JP3181360B2 - Method for producing fiber-reinforced resin laminate - Google Patents

Method for producing fiber-reinforced resin laminate

Info

Publication number
JP3181360B2
JP3181360B2 JP08089392A JP8089392A JP3181360B2 JP 3181360 B2 JP3181360 B2 JP 3181360B2 JP 08089392 A JP08089392 A JP 08089392A JP 8089392 A JP8089392 A JP 8089392A JP 3181360 B2 JP3181360 B2 JP 3181360B2
Authority
JP
Japan
Prior art keywords
reinforced resin
mold
auxiliary member
fiber
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08089392A
Other languages
Japanese (ja)
Other versions
JPH05278140A (en
Inventor
裕英 中川
公徳 高尾
智行 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP08089392A priority Critical patent/JP3181360B2/en
Publication of JPH05278140A publication Critical patent/JPH05278140A/en
Application granted granted Critical
Publication of JP3181360B2 publication Critical patent/JP3181360B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Branch Pipes, Bends, And The Like (AREA)
  • Moulding By Coating Moulds (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、端部の内径寸法精度や
内周面平滑性に優れた繊維強化樹脂積層体の製造方法に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a fiber reinforced resin laminate excellent in dimensional accuracy of inner diameter of an end portion and smoothness of an inner peripheral surface.

【0002】[0002]

【従来の技術】従来、繊維強化樹脂成形体を製造するの
に、芯型上に繊維含浸強化繊維を巻き付けて繊維強化樹
脂層を形成するフィラメントワインディング(FW法)
が用いられることはよく知られている。しかし、FW法
により製造された繊維強化樹脂成形体は、内径寸法精度
や内周面平滑性が悪く、特に端部の内径寸法精度や内周
面平滑性が要求される繊維強化樹脂成形体を製造する場
合には、成形後に入念な後加工を施す必要があり、製造
工程が煩雑であり、生産性が悪くコスト高になるという
問題点があった。
2. Description of the Related Art Conventionally, in producing a fiber-reinforced resin molded product, filament winding (FW method) in which a fiber-impregnated reinforcing fiber is wound around a core mold to form a fiber-reinforced resin layer.
It is well known that is used. However, the fiber reinforced resin molded article manufactured by the FW method has poor inner diameter dimensional accuracy and inner peripheral surface smoothness. In the case of manufacturing, it is necessary to perform elaborate post-processing after molding, and there is a problem that the manufacturing process is complicated, productivity is low, and cost is high.

【0003】そして、例えば、端部にパッキングや抜け
止め等を装着する管接続用受口部を有する管継手や管等
のように、FW法により製造した場合に芯型全体を一方
向に抜き出すことが困難な場合、特公昭59─3192
5号公報に記載の如く、芯型本体の所定位置に弾性体よ
りなる表面層に同芯状に分割された芯部材を装着した環
状溝成形型を装着したものの上に、成形材料を巻回して
成形材料層を成形した後硬化させ、まず芯型本体を抜去
し、次いで表面層から、芯部材を切欠き部又は小孔に先
のとがった工具を差し込んで抜去し、最後に表面層を剥
離するようにして抜去する方法や、特開昭64─456
25号公報に記載の如く、二つの半割樹脂成形品を互い
に固着して管の成形品の芯部材を形成し、この芯部材上
に樹脂を含浸させたガラス繊維をワインディングする方
法等が提案されている。
[0003] When manufactured by the FW method, for example, a pipe joint or a pipe having a pipe connection receiving port to which a packing or a stopper is attached at an end thereof, the whole core mold is pulled out in one direction. If it is difficult to do so,
As described in JP-A-5, the molding material is wound on an annular groove forming die in which a core member divided concentrically is mounted on a surface layer made of an elastic body at a predetermined position of a core die body. After the molding material layer is molded and cured, the core body is removed first, then the core member is removed from the surface layer by inserting a pointed tool into a notch or a small hole, and finally the surface layer is removed. A method of removing the material by peeling it,
As described in Japanese Patent Publication No. 25, a method is proposed in which two half resin molded products are fixed to each other to form a core member of a molded tube product, and a glass fiber impregnated with resin is wound on the core member. Have been.

【0004】[0004]

【発明が解決しようとする課題】しかし、前者の場合に
は、芯部材を抜去するのにその切欠き部又は小孔に先の
とがった工具を差し込んで抜去するという面倒な作業を
行う必要があり、又、端部の内周面には繊維強化樹脂層
が露出するために、内径寸法精度や内周面平滑性は依然
として充分なものではなく、後加工を必要とするため
に、生産性が悪くコスト高になるという問題点がある。
However, in the former case, in order to remove the core member, it is necessary to perform a troublesome work of inserting a pointed tool into the notch or the small hole and removing the core member. Also, since the fiber reinforced resin layer is exposed on the inner peripheral surface at the end, the dimensional accuracy of the inner diameter and the smoothness of the inner peripheral surface are still not sufficient, and post-processing is required, so that productivity is increased. However, there is a problem that the cost is high and the cost is high.

【0005】又、後者の場合には、二つの半割り樹脂成
形品を互いに固着するものであるので、周方向の小さな
段差ができたり隙間ができたりして、所望の成形品の内
周面形状に形成することが難しく、端部の内径寸法精度
や内周面平滑性が優れた繊維強化樹脂製成形品を得るこ
とが難しいという問題点がった。
In the latter case, since the two half-split resin molded products are fixed to each other, a small step is formed in the circumferential direction or a gap is formed, so that the desired inner peripheral surface of the desired molded product is formed. There is a problem that it is difficult to form the shape, and it is difficult to obtain a molded article made of fiber reinforced resin having excellent inner diameter dimensional accuracy of the end portion and smoothness of the inner peripheral surface.

【0006】本発明は、上記の如き従来の問題点を解消
し、端部の内径寸法精度や表面平滑性に優れた繊維強化
樹脂積層体を、生産性よく且つ安価に製造する方法を提
供することを目的としてなされたものである。
The present invention solves the above-mentioned conventional problems and provides a method for producing a fiber-reinforced resin laminate excellent in dimensional accuracy of the inner diameter of the end portion and surface smoothness with good productivity and at low cost. It is done for the purpose of.

【0007】[0007]

【課題を解決するための手段】 本願発明 は、軸方向に凹
凸状に曲折する内周面を有し一端部の外周面の外側方に
突出するピンが設けられた短管状の補助部材を、円筒状
もしくは円柱状芯型の端部上に、ピンが設けられた端部
を円筒状もしくは円柱状芯型の端縁の方に向けるように
して装着して成形型を形成し、その成形型の周りに硬化
性樹脂含浸強化繊維をピンに引っ掛けるようにして巻き
付けて繊維強化樹脂層を形成し、樹脂を硬化させ、硬化
した繊維強化樹脂層の端部に補助部材を一体的に接合せ
しめ、その後円筒状もしくは円柱状芯型を抜去し、補助
部材のピンが設けられた部分を切断して除去する繊維強
化樹脂積層体の製造方法である。
According to the present invention , there is provided a short tubular auxiliary member having an inner peripheral surface which is bent in an uneven shape in the axial direction and provided with a pin projecting outward from an outer peripheral surface at one end. On the end of the cylindrical or cylindrical core mold, the mold is formed by mounting the pin so that the end provided with the pin is directed toward the edge of the cylindrical or cylindrical core mold, and the mold is formed. A curable resin-impregnated reinforcing fiber is wound around a pin to form a fiber-reinforced resin layer by hooking the pin, the resin is cured, and an auxiliary member is integrally joined to an end of the cured fiber-reinforced resin layer, Thereafter, a cylindrical or columnar core die is removed, and a portion of the auxiliary member provided with the pins is cut and removed to produce a fiber-reinforced resin laminate.

【0008】 「軸方向に凹凸状に曲折する内周面を有す
る」とは、例えば、製品の端部の内周面に、パッキング
や抜け止めを装着するような軸方向における異径部があ
り、その内周面形状に対応した軸方向の凹凸面を有する
ことをいう。
The phrase “having an inner peripheral surface that is bent in an uneven shape in the axial direction” means, for example, that an inner peripheral surface of an end portion of a product has a different-diameter portion in the axial direction such that a packing or a retaining member is attached. Means having an uneven surface in the axial direction corresponding to the inner peripheral surface shape.

【0009】 円筒状もしくは円柱状芯型は、その実質的
対称軸に垂直な断面が、真円である場合は勿論、長円、
楕円又は所謂角パイプの如く正方形の四隅に小さなRを
設けたもの等を包含するものである。
[0009] The cylindrical or columnar core type is not limited to the case where the cross section perpendicular to the substantial axis of symmetry is a perfect circle, as well as an ellipse,
An ellipse or a so-called square pipe, in which small Rs are provided at four corners of a square, are included.

【0010】 補助部材の材料としては、例えば、鉄、ス
テンレス、アルミニウム等の金属、ポリ塩化ビニル、ポ
リエチレン、ポリプロピレン、ポリカーボネート、アク
リルニトリル─ブタジエン─スチレン共重合体等の熱可
塑性樹脂、不飽和ポリエステル樹脂、エポキシ樹脂、フ
ェノール樹脂等の熱硬化性樹脂等が使用される。樹脂中
には、炭酸カルシウム、水酸化カルシウム等のフィラー
や、ガラス繊維、炭素繊維の強化繊維を添加してもよ
い。特に、ポリ塩化ビニルが強度もあり安価な点で多用
される。
[0010] As the material of the auxiliary member, for example, iron, stainless steel, metals such as aluminum, polyvinyl chloride, polyethylene, polypropylene, polycarbonate, thermoplastic resins such as acrylonitrile ─ butadiene ─ styrene copolymer, an unsaturated polyester resin Thermosetting resins such as epoxy resin, phenol resin and the like are used. Fillers such as calcium carbonate and calcium hydroxide, and reinforcing fibers such as glass fibers and carbon fibers may be added to the resin. In particular, polyvinyl chloride is frequently used because it is strong and inexpensive.

【0011】 補助部材の製作方法としては、材料が金属
の場合には、切削加工法、鋳造加工法等が使用され、材
料が熱可塑性樹脂の場合には、射出成形法、真空成形法
等が使用され、材料が熱硬化性樹脂の場合には、レジン
インジェクション法等が使用され、材料が樹脂中に強化
繊維を添加したものの場合には、SMCプレス法、BM
Cプレス法、スタンパブルシートのプレス成形法等が使
用される。
When the material is metal, a cutting method, a casting method, or the like is used as a method of manufacturing the auxiliary member. When the material is a thermoplastic resin, an injection molding method, a vacuum molding method, or the like is used. When the material is a thermosetting resin, a resin injection method or the like is used. When the material is a resin in which reinforcing fibers are added, a SMC press method, a BM
A C press method, a press forming method of a stampable sheet, and the like are used.

【0012】 本発明における積層体としては、例えば、
管継手、管、プロペラシャフト等が挙げられる。
[0012] As the laminate of the present invention, for example,
Fittings, pipes, propeller shafts, and the like are included.

【0013】[0013]

【作用】 本願発明 は、軸方向に凹凸状に曲折する内周面
を有し一端部の外周面の外側方に突出するピンが設けら
れた短管状の補助部材を、円筒状もしくは円柱状芯型の
端部上に、ピンが設けられた端部を円筒状もしくは円柱
状芯型の端縁の方に向けるようにして装着して成形型を
形成し、その成形型の周りに硬化性樹脂含浸強化繊維を
ピンに引っ掛けるようにして巻き付けて繊維強化樹脂層
を形成し、樹脂を硬化させ、硬化した繊維強化樹脂層の
端部に補助部材を一体的に接合せしめ、その後円筒状も
しくは円柱状芯型を抜去し、補助部材のピンが設けられ
た部分を切断して除去することにより、成形型の周りに
硬化性樹脂含浸強化繊維を均一に巻き付けることができ
て、強度や耐圧性に優れた繊維強化樹脂層を形成するこ
とでき、成形型の面倒な脱型作業を要することなく、内
径寸法精度や表面平滑性や耐ウィーピング性の優れた状
態に形成することができ、又、脱型工程を簡素化でき
る。これにより、強度、耐圧性に優れた、信頼性の高い
繊維強化樹脂積層体を生産性よく且つ安価に製造するこ
とができる。
According to the present invention , a short tube-shaped auxiliary member having an inner peripheral surface bent in an uneven shape in the axial direction and provided with a pin protruding outwardly from the outer peripheral surface at one end is provided with a cylindrical or cylindrical core. On the end of the mold, a mold is formed by mounting the pin so that the end provided with the pin faces the edge of the cylindrical or cylindrical core mold, and a curable resin is formed around the mold. The impregnated reinforcing fiber is wound around a pin to form a fiber reinforced resin layer, and the resin is cured.The auxiliary member is integrally joined to the end of the cured fiber reinforced resin layer. By removing the core mold and cutting and removing the part where the pin of the auxiliary member is provided, the curable resin-impregnated reinforcing fiber can be uniformly wound around the mold, and has excellent strength and pressure resistance Can form a fiber-reinforced resin layer Without requiring tedious demolding operations, it can be formed in excellent condition having an inner diameter dimensional accuracy and surface smoothness and resistance to weeping resistance, also possible to simplify the demolding process. Thereby, a highly reliable fiber-reinforced resin laminate having excellent strength and pressure resistance can be manufactured with good productivity and at low cost.

【0014】[0014]

【実施例】以下、本発明を実施例により、図面を参照に
しながら具体的に説明する。図1は、本発明に使用する
フィードアイの作動を示す説明図である。フィードアイ
2は、成形型1の軸に沿うX軸方向の移動作動、成形型
1に近接離反するZ軸方向の移動作動及び上下方向のY
軸方向の移動作動の三次元的移動作動と、成形型1の回
転軸を含む水平面上で回動するVで示される回動作動及
び硬化性樹脂含浸強化繊維の繰り出し方向を回転軸とし
て回転するUで示される回転作動が可能とされている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail with reference to the drawings by way of embodiments. FIG. 1 is an explanatory diagram showing the operation of the feed eye used in the present invention. The feed eye 2 moves in the X-axis direction along the axis of the mold 1, moves in the Z-axis direction approaching and moving away from the mold 1, and moves in the vertical direction.
The three-dimensional movement operation of the axial movement operation, the rotation operation indicated by V that rotates on a horizontal plane including the rotation axis of the molding die 1, and the rotation is performed with the feeding direction of the hardening resin impregnated reinforcing fiber as the rotation axis. The rotation operation indicated by U is enabled.

【0015】 図2は、本発明の実施例であるソケット型
の繊維強化樹脂積層管継手を成形するために用いる成形
型の一例を示す断面図である。成形型1は、円筒状もし
くは円柱状芯型11とその上に装着される補助部材12
とからなる。円筒状もしくは円柱状芯型11は、円筒状
もしくは円柱状の芯型本体部111と、ピン台112と
からなる。尚、図2においては一方の端部の状態のみを
示すが、他方の端部の状態は同じであるので省略する。
FIG . 2 is a sectional view showing an example of a molding die used for molding a socket type fiber reinforced resin laminated pipe joint according to an embodiment of the present invention. The mold 1 includes a cylindrical or cylindrical core mold 11 and an auxiliary member 12 mounted thereon.
Consists of The cylindrical or cylindrical core mold 11 includes a cylindrical or cylindrical core body 111 and a pin base 112. In FIG. 2, only the state of one end is shown, but the state of the other end is the same and will not be described.

【0016】 芯型本体部111には、その端部内方に、
環状の端面板111aが設けられており、端面板111
aの中心点から所定長だけ離れた2箇所に、回転機の回
転軸を挿通して、周方向に回転するための挿通孔111
bが設けられている。
The core-shaped main body 111 has, at its inner end,
An annular end plate 111a is provided.
insertion holes 111 for rotating the rotating shaft of the rotating machine at two locations separated by a predetermined length from the center point of
b is provided.

【0017】 ピン台112には、円盤状のピン台本体1
12aの外周縁に、芯型本体部111とは逆方向に平行
に延びる鍔部112bが設けられ、鍔部112bの外周
面に外側方に突出するようにピン112cが設けられて
いる。ピン台本体112aには中心点から所定長だけ離
れた2箇所に、回転機の回転軸を挿通して、周方向に回
転するための挿通孔112dが設けられている。
The pin base 112 has a disk-shaped pin base main body 1.
A flange 112b is provided on the outer peripheral edge of the flange 12a so as to extend in a direction opposite to the core body 111, and a pin 112c is provided on the outer peripheral surface of the flange 112b so as to protrude outward. The pin base main body 112a is provided with insertion holes 112d at two locations separated from the center point by a predetermined length for inserting the rotation shaft of the rotating machine and rotating in the circumferential direction.

【0018】 ピン台112の芯型本体部111側の面に
は、短管状の補助部材装着部113が設けられている。
補助部材装着部113は、芯型本体部111の中央側が
平行面部113aとされ、平行面部113aの先端内方
に輪環状の先端面板113bが設けられ、先端面板11
3bの内径は芯型本体部111の外径とほぼ同じとされ
ている。ピン台112への連結部付近に、周方向に沿っ
てカット用溝部113cが設けられ、平行管部113a
とカット用溝部113cとの間に外方に突出する突出板
部113dが設けられている。
A short tubular auxiliary member mounting portion 113 is provided on a surface of the pin base 112 on the side of the core main body 111.
The auxiliary member mounting portion 113 has a parallel surface portion 113a on the center side of the core body 111, and a ring-shaped front surface plate 113b provided inside the front end of the parallel surface portion 113a.
The inner diameter of 3b is substantially the same as the outer diameter of the core type main body 111. A cutting groove 113c is provided in the vicinity of a connection portion to the pin base 112 along the circumferential direction, and a parallel tube portion 113a is provided.
A protruding plate portion 113d protruding outward is provided between the groove 113c and the cutting groove 113c.

【0019】 補助部材12は、ポリ塩化ビニルからなる
短管状のものであり、軸方向に凹凸状に曲折する内周面
を有している。補助部材12には、内周面に周方向に沿
ってパッキング装着用凹溝121と抜け防止リング装着
用凹溝122が設けられ、凹溝121,122の両側が
軸方向に平行に延びる平行面部123とされ、凹溝12
2側の端部に径方向に窄まる傾斜面部124が設けられ
て、内周面及び外周面が軸方向に沿って凹凸面とされて
いる。平行面部123の内径は、円筒状もしくは円柱状
芯型11の補助部材装着部113の外径とほぼ同じ径と
されている。
The auxiliary member 12 is a short tube made of polyvinyl chloride, and has an inner peripheral surface which is bent in an axially uneven shape. The auxiliary member 12 is provided with a groove 121 for mounting a packing and a groove 122 for mounting a retaining ring along the circumferential direction on the inner peripheral surface, and both sides of the grooves 121 and 122 extend parallel to the axial direction. 123 and the groove 12
An inclined surface portion 124 narrowing in the radial direction is provided at the end on the second side, and the inner peripheral surface and the outer peripheral surface are uneven surfaces along the axial direction. The inner diameter of the parallel surface portion 123 is substantially the same as the outer diameter of the auxiliary member mounting portion 113 of the cylindrical or cylindrical core mold 11.

【0020】 この補助部材12は、図3に示す如き工程
により、ポリ塩化ビニルプレートを用いて真空成形法に
より短管状に成形することにより得ることができる。ま
ず、図3(a)に示す如く、厚さ3.0mmのポリ塩化
ビニルプレート(管中プラスチック社製:商品名「カイ
ダック」)31を準備する。図3(b)は補助部材成形
用の金型32であり、成形すべき補助部材12の内周面
形状に対応する外面形状を備えおり、その表面には空気
を真空吸引するための0.5〜1mmの直径の細孔が多
数設けられている。
[0020] The auxiliary member 12 can be obtained by the process as shown in FIG. 3, formed into the short tubular by vacuum forming using a polyvinyl chloride plate. First, as shown in FIG. 3 (a), a polyvinyl chloride plate 31 (manufactured by Kanchu Plastics Co., Ltd., trade name: “Kaidak”) 31 having a thickness of 3.0 mm is prepared. FIG. 3B shows a mold 32 for molding the auxiliary member, which has an outer surface shape corresponding to the inner peripheral surface shape of the auxiliary member 12 to be molded. Many pores having a diameter of 5 to 1 mm are provided.

【0021】 金型32は、図3(c)に示す如く、管状
体が軸方向に平行な二本の割れ目が入れられて4個の型
片321,322,323,324に分割されている。
そして、2個の型片321、322を矢印にて示す如く
径方向の内側に移動させるようにして脱型した後、残り
の型片323,324を径方向の内側に移動させて脱型
ができるようにされている。
As shown in FIG. 3 (c), the mold 32 is divided into four mold pieces 321, 322, 323 and 324 with two splits parallel to the axial direction. .
Then, after removing the two mold pieces 321 and 322 by moving them inward in the radial direction as shown by the arrows, the remaining mold pieces 323 and 324 are moved inward in the radial direction to remove the mold. Have been able to.

【0022】 図3(d)に示す如く、プレート31を電
熱ヒーター33により両面から加熱し、図3(e)に示
す如く、軟化したプレート31を金型32に押し当て、
図3(f)に示す如く、金型32の細孔から空気を真空
吸引して、プレート31を金型32に沿わせるようにし
て真空成形する。しかる後に、図3(g)に示す如く、
両端の矢印部をカットして、図2中に示す補助部材12
を得る。
As shown in FIG . 3D, the plate 31 is heated from both sides by an electric heater 33, and the softened plate 31 is pressed against a mold 32 as shown in FIG.
As shown in FIG. 3 (f), air is suctioned from the pores of the mold 32 by vacuum, and the plate 31 is vacuum-formed along the mold 32. Thereafter, as shown in FIG.
The arrows at both ends are cut so that the auxiliary member 12 shown in FIG.
Get.

【0023】 成形型1の組立ては次の如くして行う(図
2参照)。芯型本体部111の外周面上に補助部材12
を嵌めておいて、芯型本体部111の端部に、その端面
に連結された補助部材装着部113を挿入する如くして
ピン台112を当接し、芯型本体部11の挿通孔112
dとピン台112の挿通孔112dを相対向させて、図
2に示す如き成形型1を得る。
The assembly of the mold 1 is carried out as follows (see Figure 2). The auxiliary member 12 is provided on the outer peripheral surface of the core-type main body 111.
The pin base 112 is brought into contact with the end of the core main body 111 so that the auxiliary member mounting portion 113 connected to the end face is inserted into the end of the core main body 111.
The molding die 1 as shown in FIG. 2 is obtained by making d and the insertion hole 112d of the pin base 112 face each other.

【0024】 次に、図4(a)に示す如き、周方向に回
転する回転軸41を有する回転機4を用い、図4(b)
に示す如く、回転軸41を芯型本体部111の挿通孔1
11bとピン台112の挿通孔112dに挿入し、ピン
台112を芯型本体部111に押しつけた。
Next, as shown in FIG. 4 (a), the rotating machine 4 used with a rotary shaft 41 that rotates in the circumferential direction, and FIG. 4 (b)
As shown in the figure, the rotating shaft 41 is inserted into the insertion hole 1 of the core type main body 111.
11b was inserted into the insertion hole 112d of the pin base 112, and the pin base 112 was pressed against the core body 111.

【0025】 特に図示しないが、図4に示す回転機4に
より、成形型1を周方向に回転させて、図1に示すフィ
ードアイ2により、成形型1の周りにピン112cに硬
化性樹脂含浸強化繊維を引っ掛けるようにして巻き付け
た後、樹脂を加熱ヒーターにより加熱硬化して、図5に
示す如く、成形型1の周りに、硬化した繊維強化樹脂層
5を形成した。
Although not specifically shown, the mold 1 is rotated in the circumferential direction by the rotating machine 4 shown in FIG. 4, and the pin 112c is impregnated around the mold 1 by the feed eye 2 shown in FIG. After the reinforcing fibers were wound so as to be hooked, the resin was heated and cured by a heater to form a cured fiber-reinforced resin layer 5 around the mold 1 as shown in FIG.

【0026】 硬化した繊維強化樹脂層5は、芯型本体部
111の中央部の外周面と、円筒状もしくは円柱状芯型
11の端部の補助部材装着部113上に装着された補助
部材12の外周面と、ピン台112の鍔部112aの外
周面とにまたがって設けられ、繊維強化樹脂層5と補助
部材12の外周面とは一体的に接合されている。
The cured fiber-reinforced resin layer 5 is provided with an outer peripheral surface at the center of the core main body 111 and an auxiliary member 12 mounted on the auxiliary member mounting portion 113 at the end of the cylindrical or columnar core 11. And the outer peripheral surface of the flange 112a of the pin base 112, and the fiber reinforced resin layer 5 and the outer peripheral surface of the auxiliary member 12 are integrally joined.

【0027】 図5中の矢印で示す部分を、カット用溝部
113cの周りでカットする。ピン台112及び補助部
材装着部113を抜去し、次いで芯型本体部111を抜
去し、図6に示す如く、繊維強化樹脂層5の端部内に補
助部材12が一体的に設けられ、内周面に周方向に沿っ
てパッキング装着用凹溝121と抜け防止リング装着用
凹溝122が設けられたソケット型の繊維強化樹脂積層
管継手を得た。
The portion indicated by the arrow in FIG . 5 is cut around the cutting groove 113c. The pin base 112 and the auxiliary member mounting portion 113 are removed, and then the core main body portion 111 is removed. As shown in FIG. 6, the auxiliary member 12 is integrally provided in the end of the fiber reinforced resin layer 5, and A socket-type fiber reinforced resin laminated pipe joint having a groove 121 for mounting a packing and a groove 122 for mounting a slip-off prevention ring provided on the surface thereof along the circumferential direction was obtained.

【0028】 図7は、本発明の実施例である繊維強化樹
脂積層プロペラシャフトを成形するために用いる成形型
の一例を示す断面図である。成形型6は、円筒状もしく
は円柱状芯型61とその上に装着される補助部材62と
からなる。円筒状もしくは円柱状芯型61は、円筒状も
しくは円柱状の芯型本体部111と、ピン台612とか
らなる。芯型本体部111は上記に説明したものと同じ
ものであるので、詳細な説明は省略する。尚、図7にお
いても一方の端部の状態のみを示すが、他方の端部の状
態は同じであるので省略する。
FIG . 7 is a sectional view showing an example of a molding die used for molding a fiber-reinforced resin laminated propeller shaft according to an embodiment of the present invention. The molding die 6 includes a cylindrical or cylindrical core die 61 and an auxiliary member 62 mounted thereon. The cylindrical or columnar core die 61 includes a cylindrical or columnar core main body 111 and a pin base 612. Since the core body 111 is the same as that described above, a detailed description thereof will be omitted. FIG. 7 also shows only the state of one end, but the state of the other end is the same and will not be described.

【0029】 ピン台612には、円盤状のピン台本体6
12aの外周縁に、芯型本体部111とは逆方向に平行
に延びる鍔部612bが設けられ、鍔部112bの外周
面に外側方に突出するようにピン612cが設けられて
いる。ピン台本体612aの中心点から所定長だけ離れ
た2箇所に、回転機の回転軸を挿通して、周方向に回転
するための挿通孔612dが設けられている。
The pin base 612 has a disk-shaped pin base body 6.
A flange 612b extending parallel to the direction opposite to the core body 111 is provided on the outer peripheral edge of the flange 12a, and a pin 612c is provided on the outer peripheral surface of the flange 112b so as to protrude outward. At two locations separated by a predetermined length from the center point of the pin base body 612a, there are provided insertion holes 612d for inserting the rotation shaft of the rotating machine and rotating in the circumferential direction.

【0030】 ピン台612の芯型本体部111側の面に
は、テーパー短管状の補助部材を装着する補助部材装着
部613が設けられている。補助部材装着部613は、
その外周面が芯型本体部111の中央側が小径となるテ
ーパー部613aとされ、テーパー部613aの先端内
方に輪環状の先端面板613bが設けられ、先端面板6
13bの内径は芯型本体部111の外径とほぼ同じとさ
れている。ピン台612への連結部付近に、周方向に沿
ってカット用溝部613cが設けられている。
[0030] surface of the core-type main body 111 side of the pin base 612, the auxiliary member mounting portion 613 for mounting the taper short tubular auxiliary member. The auxiliary member mounting portion 613 includes:
The outer peripheral surface is a tapered portion 613a having a small diameter on the center side of the core-shaped main body 111, and a ring-shaped distal face plate 613b is provided inside the distal end of the tapered portion 613a.
The inner diameter of 13b is substantially the same as the outer diameter of the core-type main body 111. A cutting groove 613c is provided in the vicinity of the connection to the pin base 612 along the circumferential direction.

【0031】 補助部材62は、ポリ塩化ビニルからな
り、円筒状もしくは円柱状の芯型本体部111の外径と
略同径の内径を有する一端部から次第に大径となるテー
パー短管状の一体物からなるものである。この補助部材
62の内周面は、一端部から次第に大径となるテーパー
部を有することが必要であるが、外周面は必ずしもその
必要はない。又、図3に示す如き工程に準じてポリ塩化
ビニルプレートを用いて真空成形により成形してもよい
し、又、適当な熱可塑性樹脂を用いて、射出成形により
成形してもよい。
The auxiliary member 62 is made of polyvinyl chloride, and is a tapered short tubular integral member whose diameter gradually increases from one end having an inner diameter substantially the same as the outer diameter of the cylindrical or columnar core body 111. It consists of The inner peripheral surface of the auxiliary member 62 needs to have a tapered portion whose diameter gradually increases from one end, but the outer peripheral surface is not necessarily required. Further, it may be molded by vacuum molding using a polyvinyl chloride plate according to the process as shown in FIG. 3, or may be molded by injection molding using an appropriate thermoplastic resin.

【0032】 成形型6の組立ては次の如くして行う(図
7参照)。ピン台612の補助部材装着部613に、補
助部材62の大径の方の端部を嵌めておいて、芯型本体
部111に端部に、補助部材62の小径の方の端部を嵌
めていき、図7に示す如く、芯型本体部111の端面板
111aにピン台612のピン台本体部612aを当接
し、芯型本体部111の挿通孔111bとピン台612
の挿通孔612dを相対向させて、図7に示す如き成形
型6を得る。
The assembly of the mold 6 is performed by as follows (see Figure 7). The large-diameter end of the auxiliary member 62 is fitted to the auxiliary-member mounting portion 613 of the pin base 612, and the small-diameter end of the auxiliary member 62 is fitted to the end of the core body 111. 7, the pin base body 612a of the pin base 612 is brought into contact with the end plate 111a of the core main body 111, and the insertion hole 111b of the core main body 111 is inserted into the pin base 612.
The molding die 6 as shown in FIG. 7 is obtained by making the insertion holes 612d face each other.

【0033】 特に図示しないが、図4に示す回転機4に
より、図7に示す成形型6を周方向に回転させて、図1
に示すフィードアイ2により、成形型6の周りにピン6
12cに硬化性樹脂含浸強化繊維を引っ掛けるようにし
て巻き付けた後、樹脂を加熱ヒーターにより加熱硬化し
て、図8に示す如く、成形型6の周りに、硬化した繊維
強化樹脂層7を形成した。硬化した繊維強化樹脂層7の
端部の内方には補助部材62が一体的に接合されてい
る。
Although not specifically shown, the molding machine 6 shown in FIG. 7 is rotated in the circumferential direction by the rotating machine 4 shown in FIG.
A pin 6 is formed around the mold 6 by the feed eye 2 shown in FIG.
After the curable resin-impregnated reinforcing fiber was wound around 12c so as to be hooked, the resin was heated and cured by a heater to form a cured fiber-reinforced resin layer 7 around the mold 6 as shown in FIG. . An auxiliary member 62 is integrally joined inside the end of the cured fiber reinforced resin layer 7.

【0034】 図8の矢印で示す部分をカットし、ピン台
612と芯型本体部111を抜去し、図9に示す如く、
繊維強化樹脂層7の端部内に補助部材62が一体的に接
合され、端部の内周面に周方向に沿ってヨークを当接し
て駆動を伝達するテーパー面が設けられた繊維強化樹脂
積層プロペラシャフトを得た。
The portion indicated by the arrow in FIG . 8 is cut, and the pin base 612 and the core-shaped main body 111 are removed, and as shown in FIG.
An auxiliary member 62 is integrally joined to the end of the fiber reinforced resin layer 7, and a tapered surface for transmitting a drive by contacting a yoke along the circumferential direction is provided on the inner peripheral surface of the end. A propeller shaft was obtained.

【0035】 図10は、本発明の実施例であるチーズ型
の繊維強化樹脂積層管継手を成形するために用いる成形
型の一管接続部を示す断面図である。成形型8は、円筒
状もしくは円柱状の芯型本体部111とその上に装着さ
れる補助部材82とからなる。芯型本体部111は、上
記と同じものなので詳細な説明は省略する。尚、図10
においてはチーズ状の成形型8の一管接続部の状態のみ
を示すが、他の管接続部の状態は同じであるので省略す
る。
FIG . 10 is a cross-sectional view showing a one-tube connecting portion of a molding die used for molding a cheese-type fiber-reinforced resin laminated pipe joint according to an embodiment of the present invention. The molding die 8 comprises a cylindrical or columnar core body 111 and an auxiliary member 82 mounted thereon. Since the core type main body 111 is the same as the above, detailed description is omitted. Note that FIG.
In the figure, only the state of one pipe connection part of the cheese-like molding die 8 is shown, but the state of the other pipe connection parts is the same and will not be described.

【0036】 補助部材82は、ポリ塩化ビニルからなる
短管状のものであり、軸方向に凹凸状に曲折する内周面
を有している。補助部材82には、内周面に周方向に沿
ってパッキング装着用凹溝821と抜け防止リング装着
用凹溝822が設けられ、パッキング装着用凹溝821
及び抜け止めリング装着用凹溝822の両側が軸方向に
平行に延びる平行面部823,824とされている。
The auxiliary member 82 is a short tube made of polyvinyl chloride, and has an inner peripheral surface which is bent in an axial direction into an uneven shape. The auxiliary member 82 is provided with a groove 821 for mounting a packing and a groove 822 for mounting a stopper ring along the circumferential direction on the inner peripheral surface, and the groove 821 for mounting a packing.
Also, both sides of the retaining ring mounting groove 822 are parallel plane portions 823 and 824 extending in parallel with the axial direction.

【0037】 抜け止めリング装着用凹溝824の側方に
延びる平行面部824の端縁に径方向に窄まる傾斜面部
825が設けられており、傾斜面部825の先端部の内
径は、芯型本体部111の外径と同一とされている。
The retaining inclined surface 825 narrowed in the radial direction to the edge of the parallel surface portion 824 extending laterally of the ring mounting groove 824 is provided with, the inner diameter of the distal end portion of the inclined surface portion 825, the core mold body It is the same as the outer diameter of the portion 111.

【0038】 パッキング装着用凹溝821の側方に延び
る平行面部823の端縁の内方に輪環状の端面板826
が設けられている。平行面部823の外周面であって、
内方に端面板826が設けられた位置に、外側方に突出
する多数のピン827が一定間隔毎に設けられている。
An annular end plate 826 is provided inside the edge of the parallel surface portion 823 extending to the side of the packing mounting groove 821.
Is provided. An outer peripheral surface of the parallel surface portion 823,
At the position where the end face plate 826 is provided inward, a large number of pins 827 projecting outward are provided at regular intervals.

【0039】 この補助部材82は、適当な熱可塑性樹脂
を射出成形することにより得ることができる。
[0039] The auxiliary member 82 can be obtained by injection molding a suitable thermoplastic resin.

【0040】 成形型8の組立ては次の如くして行う(図
10参照)。芯型本体部111の外周面上に補助部材8
2を、ピン827が設けられた方の端部を芯型本体部1
11の端縁に向けるようにして嵌め、両者間を粘着テー
プ等で固定して、図10に示す如き成形型8を得る。
The assembly of the mold 8 is performed by as follows (see Figure 10). The auxiliary member 8 is provided on the outer peripheral surface of the core-type main body 111.
2 and the end on which the pin 827 is provided is
11 and fitted with an adhesive tape or the like to obtain a molding die 8 as shown in FIG.

【0041】 特に図示しないが、図4に示す如き回転機
4を用い、図10に示す成形型8を周方向に回転させ
て、成形型8の周りに硬化性樹脂含浸強化繊維をピン8
27に引っ掛けるようにして巻き付けた後、樹脂を加熱
ヒーターにより加熱硬化して、図11に示す如く、成形
型8の周りに、硬化した繊維強化樹脂層9を形成した。
硬化した繊維強化樹脂層9の端部の内方には補助部材8
2が一体的に接合されている。
Although not particularly shown, the molding die 8 shown in FIG. 10 is rotated in the circumferential direction using a rotating machine 4 as shown in FIG.
After being wound around hook 27, the resin was heated and hardened by a heater to form a hardened fiber reinforced resin layer 9 around the mold 8 as shown in FIG.
An auxiliary member 8 is provided inside the end of the cured fiber reinforced resin layer 9.
2 are integrally joined.

【0042】 図11中の矢印で示す部分でカットする。
芯型本体部111を抜去し、図12に示す如く、繊維強
化樹脂層9の端部内に補助部材82が一体的に設けら
れ、内周面に周方向に沿ってパッキング装着用凹溝82
1と抜け防止リング装着用凹溝822が設けられたソケ
ット型の繊維強化樹脂積層管継手を得た。
The cutting is performed at the portion indicated by the arrow in FIG.
12, the auxiliary member 82 is integrally provided in the end of the fiber reinforced resin layer 9, and the packing mounting groove 82 is formed on the inner peripheral surface along the circumferential direction.
1 and a socket-type fiber reinforced resin laminated pipe joint provided with a groove 822 for mounting a drop-off prevention ring.

【0043】 補助部材は、上記のものに限定されず、図
13に示す如く、軸方向に凹凸状に曲折する内周面を有
している凹凸部材83と短管状のスペーサー84とピン
付きリング85を組み合わせたものでもよい。又、図1
4に示す如く、軸方向に凹凸状に屈曲する凹凸部材86
とスペーサー87と、凹凸部材86とスペーサー87間
に装着された多数のピン部材88を組み合わせたもので
あってもよい。
The auxiliary member is not limited to the above, and as shown in FIG. 13, an uneven member 83 having an inner peripheral surface bent in an uneven shape in the axial direction, a short tubular spacer 84, and a ring with a pin. 85 may be combined. Also, FIG.
As shown in FIG. 4, an uneven member 86 which is bent in an uneven shape in the axial direction.
And a plurality of pin members 88 mounted between the uneven member 86 and the spacer 87.

【0044】 実施例1 図2に示す成形型1を用い、図1に示すフィードアイ
2、図4に示す如き巻回機4をを用いて、図5に示す如
く、成形型1の周りに硬化した繊維強化樹脂層5を形成
し、樹脂を硬化した後脱型を行って、φ150のソケッ
ト型の繊維強化樹脂製管継手の製造を行った。
[0044] Using the mold 1 shown in Embodiment 1 FIG. 2, a feed eye 2 shown in FIG. 1, using a winding machine 4 as shown in FIG. 4, as shown in FIG. 5, around the mold 1 The cured fiber-reinforced resin layer 5 was formed, and after the resin was cured, the mold was released, and a φ150 socket-type fiber-reinforced resin pipe joint was manufactured.

【0045】 尚、補助部材12として、厚さ3.0mm
のポリ塩化ビニルプレート(筒中プラスチック社製:商
品名「カイダック」)を用いて、図3の工程により真空
成形したものを用いた。芯型本体部111としては、F
RPの上に厚さ0.5mmのメッキを施したものを用い
た。
The auxiliary member 12 has a thickness of 3.0 mm.
The product was vacuum-formed by the process shown in FIG. 3 using a polyvinyl chloride plate (manufactured by Tsutsunaka Plastics Co., Ltd., trade name: “Kaidak”). As the core type main body 111, F
A RP plated with 0.5 mm thickness was used.

【0046】 樹脂組成として、不飽和ポリエステル樹脂
(日本触媒化学工業社製:商品名「N─150AL」)
100重量部と、硬化剤(化薬アクゾ社製:商品名「カ
ヤメックM」)0.6重量部と、促進剤(コバルト6%
含有)0.5重量部との混合物を用いた。樹脂含浸強化
繊維中の強化繊維として、ガラスロービング(番手22
30g/km)10本を用いた。フィードアイ2に、
X,Y,Zの3軸の作動を行わせた。ヒーターによる樹
脂の硬化は、50℃で2時間行った。
As the resin composition, an unsaturated polyester resin (manufactured by Nippon Shokubai Chemical Co., Ltd .: trade name "N @ 150AL")
100 parts by weight, 0.6 parts by weight of a curing agent (trade name “Kayamec M” manufactured by Kayaku Akzo Co., Ltd.), and an accelerator (6% cobalt)
(Content) of 0.5 parts by weight. As a reinforcing fiber in the resin-impregnated reinforcing fiber, glass roving (count 22
30 g / km) were used. In Feed Eye 2,
The operation of three axes of X, Y and Z was performed. Curing of the resin by the heater was performed at 50 ° C. for 2 hours.

【0047】 得られたソケット型の繊維強化樹脂製管継
手は、管接続部の内径寸法精度が優れたものであり、管
接続部(内径:150mm)の内径の許容差は±0.4
mmの範囲に入っており、JIS K6743の水道用
硬質塩化ビニル管継手の呼び径150mmの接合部の内
径の許容差である±0.4mmの範囲に十分おさまる±
0.3mmであった。
The obtained socket-type fiber reinforced resin pipe joint has an excellent dimensional accuracy of the inner diameter of the pipe connection, and the tolerance of the inner diameter of the pipe connection (inner diameter: 150 mm) is ± 0.4.
within the range of ± 0.4 mm, which is the tolerance of the inner diameter of the joint having a nominal diameter of 150 mm of the rigid polyvinyl chloride pipe fitting for water supply according to JIS K6743.
0.3 mm.

【0048】 又、ソケット型の繊維強化樹脂製管継手に
管を配管して、静水圧破壊試験及び内圧疲労試験(脈動
圧:0〜20kg/cm2 )を行った。その結果、水漏
れ及び破壊を起こすことのない耐圧強度は、60kg/
cm2以上であり、水漏れ及び破壊を起こすことのない
内圧疲労強度は、水道用規格である2万回を大幅に上回
る3万回以上であった。
Further , a pipe was connected to a socket-type fiber reinforced resin pipe joint, and a hydrostatic pressure fracture test and an internal pressure fatigue test (pulsation pressure: 0 to 20 kg / cm 2 ) were performed. As a result, the pressure resistance without causing water leakage and destruction is 60 kg /
cm 2 or more, and the internal pressure fatigue strength without causing water leakage and destruction was 30,000 times or more, which greatly exceeded the water supply standard of 20,000 times.

【0049】 尚、静水圧破壊試験及び内圧疲労強度は、
図15に示す如く、本発明により得られたソケット型の
繊維強化樹脂製管継手10の各管接続部101に、テー
パー受口付き短管102をパッキング及び抜け止めを介
して接続し、そのテーパー受口にパッキングを介してテ
ーパーフランジ103にて蓋することにより行った。静
水圧破壊試験は、水圧を上げていったときの水漏れ及び
破壊を観察することにより行い、又、内圧疲労試験は、
0→20→0kg/cm2 の脈動圧を5秒/1サイクル
にて繰り返し負荷することによる漏水状態を観察するこ
とにより行った。
The hydrostatic pressure fracture test and the internal pressure fatigue strength were as follows:
As shown in FIG. 15, a short pipe 102 having a tapered socket is connected to each pipe connecting portion 101 of the socket-type fiber-reinforced resin pipe joint 10 obtained by the present invention through packing and a stopper, and the taper is formed. This was performed by covering the receiving port with a tapered flange 103 via packing. Hydrostatic pressure fracture test is performed by observing water leakage and destruction when increasing water pressure, and internal pressure fatigue test is
The test was performed by observing the state of water leakage caused by repeatedly applying a pulsating pressure of 0 → 20 → 0 kg / cm 2 at 5 seconds / 1 cycle.

【0050】 実施例2 ソケット型の成形型の代わりに、チーズ型の成形型を用
いたこと以外は、実施例と同様にしてφ150─75の
チーズ型の繊維強化樹脂製管継手(主管部内径:150
mm、枝管部内径:75mm)の製造を行った。得られ
たチーズ型の繊維強化樹脂製管継手は、管接続部の内径
寸法精度が優れたものであり、主管部の管接続部(内
径:150mm)の内径の許容差は±0.4mmの範囲
に十分おさまる±0.3mmであった。
[0050] Instead of the mold of Example 2 socket, except for using the mold cheese type, examples and Similarly φ150─75 cheese fiber reinforced resin pipe fittings (main pipe inner diameter : 150
mm, inner diameter of the branch pipe: 75 mm). The obtained cheese-type fiber reinforced resin pipe joint has excellent inner diameter dimensional accuracy of the pipe connection part, and the tolerance of the inner diameter of the pipe connection part (inner diameter: 150 mm) of the main pipe part is ± 0.4 mm. It was ± 0.3 mm, which was well within the range.

【0051】 又、チーズ型の繊維強化樹脂製管継手に管
を配管して、静水圧破壊試験を行った。その結果、水漏
れ及び破壊を起こすことのない耐圧強度は、60kg/
cm2 以上であった。又、チーズ型の繊維強化樹脂製管
継手に管を配管して、内圧疲労試験(脈動圧:0〜20
kg/cm2 )を行った。その結果、水道用規格である
2万回を大幅に上回る3万回以上であった。
Further , a pipe was connected to a cheese type fiber reinforced resin pipe joint, and a hydrostatic pressure fracture test was performed. As a result, the pressure resistance without causing water leakage and destruction is 60 kg /
cm 2 or more. In addition, a pipe is connected to a cheese-type fiber reinforced resin pipe joint and subjected to an internal pressure fatigue test (pulsating pressure: 0 to 20).
kg / cm 2 ). As a result, the number was 30,000 times or more, greatly exceeding the water supply standard of 20,000 times.

【0052】 実施例3 芯型本体として:FRP製のメッキを施さないものを用
いたこと、ソケット型の成形型の代わりに、チーズ型の
成形型を用いたこと以外は、実施例と同様にしてφ15
0のチーズ型の繊維強化樹脂製管継手(主管部内径:1
50mm、枝管部内径:75mm)の製造を行った。得
られたチーズ型の繊維強化樹脂製管継手は、管接続部の
内径寸法精度が優れたものであり、主管部の管接続部
(内径:150mm)の内径の許容差は±0.4mmの
範囲に十分おさまる±0.3mmであった。
[0052] Example 3-core type body: it was used not subjected to plating made of FRP, in place of the mold socket, except for using the mold cheese type, in the same manner as in Example Φ15
No. 0 cheese-type fiber reinforced resin pipe joint (main pipe inner diameter: 1
50 mm, branch pipe inner diameter: 75 mm). The obtained cheese-type fiber reinforced resin pipe joint has excellent inner diameter dimensional accuracy of the pipe connection part, and the tolerance of the inner diameter of the pipe connection part (inner diameter: 150 mm) of the main pipe part is ± 0.4 mm. It was ± 0.3 mm, which was well within the range.

【0053】 又、チーズ型の繊維強化樹脂製管継手に管
を配管して、静水圧破壊試験を行った。その結果、水漏
れ及び破壊を起こすことのない耐圧強度は、60kg/
cm2 以上であった。又、チーズ型の繊維強化樹脂製管
継手に管を配管して、内圧疲労試験(脈動圧:0〜20
kg/cm2 )を行った。その結果、水道用規格である
2万回を大幅に上回る3万回以上であった。
Further , a pipe was connected to a cheese-type fiber reinforced resin pipe joint, and a hydrostatic pressure fracture test was performed. As a result, the pressure resistance without causing water leakage and destruction is 60 kg /
cm 2 or more. In addition, a pipe is connected to a cheese-type fiber reinforced resin pipe joint and subjected to an internal pressure fatigue test (pulsating pressure: 0 to 20).
kg / cm 2 ). As a result, the number was 30,000 times or more, greatly exceeding the water supply standard of 20,000 times.

【0054】 実施例4 図7に示す成形型6を用い、図1に示すフィードアイ
2、図4に示す如き巻回機4をを用いて、図8に示す如
く、成形型6の周りへの繊維強化樹脂層7の形成、成形
型6の脱型をそれぞれ行い、繊維強化樹脂積層プロペラ
シャフトを得た。
[0054] The mold 6 used in Examples 4 7, the feed eye 2 shown in FIG. 1, using a winding machine 4 as shown in FIG. 4, as shown in FIG. 8, to around the mold 6 The formation of the fiber-reinforced resin layer 7 and the release of the mold 6 were performed to obtain a fiber-reinforced resin laminated propeller shaft.

【0055】 尚、補助部材62として、ポリプロピレン
樹脂(三井石油化学社製:商品名「J−700」)を用
いて、射出成形により成形した厚さ3mmのものを用い
た。芯型本体としては、SUS製のものを用いた。
As the auxiliary member 62, a polypropylene resin (trade name "J-700" manufactured by Mitsui Petrochemical Co., Ltd.) having a thickness of 3 mm formed by injection molding was used. A SUS body was used as the core body.

【0056】 樹脂組成として、エポキシ樹脂(チバガイ
ギー社製:商品名「LY556」)100重量部と、硬
化剤(チバガイギー社製:商品名「HY917」)0.
6重量部と、促進剤(チバガイギー社製:商品名「DY
0705」)0.5重量部との混合物を用いた。樹脂含
浸強化繊維中の強化繊維として、カーボン繊維(ペトカ
社製:商品名「HM50 12K)10本と、ガラスロ
ービング(旭ファイバーガラス社製:1150g/k
m)10本とを用いた。巻き付け角度は、カーボン繊維
を16°、ガラススービングを90°とした。フィード
アイ2に、X,Y,Zの3軸の作動を行わせた。ヒータ
ーによる樹脂の硬化は、50℃で2時間行った。
As the resin composition, 100 parts by weight of an epoxy resin (trade name “LY556” manufactured by Ciba-Geigy) and a curing agent (trade name “HY917” manufactured by Ciba-Geigy) were added.
6 parts by weight and an accelerator (manufactured by Ciba-Geigy: trade name "DY")
0705 ") was used. As reinforcing fibers in the resin-impregnated reinforcing fibers, 10 carbon fibers (trade name: HM50 12K, manufactured by Petka Corporation) and glass roving (1,150 g / k, manufactured by Asahi Fiber Glass Co., Ltd.)
m) 10 pieces were used. The winding angle was 16 ° for carbon fiber and 90 ° for glass subbing. The feed eye 2 was operated in three axes of X, Y and Z. Curing of the resin by the heater was performed at 50 ° C. for 2 hours.

【0057】 その結果、繊維強化樹脂積層プロペラシャ
フトを得た。得られた繊維強化樹脂積層プロペラシャフ
トは、ヨークを接合して動力を伝達する端部内面の傾斜
面の寸法精度が優れており、その許容差が±0.2mm
の範囲にものであった。
[0057] As a result, to obtain a fiber-reinforced resin laminate propeller shaft. The obtained fiber reinforced resin laminated propeller shaft has excellent dimensional accuracy of the inclined surface on the inner surface of the end for transmitting power by joining the yoke, and its tolerance is ± 0.2 mm.
Was in the range.

【0058】 実施例5 図10に示す成形型8を用い、図1に示すフィードアイ
2、図4に示す巻回機4を用いて、図11に示す如く、
成形型8の周りに硬化した繊維強化樹脂層9を形成し、
樹脂を硬化した後、脱型を行い、図11中の矢印で示す
部分でカットしたこと以外は実施例1と同様にしてφ1
50のソケット型の繊維強化樹脂製管継手(主管部内
径:150mm、枝管部内径:75mm)の製造を行っ
た。得られたソケット型の繊維強化樹脂製管継手は、管
接続部の内径寸法精度が優れたものであり、管接続部
(内径:150mm)の内径の許容差は±0.4mmの
範囲に十分おさまる±0.3mmであった。
[0058] using a mold 8 shown in Embodiment 5 FIG. 10, using a feed eye 2, the winding machine 4 shown in FIG. 4 shown in FIG. 1, as shown in FIG. 11,
Forming a cured fiber reinforced resin layer 9 around the mold 8,
After the resin was cured, it was released from the mold and cut in the same manner as in Example 1 except that the resin was cut at the portion indicated by the arrow in FIG.
50 socket-type fiber-reinforced resin pipe joints (main pipe inner diameter: 150 mm, branch pipe inner diameter: 75 mm) were manufactured. The obtained socket-type fiber-reinforced resin pipe joint has excellent dimensional accuracy of the inner diameter of the pipe connection part, and the tolerance of the inner diameter of the pipe connection part (inner diameter: 150 mm) is sufficiently within a range of ± 0.4 mm. It was ± 0.3 mm.

【0059】 又、ソケット型の繊維強化樹脂製管継手に
管を配管して、静水圧破壊試験を行った。その結果、水
漏れ及び破壊を起こすことのない耐圧強度は、60kg
/cm2 以上であった。又、ソケット型の繊維強化樹脂
製管継手に管を配管して、内圧疲労試験(脈動圧:0〜
20kg/cm2 )を行った。その結果、水道用規格で
ある2万回を大幅に上回る3万回以上であった。
Further , a pipe was connected to a socket-type fiber-reinforced resin pipe joint, and a hydrostatic pressure breaking test was performed. As a result, the pressure resistance without causing water leakage and destruction is 60 kg.
/ Cm 2 or more. In addition, pipes are piped to the socket type fiber reinforced resin pipe joint, and the internal pressure fatigue test (pulsating pressure: 0 to 0)
20 kg / cm 2 ). As a result, the number was 30,000 times or more, greatly exceeding the water supply standard of 20,000 times.

【0060】 比較例1 成形型としてポリプロピレン樹脂(三井石油化学社製:
商品名「J−700」)からなる厚さ3.0mmのブロ
ー成形したものを用いたこと、樹脂含浸強化繊維の成形
型上への巻き付けをハンドレアップ法にて行ったこと、
成形型の脱型を成形型を押しつぶすようにして行ったこ
と以外は、実施例1と同様にして、実施例1と同様のソ
ケット型の繊維強化樹脂製管継手の製造を行った。得ら
れたソケット型の繊維強化樹脂製管継手は、管接続部
(内径:150mm)の内径の許容差の±0.4mmを
範囲を外れる±0.6mmの範囲にやっと入るものであ
った。
[0060] Comparative Example 1 the mold as the polypropylene resin (Mitsui Petrochemical Co., Ltd.
That a blow-molded product having a thickness of 3.0 mm and a product name of "J-700") was used, and that the resin-impregnated reinforcing fiber was wound on a molding die by a hand-layup method,
A socket-type fiber reinforced resin pipe joint similar to that of Example 1 was manufactured in the same manner as in Example 1, except that the mold was released from the mold by crushing the mold. The obtained socket-type fiber-reinforced resin pipe joint finally entered the range of ± 0.4 mm outside the range of ± 0.4 mm of the tolerance of the inner diameter of the pipe connection (inner diameter: 150 mm).

【0061】 又、ソケット型の繊維強化樹脂製管継手に
管を配管して、静水圧破壊試験を行った。その結果、水
漏れ及び破壊を起こすことのない耐圧強度は、40kg
/cm2 であった。又、ソケット型の繊維強化樹脂製管
継手に管を配管して、内圧疲労試験(脈動圧:0〜20
kg/cm2 )を行った。その結果、水道用規格である
2万回を満足したが2万3000回に止まった。
Further , a pipe was connected to a socket-type fiber reinforced resin pipe joint, and a hydrostatic pressure fracture test was performed. As a result, the pressure resistance without causing water leakage and destruction is 40 kg.
/ Cm 2 . In addition, a pipe is connected to a socket-type fiber reinforced resin pipe joint and subjected to an internal pressure fatigue test (pulsating pressure: 0 to 20).
kg / cm 2 ). As a result, the product satisfied the water supply standard of 20,000 times but stopped at 23,000 times.

【0062】[0062]

【発明の効果】 本願発明 は、上記の如き構成とされてい
るので、強度や耐圧性に優れた繊維強化樹脂層を形成す
ることでき、内径寸法精度や表面平滑性や耐ウィーピン
グ性の優れた状態に形成することができ、強度、耐圧性
に優れた、信頼性の高い繊維強化樹脂積層体を生産性よ
く且つ安価に製造することができる。
According to the present invention having the above-described structure, it is possible to form a fiber reinforced resin layer having excellent strength and pressure resistance, and it is possible to form a fiber having excellent inner diameter dimensional accuracy, surface smoothness and weeping resistance. Thus, a highly reliable fiber reinforced resin laminate having excellent strength and pressure resistance can be manufactured with good productivity and at low cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に使用するフィードアイの作動を示す説
明図である。
FIG. 1 is an explanatory diagram showing an operation of a feed eye used in the present invention.

【図2】本発明に使用する成形型の一部を示す断面図で
ある。
FIG. 2 is a sectional view showing a part of a mold used in the present invention.

【図3】本発明に使用する成形型中の補助部材の成形工
程の一例を示す説明図である。
FIG. 3 is an explanatory view showing an example of a molding step of an auxiliary member in a molding die used in the present invention.

【図4】本発明に使用する巻回機の一例を示す説明図で
あり、(a)は巻回機を示す斜視図、(b)はその巻回
機を用いて成形型を回転する状態を示す一部切り欠き正
面図である。
FIG. 4 is an explanatory view showing an example of a winding machine used in the present invention, wherein (a) is a perspective view showing the winding machine, and (b) is a state in which a forming die is rotated using the winding machine. It is a partially notched front view which shows.

【図5】図2に示す成形型の周りに繊維強化樹脂層を形
成した状態を示す断面図である。
FIG. 5 is a cross-sectional view showing a state in which a fiber reinforced resin layer is formed around the molding die shown in FIG.

【図6】図2に示す成形型を用いて成形した繊維強化樹
脂積層管継手の一部を示す断面図である。
FIG. 6 is a cross-sectional view showing a part of a fiber-reinforced resin laminated pipe joint formed by using the forming die shown in FIG. 2;

【図7】本発明に使用する別の成形型の一部を示す断面
図である。
FIG. 7 is a sectional view showing a part of another mold used in the present invention.

【図8】図7に示す成形型の周りに繊維強化樹脂層を形
成した状態を示す一部切り欠き正面図である。
8 is a partially cutaway front view showing a state in which a fiber reinforced resin layer is formed around the mold shown in FIG. 7;

【図9】図7に示す成形型を用いて成形した繊維強化樹
脂積層プロペラシャフトの一部を示す一部切り欠き正面
図である。
9 is a partially cutaway front view showing a part of the fiber-reinforced resin laminated propeller shaft formed using the forming die shown in FIG. 7;

【図10】本発明で使用する別の成形型の一部を示す断
面図である。
FIG. 10 is a sectional view showing a part of another molding die used in the present invention.

【図11】図10に示す成形型の周りに繊維強化樹脂層
を形成した状態の一部を示す断面図である。
11 is a cross-sectional view showing a part of a state in which a fiber reinforced resin layer is formed around the mold shown in FIG.

【図12】図10に示す成形型を用いて成形した繊維強
化樹脂積層管継手の一部を示す一部切り欠き正面図であ
る。
FIG. 12 is a partially cutaway front view showing a part of the fiber-reinforced resin laminated pipe joint formed by using the forming die shown in FIG. 10;

【図13】本発明で使用する別の成形型の一部を示す断
面図である。
FIG. 13 is a cross-sectional view showing a part of another mold used in the present invention.

【図14】本発明で使用する別の成形型の一部を示す説
明図であり、(a)は成形型の一部を示す断面図、
(b)はその一部を拡大して示す斜視図である。
FIG. 14 is an explanatory view showing a part of another molding die used in the present invention, (a) is a cross-sectional view showing a part of the molding die,
(B) is an enlarged perspective view showing a part thereof.

【図15】本発明により得られた繊維強化樹脂製管継手
の静水圧試験、内圧疲労試験における、接続部を示す一
部縦断面図である。
FIG. 15 is a partial longitudinal sectional view showing a connection part in a hydrostatic pressure test and an internal pressure fatigue test of the fiber reinforced resin pipe joint obtained according to the present invention.

【符号の説明】[Explanation of symbols]

1,6,8 成形型 2 フィードアイ 4 巻回機 5,7,9 繊維強化樹脂層 10 繊維強化樹脂管継手 11,61 芯型 12,62,82 補助部材 31 プレート 32 金型 33 電熱ヒーター 41 回転軸 111 芯型本体部 112,612 ピン台 113,613 補助部材装着部 121,122,821,822 凹溝 123,823,824 平行面部 124,825 傾斜面部 827 ピン 1,6,8 Mold 2 Feed Eye 4 Winder 5,7,9 Fiber Reinforced Resin Layer 10 Fiber Reinforced Resin Pipe Joint 11,61 Core Mold 12,62,82 Auxiliary Member 31 Plate 32 Mold 33 Electric Heater 41 Rotating shaft 111 Core type main body 112,612 Pin base 113,613 Auxiliary member mounting part 121,122,821,822 Concave groove 123,823,824 Parallel plane part 124,825 Inclined plane part 827 pin

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI B29L 31:24 (58)調査した分野(Int.Cl.7,DB名) B29D 23/00 B29C 70/16 F16L 47/00 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 identification code FI B29L 31:24 (58) Fields investigated (Int.Cl. 7 , DB name) B29D 23/00 B29C 70/16 F16L 47/00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 軸方向に凹凸状に曲折する内周面を有し
一端部の外周面の外側方に突出するピンが設けられた短
管状の補助部材を、円筒状もしくは円柱状芯型の端部上
に、ピンが設けられた端部を円筒状もしくは円柱状芯型
の端縁の方に向けるようにして装着して成形型を形成
し、その成形型の周りに硬化性樹脂含浸強化繊維をピン
に引っ掛けるようにして巻き付けて繊維強化樹脂層を形
成し、樹脂を硬化させ、硬化した繊維強化樹脂層の端部
に補助部材を一体的に接合せしめ、その後円筒状もしく
は円柱状芯型を抜去し、補助部材のピンが設けられた部
分を切断して除去することを特徴とする繊維強化樹脂積
層体の製造方法。
1. A short tubular auxiliary member having an inner peripheral surface bent in an uneven shape in the axial direction and provided with a pin protruding outward from an outer peripheral surface at one end, is provided as a cylindrical or cylindrical core type auxiliary member. A mold is formed by mounting the pin on the end so that the end provided with the pin faces the edge of the cylindrical or cylindrical core mold, and the curable resin impregnation is strengthened around the mold. The fiber is wrapped around a pin to form a fiber reinforced resin layer, the resin is cured, and the auxiliary member is integrally joined to the end of the cured fiber reinforced resin layer. A method for producing a fiber-reinforced resin laminate, characterized in that a portion of the auxiliary member provided with pins is cut and removed.
JP08089392A 1992-04-02 1992-04-02 Method for producing fiber-reinforced resin laminate Expired - Fee Related JP3181360B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08089392A JP3181360B2 (en) 1992-04-02 1992-04-02 Method for producing fiber-reinforced resin laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08089392A JP3181360B2 (en) 1992-04-02 1992-04-02 Method for producing fiber-reinforced resin laminate

Publications (2)

Publication Number Publication Date
JPH05278140A JPH05278140A (en) 1993-10-26
JP3181360B2 true JP3181360B2 (en) 2001-07-03

Family

ID=13731047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08089392A Expired - Fee Related JP3181360B2 (en) 1992-04-02 1992-04-02 Method for producing fiber-reinforced resin laminate

Country Status (1)

Country Link
JP (1) JP3181360B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023187965A1 (en) * 2022-03-29 2023-10-05 日立Astemo株式会社 Carbon-fiber fixation jig, method for manufacturing carbon-fiber reinforced resin pipe body, and power transmission shaft

Also Published As

Publication number Publication date
JPH05278140A (en) 1993-10-26

Similar Documents

Publication Publication Date Title
JP3181360B2 (en) Method for producing fiber-reinforced resin laminate
JP4227299B2 (en) Manufacturing method of flanged tubular product made of fiber reinforced plastic
WO2022210329A1 (en) Arm-form structure and robot
JP3276221B2 (en) Fiber reinforced resin flanged pipe and method of manufacturing the same
JPH0259328A (en) Manufacture of frp container
JP3418459B2 (en) Manufacturing method of tubular body with flange made of fiber reinforced resin
JP2013160344A (en) Flange joint, and method for manufacturing cylindrical body for the same
JPS59109315A (en) Joined body of metal material and fiber reinforced composite material
KR200342862Y1 (en) Duct having flange
JPS613732A (en) Molding method of filament winding
JP2012145201A (en) Pipe structure with flange and pipeline structure
JPH0688341B2 (en) Manufacturing method of reinforced plastic pipe joint
JP3219540B2 (en) Fiber reinforced plastic fittings
JPS6143537A (en) Manufacture of cylindrical material made of fiber-reinforced plastics having heat insulation layer
JPS6382728A (en) Manufacture of fiber-reinforced resin pipe with metallic coupling
JPH0160686B2 (en)
JPH05180234A (en) Caulked joint structure of frp pipe
JPH06297598A (en) Production of fiber reinforced resin laminate
JPS63149135A (en) Manufacture of bellows cylinder made of fiber-reinforced plastics
KR20050032734A (en) Method for manufacturing flange duct and flange duct thereof
JPH08174690A (en) Tubular element with fiber-reinforced resin flange and manufacture thereof
JP2958920B2 (en) Composite roller and method of manufacturing the same
JPH06106630A (en) Inner mold for fiber reinforced resin tube coupling by filament winding method and its manufacture
JPH07117138A (en) Flanged tubular member made of fiber reinforced resin and production thereof
JPH0229916B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees