JP3182780B2 - Method of forming dense ceramic layer - Google Patents

Method of forming dense ceramic layer

Info

Publication number
JP3182780B2
JP3182780B2 JP07854891A JP7854891A JP3182780B2 JP 3182780 B2 JP3182780 B2 JP 3182780B2 JP 07854891 A JP07854891 A JP 07854891A JP 7854891 A JP7854891 A JP 7854891A JP 3182780 B2 JP3182780 B2 JP 3182780B2
Authority
JP
Japan
Prior art keywords
ceramic
porous substrate
layer
dense
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP07854891A
Other languages
Japanese (ja)
Other versions
JPH04292490A (en
Inventor
正信 相沢
千尋 小林
正宏 黒石
治男 西山
Original Assignee
東陶機器株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東陶機器株式会社 filed Critical 東陶機器株式会社
Priority to JP07854891A priority Critical patent/JP3182780B2/en
Publication of JPH04292490A publication Critical patent/JPH04292490A/en
Application granted granted Critical
Publication of JP3182780B2 publication Critical patent/JP3182780B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Fuel Cell (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はシール層等として作用す
るセラミック緻密層の形成方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a dense ceramic layer acting as a sealing layer or the like.

【0002】[0002]

【従来の技術】セラミック製品は未焼成のセラミック成
形体を焼成することで得られる。このためセラミック製
品には多孔質のものが多く、液体や気体を封止するため
必要な部分をシールしなければならない場合が多い。こ
のシール材としてはゴムや樹脂系のものが一般的であ
り、これらの他には、ガラス層(ホーロー)或いはメタ
ライズによるシール等が行われている。
2. Description of the Related Art A ceramic product is obtained by firing an unfired ceramic compact. For this reason, many ceramic products are porous, and it is often necessary to seal necessary portions to seal liquids and gases. As this sealing material, a rubber or resin-based material is generally used, and in addition to these, sealing by a glass layer (enamel) or metallization is performed.

【0003】[0003]

【発明が解決しようとする課題】ゴムや樹脂からなるシ
ール材は耐熱性及び耐薬品性に劣り、ガラス層にあって
はアルカリに対する耐食性が弱く且つ約600℃を超え
ると軟化が始り、更にメタライズにあっては、耐酸性及
び耐アルカリ性に問題があり、高温での耐久性にも課題
がある。
The sealing material made of rubber or resin is inferior in heat resistance and chemical resistance. In the glass layer, the corrosion resistance to alkali is weak, and when the temperature exceeds about 600 ° C., softening starts. Metallization has problems in acid resistance and alkali resistance, and also has problems in durability at high temperatures.

【0004】そこで、PVDやCVD等の蒸着法、スパ
ッタリング或いはイオンプレーティング等によって多孔
質基材表面にセラミック緻密層を形成することが考えら
れるが、これらの方法による場合は、シール効果を発揮
するほどの厚みの緻密層を形成するのには不向きであ
り、また腐食性の原料を使用する場合が多いので、基材
自体が耐食性のあることが条件となり、更には設備が大
掛りとなるのでコスト的にも不利である。
Therefore, it is conceivable to form a dense ceramic layer on the surface of the porous substrate by a vapor deposition method such as PVD or CVD, sputtering or ion plating. However, these methods exhibit a sealing effect. It is unsuitable for forming a dense layer of such a thickness, and since corrosive raw materials are often used, it is necessary that the base material itself has corrosion resistance, and furthermore, the equipment becomes large. It is disadvantageous in terms of cost.

【0005】[0005]

【課題を解決するための手段】上記課題を解決すべく本
発明は、多孔質基材をセラミックスラリー中に所定時間
浸漬した後に引き上げて乾燥せしめる工程を複数回繰り
返すことで、多孔質基材の表面に未焼成セラミック層を
形成し、次いでこの未焼成セラミック層を焼成するよう
にした。
In order to solve the above-mentioned problems, the present invention provides a method of forming a porous base material by repeating a process of dipping a porous base material in a ceramic slurry for a predetermined time, then pulling up and drying the porous base material a plurality of times. A green ceramic layer was formed on the surface, and then the green ceramic layer was fired.

【0006】[0006]

【作用】多孔質基材をセラミックスラリー中に浸漬する
と、多孔質基材の孔内にセラミック粒子を含むスラリー
が侵入して孔径を小さくする。そして、これを繰り返す
ことで多孔質基材の表面に例えばガスタイトな緻密膜が
形成される。
When the porous substrate is immersed in the ceramic slurry, the slurry containing the ceramic particles enters the pores of the porous substrate to reduce the pore diameter. Then, by repeating this, for example, a gas-tight dense film is formed on the surface of the porous substrate.

【0007】[0007]

【実施例】以下に本発明の実施例を添付図面に基づいて
説明する。ここで、図1は本発明方法によって形成した
セラミック緻密層をシール層として用いた燃料電池発電
装置の断面図、図2は燃料電池素子の断面図、図3は図
2の要部拡大図である。
Embodiments of the present invention will be described below with reference to the accompanying drawings. Here, FIG. 1 is a sectional view of a fuel cell power generator using a dense ceramic layer formed by the method of the present invention as a seal layer, FIG. 2 is a sectional view of a fuel cell element, and FIG. is there.

【0008】燃料電池発電装置はハウジング1内を例え
ばセラミック材料を鋳込み成形してなる多孔質隔壁2,
3,4にて、第1の燃料ガスとしての空気等の酸化剤導
入室S1、燃焼予熱室S2、発電室S3及び第2の燃料
ガスとしての水素ガス導入室S4を画成し、発電室S3
に燃料電池素子5…を配置している。
In the fuel cell power generation device, a porous partition wall 2 is formed by casting a ceramic material in a housing 1, for example.
At 3 and 4, an oxidizing agent introduction chamber S1 such as air as a first fuel gas, a combustion preheating chamber S2, a power generation chamber S3, and a hydrogen gas introduction chamber S4 as a second fuel gas are defined. S3
The fuel cell elements 5 are arranged at the same time.

【0009】この燃料電池素子5は図2及び図3に示す
ように、ガスが透過し得るジルコニア等からなる多孔質
基材51の表面に導電性複合酸化物等からなる多孔質な
第1の電極層52を形成し、この第1の電極層52の表
面に安定化ジルコニア等からなるガスタイトな固体電解
質層53を形成し、この固体電解質層53の表面に第2
の電極層54を形成し、更に多孔質基材51の基端外周
面には本発明方法により形成したセラミック緻密層から
なるシール層55を設け、燃焼予熱室S2と発電室S3
との間をガスタイトにシールしている。
As shown in FIGS. 2 and 3, this fuel cell element 5 has a porous first substrate made of a conductive complex oxide or the like on the surface of a porous substrate 51 made of a zirconia or the like through which a gas can pass. the electrode layer 52 is formed, the gas tight solid electrolyte layer 53 made of stabilized zirconia or the like is formed on the surface of the first electrode layer 52, the second the surface of the solid electrolyte layer 53
And a sealing layer 55 made of a ceramic dense layer formed by the method of the present invention is provided on the outer peripheral surface of the base end of the porous substrate 51, and the combustion preheating chamber S2 and the power generation chamber S3 are provided.
Seals in gas tight between.

【0010】また、多孔質基材51の先端は閉じられ、
基端からは酸素ガス導入管6が導入されている。そし
て、酸素ガス導入管6の先端に形成した孔6aから多孔
質基材51の内側に酸素ガス(空気)を流し、電池素子
5の外側に水素ガス導入室S4を介して水素ガスを流す
と、酸素ガスは第1の電極層52内に浸透し、水素ガス
は第2の電極層54内に浸透し、第1及び第2の電極層
では以下の反応が起こる。
The tip of the porous substrate 51 is closed,
An oxygen gas introduction pipe 6 is introduced from the base end. Then, an oxygen gas (air) is caused to flow inside the porous base material 51 from the hole 6a formed at the tip of the oxygen gas introduction pipe 6, and the hydrogen gas is caused to flow outside the battery element 5 via the hydrogen gas introduction chamber S4. , Oxygen gas permeates into the first electrode layer 52, hydrogen gas permeates into the second electrode layer 54, and the following reactions occur in the first and second electrode layers.

【0011】 第1の電極; H2O+1/2O2+2e→2OH- 第2の電極; H2+2OH-→2H2O+2e[0011] The first electrode; H 2 O + 1 / 2O 2 + 2e → 2OH - a second electrode; H 2 + 2OH - → 2H 2 O + 2e

【0012】となり、2eが負荷に供給される。尚、O
- については固体電解質層53中を移動する。
Then, 2e is supplied to the load. O
H moves in the solid electrolyte layer 53.

【0013】ところで、前記セラミック緻密層からなる
シール層55を形成するには図4に示すように、多孔質
基材51の基端部に栓7を填め、基端部よりも若干中央
に寄った外周面にマスク8を巻き付け、この状態で多孔
質基材51の基端部をディッピング層9内のセラミック
スラリー10に浸漬する。
In order to form the sealing layer 55 made of the dense ceramic layer, as shown in FIG. 4, a plug 7 is inserted into the base end of the porous base material 51, and is slightly shifted toward the center from the base end. The mask 8 is wound around the outer peripheral surface, and the base end of the porous substrate 51 is immersed in the ceramic slurry 10 in the dipping layer 9 in this state.

【0014】そして、所定時間浸漬した後に引き上げて
乾燥せしめ、この工程を複数回繰り返すことで、多孔質
基材の表面に未焼成セラミック層を形成し、次いでこの
未焼成セラミック層を1300〜1500℃で焼成する
ことで目的とするセラミック緻密層とする。
Then, after immersing for a predetermined time, it is pulled up and dried, and by repeating this step a plurality of times, an unsintered ceramic layer is formed on the surface of the porous base material. To form the desired ceramic dense layer.

【0015】ここで、セラミックスラリー10はセラミ
ック原料を溶剤中に分散せしめ、これに必要に応じて、
バインダー及び界面活性剤を添加している。セラミック
原料としては安定化ジルコニア(ZrO2+8mol%Y
23)やアルミナを用いる。また、セラミック原料の粒
径は多孔質基材の孔径よりも小さい径とする。
Here, the ceramic slurry 10 has a ceramic raw material dispersed in a solvent.
A binder and a surfactant are added. Stabilized zirconia (ZrO 2 +8 mol% Y)
2 O 3 ) or alumina is used. The particle size of the ceramic raw material is smaller than the pore size of the porous substrate.

【0016】溶剤としてはα−テレピネオール、酢酸n
−ブチルカルビトール、エチルアルコール等を用い、バ
インダーとしてはエチルセルロース等を用い、更に界面
活性剤としてはキシレン系或いはエタノール系のものを
用いる。またセラミックスラリー10の粘度はセラミッ
ク層の緻密性に影響するためできるだけ低粘度とするの
が好ましい。
As the solvent, α-terpineol, acetic acid n
-Butyl carbitol, ethyl alcohol or the like is used, ethyl cellulose or the like is used as a binder, and xylene or ethanol is used as a surfactant. Further, since the viscosity of the ceramic slurry 10 affects the denseness of the ceramic layer, it is preferable to make the viscosity as low as possible.

【0017】図5はセラミック緻密層の膜厚と多孔質基
材の孔径及び窒素ガス透過量との関係を示すグラフであ
り、このグラフから分るように本発明方法によって例え
ば孔径が7μmの多孔質基材の表面に48μmの厚さの
セラミック層緻密性を形成すれば、完全にガスシールす
ることができる。
FIG. 5 is a graph showing the relationship between the thickness of the dense ceramic layer, the pore diameter of the porous substrate, and the amount of nitrogen gas permeation. If a dense ceramic layer having a thickness of 48 μm is formed on the surface of the porous substrate, gas sealing can be completely performed.

【0018】尚、実施例にあっては隔壁にて保持される
多孔質支持体の表面にシール層としてのセラミック緻密
層を形成する例を示したが、第1の電極層の表面に固体
電解質層を形成する場合に、本発明方法を適用してもよ
い。
In the embodiment, the example in which the ceramic dense layer as the sealing layer is formed on the surface of the porous support held by the partition wall has been described, but the solid electrolyte is formed on the surface of the first electrode layer. When the layer is formed, the method of the present invention may be applied.

【0019】[0019]

【発明の効果】以上に説明した如く本発明によれば、多
孔質基材の表面にシール性、耐熱性、耐薬品性に優れた
セラミック緻密層を必要な厚さだけ形成することができ
る。
As described above, according to the present invention, a ceramic dense layer having an excellent sealing property, heat resistance and chemical resistance can be formed on a surface of a porous substrate to a required thickness.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明方法によって形成したセラミック緻密層
をシール層として用いた燃料電池発電装置の断面図
FIG. 1 is a cross-sectional view of a fuel cell power generator using a dense ceramic layer formed by a method of the present invention as a sealing layer.

【図2】燃料電池素子の断面図FIG. 2 is a cross-sectional view of a fuel cell element.

【図3】図2の要部拡大図FIG. 3 is an enlarged view of a main part of FIG. 2;

【図4】本発明のディッピング工程を示す図FIG. 4 is a view showing a dipping step of the present invention.

【図5】膜厚と多孔質基材の孔径及び窒素ガス透過量と
の関係を示すグラフ
FIG. 5 is a graph showing a relationship between a film thickness, a pore diameter of a porous substrate, and a nitrogen gas permeation amount.

【符号の説明】[Explanation of symbols]

1…燃料電池発電装置のケース、2,3,4…隔壁、5
…燃料電池素子、51…多孔質基材、52,54…多孔
質電極、55…セラミック緻密層。
1: Case of fuel cell power generator, 2, 3, 4 ... Partition wall, 5
... fuel cell element, 51 ... porous substrate, 52, 54 ... porous electrode, 55 ... dense ceramic layer.

フロントページの続き (72)発明者 西山 治男 神奈川県茅ケ崎市本村2丁目8番1号 東陶機器株式会社 茅ケ崎工場内 (56)参考文献 特開 平1−131089(JP,A) 特開 昭60−180979(JP,A) (58)調査した分野(Int.Cl.7,DB名) C04B 41/87 Continuation of the front page (72) Inventor Haruo Nishiyama 2-7-1, Motomura, Chigasaki-shi, Kanagawa Prefecture Tochiki Co., Ltd. Chigasaki Plant (56) References JP-A-1-131089 (JP, A) JP-A-60 -1880979 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) C04B 41/87

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 多孔質基材の孔径よりも小さく粒径が7
μm以下のセラミック粒子を溶媒中に分散せしめて調整
したセラミックスラリー中に多孔質基材を所定時間浸漬
し、この後多孔質基材を引き上げて乾燥せしめる工程を
複数回繰り返した後に焼成することで、多孔質基材の表
面に焼成後の孔径が7μm以下で厚みが40μm以上の
ガスタイトなセラミック緻密層を形成することを特徴と
する燃料電池用セラミック緻密層の形成方法。
1. The method according to claim 1, wherein the particle diameter is smaller than the pore diameter of the porous substrate.
Adjust by dispersing ceramic particles below μm in solvent
Porous substrate immersed in ceramic slurry for specified time
After that, a process of lifting and drying the porous substrate
By firing after repeating multiple times, the surface of the porous substrate
The surface has a pore diameter after firing of 7 μm or less and a thickness of 40 μm or more.
Characterized by forming a gastight ceramic dense layer
Of forming a dense ceramic layer for a fuel cell.
【請求項2】 多孔質基材の孔径よりも小さく粒径が7
μm以下のセラミック粒子を溶媒中に分散せしめて調整
したセラミックスラリー中に多孔質基材を所定時間浸漬
し、この後多孔質基材を引き上げて乾燥せしめる工程を
複数回繰り返した後に焼成することで、多孔質基材の表
面に焼成後の厚みが48μm以上となる厚さのガスタイ
トなセラミック緻密層を形成することを特徴とする燃料
電池用セラミック緻密層の形成方法。
2. The method according to claim 1, wherein the particle diameter is smaller than the pore diameter of the porous substrate.
Adjust by dispersing ceramic particles below μm in solvent
Porous substrate immersed in ceramic slurry for specified time
After that, a process of lifting and drying the porous substrate
By firing after repeating multiple times, the surface of the porous substrate
Gas tie with a thickness of at least 48 μm after firing on the surface
Characterized by forming a dense ceramic dense layer
A method for forming a ceramic dense layer for a battery.
JP07854891A 1991-03-18 1991-03-18 Method of forming dense ceramic layer Expired - Lifetime JP3182780B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07854891A JP3182780B2 (en) 1991-03-18 1991-03-18 Method of forming dense ceramic layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07854891A JP3182780B2 (en) 1991-03-18 1991-03-18 Method of forming dense ceramic layer

Publications (2)

Publication Number Publication Date
JPH04292490A JPH04292490A (en) 1992-10-16
JP3182780B2 true JP3182780B2 (en) 2001-07-03

Family

ID=13664974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07854891A Expired - Lifetime JP3182780B2 (en) 1991-03-18 1991-03-18 Method of forming dense ceramic layer

Country Status (1)

Country Link
JP (1) JP3182780B2 (en)

Also Published As

Publication number Publication date
JPH04292490A (en) 1992-10-16

Similar Documents

Publication Publication Date Title
EP0791231B1 (en) Protective interlayer for high temperature solid electrolyte electrochemical cells
EP0481679B1 (en) Solid oxide electrochemical cell fabrication process
WO2000039864A2 (en) Fuel electrode formation for a solid oxide fuel cell
US5277995A (en) Electrode and method of interconnection sintering on an electrode of an electrochemical cell
JP3182780B2 (en) Method of forming dense ceramic layer
JPH07320754A (en) Connecting structure between solid electrolytic film and electrode film, and its manufacture
JPH1079259A (en) Unit cell of cylindrical solid electrolyte fuel cell and manufacture of unit cell
JP2006222068A (en) Ceramic heater and its manufacturing method
JPH04248272A (en) Manufacture of interconnector of lateral-striped cylindrical solid electrolyte fuel cell
US6395206B1 (en) Method of removing an organic binder from a green ceramic form
US20190022596A1 (en) Catalyst-containing oxygen transport membrane
JP3050328B2 (en) Method for manufacturing solid electrolyte fuel cell
JP4154748B2 (en) Method for manufacturing cell for solid oxide fuel cell
JP3050331B2 (en) Method for manufacturing solid electrolyte fuel cell
JPH0721830A (en) Manufacture of solid electrolytic membrane
JPH08133739A (en) Production of zirconia film
JPH04355058A (en) Solid electrolyte fuel cell and manufacture thereof
JP3131077B2 (en) Manufacturing method of metal oxide film
JPH0574465A (en) Manufacture of solid electrolyte fuel cell
JPH05198305A (en) Manufacture of solid electrolyte fuel cell
JPH03179670A (en) Manufacture of solid electrolyte for fuel cell
JPH04204046A (en) Method for manufacturing porous sintered body consisting of glass ceramic and oxygen concentration detector
JPH0450184A (en) Production of solid electrolyte
JPH05144450A (en) Manufacture of fuel cell with solid electrolyte
JPS63178454A (en) Solid electrolyte fuel cell

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010327

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090427

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100427

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100427

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110427

Year of fee payment: 10

EXPY Cancellation because of completion of term