従って前
記左右輪駆動力調整機構による左右輪駆動力制御の寄与
率を低減させることを特徴としている。つまりヨーレイ
ト偏差が大きくなり、旋回限界に近づくに従って専ら制
動力制御の効果が顕著に現れるので、左右輪駆動力制御
を徐々に抑えることで全体的な制御効率を高めるように
したことを特徴としている。
Further, in the control means, as the yaw rate deviation exceeds a second threshold value, the contribution ratio of the left and right wheel driving force control by the left and right wheel driving force adjusting mechanism is reduced. It is characterized by. In other words, since the yaw rate deviation increases and the effect of the braking force control only becomes prominent as it approaches the turning limit, the overall control efficiency is enhanced by gradually suppressing the left and right wheel driving force control. .

【0011】[0011]

【発明の実施の形態】以下、図面を参照して本発明の一
実施例に係る車両の旋回挙動制御装置についてその実施
の形態を説明する。図1は実施例装置が組み込まれる車
両のシステム構成図で、1は車両本体、2(2FL,2F
R,2RL,2RR)は前後左右の車輪を表している。また
3(3FL,3FR,3RL,3RR)は各車輪2にそれぞれ設
けられたブレーキ機構を示しており、これらの各ブレー
キ機構3はブレーキ圧制御機構4の下でそれぞれ個別に
作動制御されて各車輪2に対して制動を加えるものとな
っている。尚、ブレーキ圧制御機構4はブレーキペダル
5の踏力に応じたブレーキ力(制動力)を各ブレーキ機
構3に与えると共に、ブレーキ圧駆動回路6からの指示
に基づいて後述するように各ブレーキ機構3に与えるブ
レーキ力に差を持たせる役割を担っている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an embodiment of a turning behavior control device for a vehicle according to one embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a system configuration diagram of a vehicle in which an apparatus according to an embodiment is incorporated. Reference numeral 1 denotes a vehicle body, and 2 (2FL, 2F).
R, 2RL, 2RR) represent front, rear, left and right wheels. Reference numerals 3 (3FL, 3FR, 3RL, 3RR) denote brake mechanisms provided on the respective wheels 2, and these brake mechanisms 3 are individually operated and controlled under a brake pressure control mechanism 4 to control the respective brake mechanisms. The braking is applied to the wheels 2. The brake pressure control mechanism 4 applies a braking force (braking force) according to the depression force of the brake pedal 5 to each of the brake mechanisms 3 and, based on an instruction from the brake pressure drive circuit 6, as described later. It has a role in giving a difference in the braking force applied to the vehicle.

【0012】一方、この例では後側の車輪2RL,2RRに
対して、駆動力伝達機構7を介して駆動力が伝達される
ようになっている。この駆動力伝達機構7は、左側車輪
2RLと右側車輪2RRとの差動を許容し、且つこれらに伝
達する駆動力を所要の比率で配分可能な、所謂左右輪駆
動力移動デフと称されるものである。このような駆動力
伝達機構(左右輪駆動力移動デフ)は、例えば特開平5-
131855号公報に詳述されるように入力軸と左右の各車輪
2RL,2RRとの間にそれぞれ変速機構と多板クラッチ機
構とを介装して構成される。しかして駆動力伝達機構7
における左右の各車輪2RL,2RRへの駆動力の配分は、
後述する制御の下で駆動力移動駆動回路8により制御さ
れる。
On the other hand, in this example, the driving force is transmitted to the rear wheels 2RL, 2RR via the driving force transmission mechanism 7. This driving force transmission mechanism 7 is so-called a left and right wheel driving force moving differential that allows the differential between the left wheel 2RL and the right wheel 2RR and distributes the driving force transmitted to these wheels at a required ratio. Things. Such a driving force transmission mechanism (left and right wheel driving force moving differential) is disclosed in, for example,
As described in detail in JP-A-131855, a transmission mechanism and a multi-plate clutch mechanism are interposed between the input shaft and the left and right wheels 2RL, 2RR. Thus, the driving force transmission mechanism 7
The distribution of the driving force to the left and right wheels 2RL, 2RR in
It is controlled by the driving force moving drive circuit 8 under the control described later.

【0013】CPU(中央演算処理装置)9は、車速検
出手段により検出される車速(車輪速)、操舵量検出手
段により検出される車両の操舵量(ハンドル角)、およ
びヨーレイト検出手段により検出される当該車両に生じ
たヨーレイトの情報に基づいて後述するように前記ブレ
ーキ圧駆動回路6および駆動力移動駆動回路8を統合的
に制御する制御手段として機能する。
A CPU (central processing unit) 9 detects a vehicle speed (wheel speed) detected by the vehicle speed detecting means, a steering amount (steering angle) of the vehicle detected by the steering amount detecting means, and a yaw rate detecting means. It functions as control means for integrally controlling the brake pressure driving circuit 6 and the driving force moving driving circuit 8 based on information on the yaw rate generated in the vehicle as described later.

【0014】即ち、CPU9は、機能的には図2に示す
ように車速とハンドル角とに基づいて旋回時における目
標ヨーレイトを算出する目標ヨーレイトの計算手段9
a、この目標ヨーレイトと車両本体1に実際に生じてい
るヨーレイト(実ヨーレイト)との差をヨーレイト偏差
Δψとして算出するヨーレイト偏差算出手段9b、そし
てこのヨーレイト偏差Δψに従って前記車輪2RL,2RR
との間に与えるべく駆動力の配分差(移動トルクΔT)
を求める移動トルク計算手段9c、および前記ヨーレイ
ト偏差Δψに従って前記各ブレーキ機構3にそれぞれ付
与する制動力を求める制動力計算手段9dを備えて構成
される。特に移動トルク計算手段9cは、ヨーレイト偏
差Δψが予め設定された第1の閾値Thaを越えたと
き、そのヨーレイト偏差Δψに応じた移動トルクΔTを
求めるようになっており、また制動力計算手段9dは、
ヨーレイト偏差Δψが予め設定された第2の閾値Thb
(>Tha)を越えたとき、そのヨーレイト偏差Δψに
応じた制動力の情報BL,BRを求めるものとなってい
る。
That is, the CPU 9 functionally calculates a target yaw rate calculating means 9 for calculating a target yaw rate at the time of turning based on the vehicle speed and the steering wheel angle as shown in FIG.
a, a yaw rate deviation calculating means 9b for calculating a difference between the target yaw rate and the yaw rate (actual yaw rate) actually generated in the vehicle body 1 as a yaw rate deviation Δψ, and the wheels 2RL and 2RR according to the yaw rate deviation Δψ.
Difference in driving force to be given between (moving torque ΔT)
, And braking force calculating means 9d for calculating a braking force to be applied to each of the brake mechanisms 3 according to the yaw rate deviation Δψ. In particular, when the yaw rate deviation Δψ exceeds a first threshold value Tha set in advance, the traveling torque calculation means 9c calculates the traveling torque ΔT according to the yaw rate deviation Δψ, and the braking force calculation means 9d Is
A second threshold value Thb in which the yaw rate deviation Δψ is set in advance
When (> Tha) is exceeded, information BL and BR of the braking force corresponding to the yaw rate deviation Δψ is obtained.

【0015】具体的には、CPU9は図3に示す手順に
従って処理手続きを進め、ヨーレイト偏差Δψに応じた
移動トルクΔTと制動力情報BL,BRをそれぞれ求め、
これを出力する。この処理手続きについて説明すると、
CPU9は所定の周期毎にハンドル角θ,車速V,実ヨ
ーレイトψを入力し(ステップS1)、これらの入力情
報に従って目標ヨーレイトψ*を計算する(ステップS
2)。この目標ヨーレイトψ*は、例えば[ハンドル角
/ステアリングギヤ比]として前輪舵角δfが与えら
れ、後輪舵角がδr,ホイールベース長がL,スタビリ
ティファクタがAとしてそれぞれ与えられるとき、 ψ* = V(δf−δr)/L(1+AV2) として計算される。
More specifically, the CPU 9 proceeds with the processing procedure in accordance with the procedure shown in FIG. 3, and obtains a moving torque ΔT corresponding to the yaw rate deviation Δψ and braking force information BL and BR, respectively.
Output this. To explain this processing procedure,
The CPU 9 inputs the steering wheel angle θ, the vehicle speed V, and the actual yaw rate 毎 at predetermined intervals (step S1), and calculates the target yaw rate ψ * according to the input information (step S1).
2). The target yaw rate ψ * is given, for example, when the front wheel steering angle δf is given as [handle angle / steering gear ratio], the rear wheel steering angle is δr, the wheelbase length is L, and the stability factor is A. * = V (δf−δr) / L (1 + AV 2 ).

【0016】目標ヨーレイトψ*が算出されると、次に
ヨーレイト偏差Δψを Δψ = ψ* − ψ として計算した後(ステップS3)、その大きさを判定
する(ステップS4,S5)。この判定はヨーレイト偏
差Δψが第1の閾値Thaより大きいか否か、更に第1
の閾値Thaより大きい場合には第2の閾値Thb未満で
あるか否かを判定することにより行われる。そしてヨー
レイト偏差Δψの大きさに応じて |Δψ| < Tha Tha ≦ |Δψ| < Thb Thb ≦ |Δψ| の3つの場合に分ける。
After the target yaw rate ψ * has been calculated, the yaw rate deviation Δψ is calculated as Δψ = ψ * −ψ (step S3), and the magnitude thereof is determined (steps S4 and S5). This determination is made as to whether the yaw rate deviation Δψ is greater than a first threshold Tha,
Is larger than the threshold value Tha, it is determined whether or not the value is smaller than the second threshold value Thb. Then, according to the magnitude of the yaw rate deviation Δψ, it is divided into three cases of | Δψ | <Tha ≦≦ | Δψ | <Thb Thb ≦ | Δψ |.

【0017】この判定処理によってヨーレイト偏差Δψ
が第1の閾値Thaに満たないとして上記の条件に該
当する判定された場合には、そのヨーレイト偏差Δψが
実質的に殆ど無視できる程度に小さいことから、前述し
た左右輪駆動力制御および制動力制御を不必要に作動さ
せないように、移動トルクΔTを[0],左右輪に対す
る制動力情報BL,BRをそれぞれ[0]として定める
(ステップS6)。
By this determination processing, the yaw rate deviation Δψ
Is determined to be less than the first threshold value Tha, and the above condition is satisfied, the yaw rate deviation Δ そ の is substantially small enough to be ignored. In order to prevent unnecessary operation of the control, the moving torque ΔT is set to [0], and the braking force information BL and BR for the left and right wheels are set to [0] (step S6).

【0018】これに対してヨーレイト偏差Δψが或る程
度の大きさを持ち、上記の条件に該当すると判定され
た場合には、ヨーレイト偏差Δψが小さいことから左右
輪駆動力制御だけを作動させるべく、そのときのヨーレ
イト偏差Δψに応じた移動トルクΔTを計算し,また左
右輪に対する制動力情報BL,BRをそれぞれ[0]とし
て定める(ステップS7)。
On the other hand, if it is determined that the yaw rate deviation Δψ has a certain magnitude and the above condition is satisfied, the yaw rate deviation Δψ is small, so that only the left and right wheel driving force control is operated. Then, a movement torque ΔT corresponding to the yaw rate deviation Δψ at that time is calculated, and the braking force information BL and BR for the left and right wheels are determined as [0] (step S7).

【0019】そしてヨーレイト偏差Δψが大きく上記
の条件に該当すると判定された場合には、左右輪駆動力
制御と共に制動力制御をも作動させるべく、そのときの
ヨーレイト偏差Δψに応じた移動トルクΔTを計算し,
同時に左右輪に対する制動力情報BL,BRを上記ヨーレ
イト偏差Δψに応じて計算する(ステップS8)。この
ようしてヨーレイト偏差Δψの大きさに応じて計算した
移動トルクΔT,および左右輪に対する制動力情報B
L,BRを出力することで前記駆動力移動駆動回路8およ
びブレーキ圧駆動回路6がそれぞれ動作する(ステップ
S9)。
If it is determined that the yaw rate deviation Δψ is large and the above condition is satisfied, the traveling torque ΔT corresponding to the yaw rate deviation Δψ at that time is set to activate the braking force control together with the left and right wheel driving force control. Calculate,
At the same time, the braking force information BL, BR for the left and right wheels is calculated according to the yaw rate deviation Δψ (step S8). The moving torque ΔT calculated in accordance with the magnitude of the yaw rate deviation Δψ in this way, and the braking force information B for the left and right wheels
By outputting L and BR, the driving force moving drive circuit 8 and the brake pressure drive circuit 6 operate (step S9).

【0020】即ち、前記駆動力移動駆動回路8は上述し
た如くCPU9にて求められた移動トルクΔTの情報に
従って駆動力伝達機構7の作動を制御し、前記左側車輪
2RLと右側車輪2RRとにそれぞれ与える駆動力を当該車
輪2RL,2RR間でΔTだけ移動する。この車輪2RL,2
RR間でのトルクΔTの移動により、つまり駆動力を左右
輪間で配分することで車両本体1にヨーモーメントが与
えられる。
That is, the driving force moving drive circuit 8 controls the operation of the driving force transmitting mechanism 7 in accordance with the information on the moving torque ΔT obtained by the CPU 9 as described above, and controls the left wheel 2RL and the right wheel 2RR respectively. The applied driving force moves by ΔT between the wheels 2RL and 2RR. This wheel 2RL, 2
The yaw moment is given to the vehicle body 1 by the movement of the torque ΔT between the RRs, that is, by distributing the driving force between the left and right wheels.

【0021】ちなみに図4の(a)に示すように、後側
の車輪2RL,2RR間でその駆動力をΔTだけ移動する
と、車両本体1に対して矢印で示す如きヨーモーメント
が与えられる。このようなヨーモーメントは、前輪側に
おいて駆動力を移動する場合にも同様に生じ、また前後
輪においてそれぞれて駆動力を移動する場合にも同様に
生じる。従って移動トルクの制御対象は後輪側に限られ
るものではない。更には駆動トルクの移動量は、ヨーレ
イト偏差Δψに応じて決定されるので、加減速の状況に
依らず一定の制御則として適用可能である。
By the way, as shown in FIG. 4A, when the driving force is moved by ΔT between the rear wheels 2RL, 2RR, a yaw moment shown by an arrow is given to the vehicle body 1. Such a yaw moment similarly occurs when the driving force moves on the front wheel side, and similarly occurs when the driving force moves on the front and rear wheels respectively. Therefore, the control target of the traveling torque is not limited to the rear wheel side. Furthermore, since the amount of movement of the driving torque is determined according to the yaw rate deviation Δ 、, it can be applied as a constant control law regardless of the acceleration / deceleration situation.

【0022】またブレーキ圧駆動回路6は上述した如く
CPU9にて求められた制動力の情報BL,BRに従って
ブレーキ圧制御機構4を制御し、前記各ブレーキ機構3
に個別に制動力を付与して車両本体1にヨーモーメント
を与える。例えば左右輪に対する制動力情報BL,BRに
従って図4の(b)に示すように右側前輪2FRに対して
のみ制動力BRを与えると、車両本体1に対して矢印で
示す如きヨーモーメントが与えられる。ちなみにブレー
キペダル5の踏力に応じて前後左右の各車輪2にそれぞ
れ制動力を与えている場合には、図4の(c)に示すよ
うにフットブレーキによる制動力に更に上記制動力BR
が加わるだけなので、同様に矢印で示す如きヨーモーメ
ントが与えられることになる。このようなヨーモーメン
トは、前輪側での制動力制御のみならず、後輪側での制
動力制御、ひいては前後輪の全てに対する制動力制御に
おいても同様に生じるので、これらに対して同様の制御
則を適用可能である。更には加減速の状況に拘わりな
く、一定の制御則として適用可能である。
The brake pressure drive circuit 6 controls the brake pressure control mechanism 4 in accordance with the braking force information BL and BR obtained by the CPU 9 as described above.
To give a yaw moment to the vehicle body 1 individually. For example, when the braking force BR is applied only to the right front wheel 2FR as shown in FIG. 4B in accordance with the braking force information BL and BR for the left and right wheels, a yaw moment indicated by an arrow is applied to the vehicle body 1. . Incidentally, when the braking force is applied to each of the front, rear, left and right wheels 2 in accordance with the depression force of the brake pedal 5, as shown in FIG.
, The yaw moment shown by the arrow is similarly given. Such a yaw moment occurs not only in the braking force control on the front wheel side, but also in the braking force control on the rear wheel side, and thus also in the braking force control on all of the front and rear wheels. The rules can be applied. Further, the present invention can be applied as a fixed control law regardless of the condition of acceleration / deceleration.

【0023】かくして上述したようにヨーレイト偏差Δ
ψに応じて駆動力移動制御および制動力制御を統合的に
行う実施例装置の制御体系は、概念的には図5に示すよ
うに表現される。即ち、ヨーレイト偏差Δψが第1の閾
値Thaに満たない領域は制御に対する不感帯として設
定され、この不感帯領域ではて駆動力移動制御および制
動力制御を行わない。またヨーレイト偏差Δψが第1の
閾値Thaを越える領域は駆動力移動制御を行う制御域
として定められ、更にヨーレイト偏差Δψが第2の閾値
Thbを越える領域は、上記駆動力移動制御に加えて制
動力制御も行う制御域として定められている。そしてヨ
ーレイト偏差Δψに応じて上記各制御域に応じた制御を
施して、車両本体1にヨーレイトを与えるものとなって
いる。
Thus, as described above, the yaw rate deviation Δ
The control system of the embodiment apparatus that integrally performs the driving force movement control and the braking force control according to ψ is conceptually represented as shown in FIG. That is, a region where the yaw rate deviation Δψ is less than the first threshold value Tha is set as a dead zone for control, and the driving force movement control and the braking force control are not performed in this dead band region. A region where the yaw rate deviation Δψ exceeds the first threshold value Tha is defined as a control region for performing the driving force movement control, and a region where the yaw rate deviation Δψ exceeds the second threshold value Thb is a control region in addition to the driving force movement control. It is defined as a control area that also performs power control. Then, control is performed in accordance with each of the control ranges according to the yaw rate deviation Δψ to give the vehicle body 1 a yaw rate.

【0024】具体的には図5に前輪側にて左右輪への制
動力付加制御を行い、後輪側にて左右輪駆動力移動を行
う場合の、駆動力の移動と制動力の付加の概念を模式的
に示すように、ヨーレイト偏差Δψが[A,B,C,
D]である場合、図示するように駆動力の移動と制動力
の付加がそれぞれ行われる。そして左旋回状態か右旋回
状態かに応じて、またそのときのヨーレイト偏差Δψが
プラスかマイナスかに応じてオーバーステア(OS)ま
たはアンダーステア(US)となるヨーモーメントが車
両本体1に対して与えられることになる。
More specifically, FIG. 5 shows that the braking force is applied to the left and right wheels on the front wheel side, and the driving force and the braking force are added when the left and right wheel driving force moves on the rear wheel side. As schematically shown in the concept, the yaw rate deviation Δψ is [A, B, C,
D], the movement of the driving force and the addition of the braking force are performed as shown in the figure. Then, depending on whether the vehicle is turning left or right, and whether the yaw rate deviation Δ か に at that time is plus or minus, a yaw moment of oversteer (OS) or understeer (US) is applied to the vehicle body 1. Will be given.

【0025】かくして上述した制御によれば、ヨーレイ
ト偏差Δψが第1の閾値Thaに満たない[0]に近い
状態では、これを通常の走行状態であると看做して駆動
力移動制御および制動力制御を行わないので、その制御
負担がない。換言すればヨーレイト偏差が殆どない場合
における不本意な制御を不要として、その制御効率の向
上を図り得る。
Thus, according to the above-described control, when the yaw rate deviation Δψ is close to [0] which is less than the first threshold value Tha, this is regarded as a normal running state, and the driving force movement control and the control are performed. Since no power control is performed, there is no control burden. In other words, unintended control in the case where there is almost no yaw rate deviation is unnecessary, and the control efficiency can be improved.

【0026】またヨーレイト偏差Δψが第1の閾値Th
aを越える程度の小さい領域では左右輪に対する駆動力
移動制御だけを行うので、滑らかで減速感のない走行を
実現できる。しかも旋回時における左右輪接地荷重に応
じた駆動力配分が可能なので、駆動効率を高めてその旋
回性能を効果的に向上させ得る。更にヨーレイト偏差Δ
ψが第2の閾値Thbを越える大きな領域、例えば緊急
回避時等の旋回限界に近い領域では、上述した左右輪間
の駆動力移動制御に加えて各車輪3に対する制動力の付
加制御を行うので、車両本体1に対して簡易にして効率
的に大きなヨーモーメントを与えることができ、車両挙
動の安定化を効果的に図り得る。しかも各車輪3に加え
られる制動力によって減速効果も得られるので、例えば
オーバースピードでコーナーに進入したときの安全性の
向上にも大きく寄与する。
The yaw rate deviation Δψ is equal to the first threshold Th.
In a small area exceeding a, only the driving force movement control for the left and right wheels is performed, so that smooth running without deceleration can be realized. In addition, since the driving force can be distributed according to the right and left wheel contact loads during turning, the driving efficiency can be increased and the turning performance can be effectively improved. Furthermore, the yaw rate deviation Δ
In a large region where ψ exceeds the second threshold value Thb, for example, in a region close to the turning limit at the time of emergency avoidance or the like, additional control of the braking force on each wheel 3 is performed in addition to the above-described driving force movement control between the left and right wheels. Thus, a large yaw moment can be given to the vehicle body 1 simply and efficiently, and the vehicle behavior can be effectively stabilized. In addition, since a braking effect applied to each wheel 3 can also provide a deceleration effect, it greatly contributes to improving safety when, for example, entering a corner at an overspeed.

【0027】しかも上述したようにヨーレイトをフィー
ドバックすることで目標ヨーレイトとの偏差を小さくす
ると言う共通の制御則に従って車両本体1に与えるヨー
レイトを制御するものでありながら、そのヨーレイト偏
差Δψの大きさに応じて制御の形態を変えるので、左右
輪に対する駆動力移動制御と各車輪に対する制動力制御
とを効果的に役割分担させ、その利点を相互に引き出す
ことができる。更には両制御系間での制御干渉を招くこ
とがないので、駆動力移動制御と制動力制御の利点を互
いに生かした効率的な車両の旋回制御を可能とする等の
効果が奏せられる。
Further, as described above, while controlling the yaw rate given to the vehicle body 1 in accordance with the common control rule of reducing the deviation from the target yaw rate by feeding back the yaw rate, the yaw rate deviation Δψ Since the form of control is changed accordingly, the driving force movement control for the left and right wheels and the braking force control for each wheel can be effectively shared between roles, and their advantages can be mutually derived. Furthermore, since control interference between the two control systems does not occur, it is possible to achieve an effect such as enabling efficient turning control of the vehicle by mutually utilizing the advantages of the driving force movement control and the braking force control.

【0028】尚、本発明は上述した実施例に限定される
ものではない。例えばヨーレイト偏差Δψが大きく、こ
れに伴って制動力制御が行われる状況では専ら制動力制
御によるヨーモーメントの付与効果の方が大きいので、
図6に示すように駆動力移動制御の寄与率を徐々に低減
してその制御負担を軽くするようにしてもよい。このよ
うにすれば、例えばフットブレーキによる制動力が加わ
ってABS(アンチスキッド・ブレーキング・システ
ム)の作動領域に入るような場合、駆動力移動制御とA
BS制御とが不本意に共振する可能性を未然に防ぐこと
ができる等の効果が奏せられる。その他、その要旨を逸
脱しない範囲で種々変形して実施することができる。
The present invention is not limited to the above embodiment. For example, in a situation where the yaw rate deviation Δψ is large and the braking force control is performed in conjunction therewith, the effect of giving the yaw moment mainly by the braking force control is larger,
As shown in FIG. 6, the contribution ratio of the driving force movement control may be gradually reduced to reduce the control load. In this way, for example, when the braking force by the foot brake is applied to enter the operation area of the ABS (anti-skid braking system), the driving force movement control and the A
There are effects such as the possibility of unintentionally resonating with the BS control can be prevented. In addition, various modifications can be made without departing from the scope of the invention.

【0029】[0029]

【発明の効果】以上説明したように本発明によれば、左
右輪間の駆動力移動制御と各車輪に対する制動力の付加
制御とを、ヨーレイト偏差に基づく共通の制御則に従っ
て統合的に制御するので、駆動力移動制御と制動力付加
制御とを効果的に役割分担させて旋回時における車両の
挙動を効果的に制御することができる。しかもヨーレイ
ト偏差が小さい場合には違和感のない制御によって旋回
性能を向上させ、ヨーレイト偏差が大きい場合には大き
なヨーモーメントを発生させて車両挙動の安定化を図
り、減速効果と相俟ってその安全性を高め得る等の多大
なる効果が奏せられる。
As described above, according to the present invention, the control of the movement of the driving force between the left and right wheels and the control of the addition of the braking force to each wheel are integrally controlled according to a common control rule based on the yaw rate deviation. Therefore, the driving force movement control and the braking force addition control can be effectively shared between roles, and the behavior of the vehicle at the time of turning can be effectively controlled. In addition, when the yaw rate deviation is small, the turning performance is improved by a control that does not cause a sense of incongruity, and when the yaw rate deviation is large, a large yaw moment is generated to stabilize the vehicle behavior, and together with the deceleration effect, the safety is improved. A great effect such as improvement in performance can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態である旋回挙動制御装置を
組み込んだ車両のシステム構成図。
FIG. 1 is a system configuration diagram of a vehicle incorporating a turning behavior control device according to an embodiment of the present invention.

【図2】実施例装置におけるCPUの役割を模式的に示
す機能構成図。
FIG. 2 is a functional configuration diagram schematically showing a role of a CPU in the embodiment device.

【図3】実施例装置における処理手続きの流れを示す
図。
FIG. 3 is a view showing a flow of a processing procedure in the apparatus of the embodiment.

【図4】駆動力移動制御によるトルクの移動と制動力制
御による制動力の付加により生じるヨーモーメントの概
念を模式的に示す図。
FIG. 4 is a diagram schematically showing a concept of a yaw moment generated by movement of torque by driving force movement control and addition of braking force by braking force control.

【図5】本発明に係る駆動力移動制御および制動力制御
の統合的な制御体系を概念的に示す図。
FIG. 5 is a diagram conceptually showing an integrated control system of driving force movement control and braking force control according to the present invention.

【図6】駆動力移動制御および制動力制御の統合的な制
御体系の変形例を示す図。
FIG. 6 is a diagram showing a modified example of an integrated control system of driving force movement control and braking force control.

【符号の説明】[Explanation of symbols]

1 車両本体 2(2FL,2FR,2RL,2RR) 車輪 3(3FL,3FR,3RL,3RR) ブレーキ機構 4 ブレーキ圧制御機構 5 ブレーキペダル 6 ブレーキ圧駆動回路 7 駆動力伝達機構(左右輪駆動力移動デフ) 8 駆動力移動駆動回路 9 CPU 9a 目標ヨーレイトの計算手段 9b ヨーレイト偏差算出手段 9c 移動トルク計算手段 9d 制動力計算手段 DESCRIPTION OF SYMBOLS 1 Vehicle main body 2 (2FL, 2FR, 2RL, 2RR) Wheel 3 (3FL, 3FR, 3RL, 3RR) Brake mechanism 4 Brake pressure control mechanism 5 Brake pedal 6 Brake pressure drive circuit 7 Driving force transmission mechanism (Left and right wheel driving force movement 8) Driving force moving drive circuit 9 CPU 9a Target yaw rate calculating means 9b Yaw rate deviation calculating means 9c Moving torque calculating means 9d Braking force calculating means

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) B60T 8/24 B60T 8/58 B60K 41/24 F16H 48/20 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) B60T 8/24 B60T 8/58 B60K 41/24 F16H 48/20

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 車両の左右輪駆動力に差を付ける左右輪
駆動力調整機構と、該車両の各輪間に制動力差を付ける
制動力調整機構と、該車両の車速を検出する車速検出手
段と、該車両の操舵量を検出する操舵量検出手段と、該
車両に生じるヨーレイトを検出するヨーレイト検出手段
と、前記操舵量および車速に基づいて目標ヨーレイトを
算出し、この目標ヨーレイトと前記ヨーレイト検出手段
にて検出されたヨーレイトとの差をヨーレイト偏差とし
て求めるヨーレイト偏差算出手段と、算出されたヨーレ
イト偏差に基づいて前記左右輪駆動力調整機構および制
動力調整機構を統合的に制御する制御手段であって、前
記ヨーレイト偏差が第1の閾値以上で、且つ第2の閾値
未満のとき、前記左右輪駆動力調整機構による左右輪駆
動力制御だけを実行する制御手段とを具備したことを特
徴とする車両の旋回挙動制御装置。
1. A left and right wheel driving force adjusting mechanism for making a difference between left and right wheel driving forces of a vehicle, a braking force adjusting mechanism for making a braking force difference between respective wheels of the vehicle, and a vehicle speed detecting device for detecting a vehicle speed of the vehicle. Means, a steering amount detecting means for detecting a steering amount of the vehicle, a yaw rate detecting means for detecting a yaw rate generated in the vehicle, a target yaw rate is calculated based on the steering amount and the vehicle speed, and the target yaw rate and the yaw rate are calculated. A yaw rate deviation calculating means for obtaining a difference from the yaw rate detected by the detecting means as a yaw rate deviation, and a control means for integrally controlling the left and right wheel driving force adjusting mechanism and the braking force adjusting mechanism based on the calculated yaw rate deviation. And before
The yaw rate deviation is greater than or equal to a first threshold and a second threshold
When the value is less than the left and right wheel driving force adjustment mechanism,
A turning behavior control device for a vehicle, comprising: control means for executing only power control .
【請求項2】 前記制御手段は、前記ヨーレイト偏差が
第1および第2の閾値以上のとき、前記左右輪駆動力調
整機構による左右輪駆動力制御および前記制動力調整機
構による制動力制御を同時に行い、且つ前記ヨーレイト
偏差が第2の閾値を越えて大きくなるに従って前記左右
輪駆動力調整機構による左右輪駆動力制御の寄与率を低
減させることを特徴とする請求項1に記載の車両の旋回
挙動制御装置。
2. The control means according to claim 1, wherein said yaw rate deviation is
When it is equal to or more than the first and second thresholds, the left and right wheel driving force adjustment
Right and left wheel drive force control by adjusting mechanism and the braking force adjuster
Simultaneously performing the braking force control by the structure and the yaw rate
As the deviation increases beyond the second threshold, the left and right
Low contribution ratio of left and right wheel drive force control by wheel drive force adjustment mechanism
The turning behavior control device for a vehicle according to claim 1 , wherein the turning behavior is reduced .
JP25143395A 1995-09-28 1995-09-28 Vehicle turning behavior control device Expired - Lifetime JP3183124B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25143395A JP3183124B2 (en) 1995-09-28 1995-09-28 Vehicle turning behavior control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25143395A JP3183124B2 (en) 1995-09-28 1995-09-28 Vehicle turning behavior control device

Publications (2)

Publication Number Publication Date
JPH0986378A JPH0986378A (en) 1997-03-31
JP3183124B2 true JP3183124B2 (en) 2001-07-03

Family

ID=17222773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25143395A Expired - Lifetime JP3183124B2 (en) 1995-09-28 1995-09-28 Vehicle turning behavior control device

Country Status (1)

Country Link
JP (1) JP3183124B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006117176A (en) * 2004-10-25 2006-05-11 Mitsubishi Motors Corp Turning behavior controller for vehicle
US7377600B2 (en) 2004-10-25 2008-05-27 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Turning behavior control device for vehicle
US10857995B2 (en) 2015-09-25 2020-12-08 Ntn Corporation Vehicle attitude control device

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4186081B2 (en) 2005-02-02 2008-11-26 トヨタ自動車株式会社 Vehicle braking / driving force control device
JP4618105B2 (en) * 2005-11-11 2011-01-26 三菱自動車工業株式会社 Vehicle turning behavior control device
JP4826308B2 (en) 2006-03-24 2011-11-30 三菱自動車工業株式会社 Vehicle turning behavior control device
JP4396660B2 (en) 2006-05-12 2010-01-13 三菱自動車工業株式会社 Vehicle turning behavior control device
JP4778861B2 (en) * 2006-08-18 2011-09-21 本田技研工業株式会社 Vehicle yaw moment control device
JP4815371B2 (en) * 2007-03-15 2011-11-16 本田技研工業株式会社 Vehicle yaw moment control device
JP2009006873A (en) 2007-06-28 2009-01-15 Honda Motor Co Ltd Vehicular drive control apparatus
JP4179392B1 (en) * 2007-07-09 2008-11-12 三菱自動車工業株式会社 Vehicle turning behavior control device
JP4179391B1 (en) * 2007-07-09 2008-11-12 三菱自動車工業株式会社 Vehicle turning behavior control device
JP5083526B2 (en) * 2007-08-31 2012-11-28 三菱自動車工業株式会社 Vehicle driving force control device
JP4894687B2 (en) 2007-09-05 2012-03-14 トヨタ自動車株式会社 Vehicle braking / driving force control device
JP5104182B2 (en) * 2007-10-10 2012-12-19 株式会社ジェイテクト Vehicle control device
JP4737179B2 (en) * 2007-11-02 2011-07-27 トヨタ自動車株式会社 Vehicle control apparatus and vehicle control method
JP5194949B2 (en) * 2008-03-31 2013-05-08 株式会社アドヴィックス Vehicle steering control device
JP5123893B2 (en) * 2009-06-03 2013-01-23 本田技研工業株式会社 Differential unit with differential limiting mechanism
US9213522B2 (en) 2010-07-29 2015-12-15 Ford Global Technologies, Llc Systems and methods for scheduling driver interface tasks based on driver workload
DE112010005774T5 (en) 2010-07-29 2013-05-08 Ford Global Technologies, Llc Systems and methods for scheduling driver interface tasks based on driver workload
US8972106B2 (en) 2010-07-29 2015-03-03 Ford Global Technologies, Llc Systems and methods for scheduling driver interface tasks based on driver workload
JP5893486B2 (en) * 2012-04-13 2016-03-23 Ntn株式会社 Electric car
JP6472626B2 (en) 2014-09-01 2019-02-20 Ntn株式会社 Vehicle skid prevention control device
JP6584779B2 (en) * 2015-01-28 2019-10-02 Ntn株式会社 Vehicle attitude control device
JP6542017B2 (en) 2015-04-14 2019-07-10 Ntn株式会社 Vehicle attitude control device
JP6764292B2 (en) * 2016-09-16 2020-09-30 Ntn株式会社 Anti-slip control device
JP2018144576A (en) 2017-03-03 2018-09-20 Ntn株式会社 Vehicle control device
JP6944125B2 (en) 2017-11-17 2021-10-06 トヨタ自動車株式会社 Vehicle behavior control device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006117176A (en) * 2004-10-25 2006-05-11 Mitsubishi Motors Corp Turning behavior controller for vehicle
US7377600B2 (en) 2004-10-25 2008-05-27 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Turning behavior control device for vehicle
US7643922B2 (en) 2004-10-25 2010-01-05 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Turning behavior control device for vehicle
US10857995B2 (en) 2015-09-25 2020-12-08 Ntn Corporation Vehicle attitude control device

Also Published As

Publication number Publication date
JPH0986378A (en) 1997-03-31

Similar Documents

Publication Publication Date Title
JP3183124B2 (en) Vehicle turning behavior control device
JP3423125B2 (en) Vehicle turning behavior control device
CN109693663B (en) Vehicle stability control system based on active intervention steering system
US7073621B2 (en) Vehicle steering control device
JP3409439B2 (en) Driving force distribution control system for left and right wheels and front and rear wheels
JP6844500B2 (en) Vehicle behavior control device
JP2623905B2 (en) Drive system clutch control device for vehicles
JP4264503B2 (en) Vehicle behavior control device
JPH10273031A (en) Attitude control device for vehicle
JP6525529B2 (en) All-wheel drive torque vectoring by electronic brake system control
US20040064239A1 (en) Power distribution control apparatus for four wheel drive vehicle
JP2730413B2 (en) Braking force control device
JP5234265B2 (en) Vehicle longitudinal force control device
JP2004209998A (en) Integrated control device of vehicle
JP3840061B2 (en) Four-wheel drive vehicle
JP2863294B2 (en) Anti-skid brake system for vehicles
JP2002219958A (en) Yaw rate control device for vehicle
JP2002029400A (en) Attitude control device for vehicle
JP3000663B2 (en) Braking force control device
JPH10273030A (en) Attitude control device for vehicle
JP2006123611A (en) Steering device for vehicle
JP2863293B2 (en) Anti-skid brake system for vehicles
JP2007176314A (en) Turning action control system, automobile, and turning action control method
WO2023135851A1 (en) Braking control device
JP2007320396A (en) Method of controlling behavior stabilization of four-wheel drive vehicle

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010327

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080427

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090427

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100427

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100427

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110427

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110427

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120427

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140427

Year of fee payment: 13

EXPY Cancellation because of completion of term