JP3180982B2 - White gold alloy - Google Patents

White gold alloy

Info

Publication number
JP3180982B2
JP3180982B2 JP34373592A JP34373592A JP3180982B2 JP 3180982 B2 JP3180982 B2 JP 3180982B2 JP 34373592 A JP34373592 A JP 34373592A JP 34373592 A JP34373592 A JP 34373592A JP 3180982 B2 JP3180982 B2 JP 3180982B2
Authority
JP
Japan
Prior art keywords
white gold
gold alloy
alloy
hardness
weight ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34373592A
Other languages
Japanese (ja)
Other versions
JPH06184665A (en
Inventor
隆至 宮元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP34373592A priority Critical patent/JP3180982B2/en
Publication of JPH06184665A publication Critical patent/JPH06184665A/en
Application granted granted Critical
Publication of JP3180982B2 publication Critical patent/JP3180982B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は白色金合金に関し、特に
眼鏡フレームなどに好適に用いることができる白色金合
金に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a white gold alloy, and more particularly to a white gold alloy which can be suitably used for eyeglass frames and the like.

【0002】[0002]

【従来の技術および発明が解決しよとする課題】白色金
合金は、金の黄金色を脱色するために、主にNiやPd
を合金化して古くからプラチナの代用として用いられて
おり、Ni系合金はAu−Ni(5〜25%)−Cu
(10〜25%)−Zn(1〜5%)の組成範囲であ
り、Pd系合金はAu−Pd(5〜40%)−Ag(1
0〜30%)−Ni(1〜5%)の組成範囲が一般であ
る。この従来のNi系合金の硬さ(HV )は170であ
り、パラジウム系合金の硬さ(HV )は190である。
2. Description of the Related Art White gold alloys are mainly made of Ni or Pd to remove the golden color of gold.
Has been used for a long time as a substitute for platinum, and the Ni-based alloy is Au-Ni (5 to 25%)-Cu
(10-25%)-Zn (1-5%), and the Pd-based alloy is Au-Pd (5-40%)-Ag (1
The composition range of (0 to 30%)-Ni (1 to 5%) is generally used. The hardness of the conventional Ni-based alloy (H V) was 170, the hardness of the palladium-based alloy (H V) is 190.

【0003】ところが、この従来のNi系合金およびP
d系合金は、いずれもNiが添加されているため、人体
への悪影響がある。特に眼鏡や宝飾品などは、直接人体
に触れるため、注意が必要である。また、Niが添加さ
れていると時間の経過と共に、白色金合金が黄変する。
そのため、Ni系合金およびPd系合金では、黄変を防
止する場合、ロジウムメッキなどを施さなければならな
いという問題があった。さらに、この従来のNi系合金
およびPd系合金は、硬度(HV )が170〜190と
小さいため、傷がつきやすく、曲がりやすい。そのた
め、眼鏡フレームなどの構造部品には使用できないとい
う問題もあった。
However, this conventional Ni-based alloy and P
Each of the d-based alloys has an adverse effect on the human body because Ni is added. In particular, attention must be paid to eyeglasses and jewelry because they directly touch the human body. When Ni is added, the white gold alloy turns yellow with the passage of time.
Therefore, in the case of Ni-based alloys and Pd-based alloys, there is a problem that rhodium plating or the like must be applied in order to prevent yellowing. Furthermore, the conventional Ni-based alloys and Pd-based alloys, the hardness (H V) is small and 170-190, easily scratched, easy to bend. Therefore, there is also a problem that it cannot be used for structural parts such as eyeglass frames.

【0004】このような問題を解決するために、本発明
者等は、特願平1−264873号において、Auを主
成分とし、重量比でAg1〜10%、Pd10〜35
%、Cu1〜10%を含む合金に、Zn0.5〜10%
とIn0.5〜10%添加した白色金合金を開示した。
なお、Pdを10〜35重量%に設定した理由は、10
重量%未満の添加では、Auの黄金色を完全に脱色する
ことができず、35重量%を超える添加では色調が暗灰
色となって良好な色調が得られないためである。また、
AgとCuの下限添加量を1重量%とした理由は、各々
1重量%未満の添加では、他の元素との相乗効果が得ら
れないためであり、各々10重量%を超える添加では金
合金の優れた耐蝕性を劣化させるおそれがあるためであ
る。さらに、ZnとInの含有量を各々0.5〜10重
量%に限定した理由は、0.5重量%未満ではガス抜き
効果が不十分で鋳造性の向上が期待できないめであり、
10重量%を超える添加では融点の低下が著しく、また
加工性に悪影響を及ぼすことになるからである。なお、
ZnとInの添加は双方の相乗的作用による効果を得る
ためである。このように、Pdを10〜35重量%、A
gとCuを各々1〜10重量%、ZnとInの含有量を
各々0.5〜10重量%添加すれば、鋳造する際に流動
性が良く、鋳造体の鋳肌も美しく、インゴット内部の欠
陥が少なく、加工性の良好な白色金合金となる。また、
この白色金合金では、Niを添加しないことから、黄変
を防止できると共に、人体への悪影響なども防止できる
ものである。
In order to solve such a problem, the present inventors disclosed in Japanese Patent Application No. 1-264873 a composition containing Au as a main component, Ag 1 to 10% by weight, and Pd 10 to 35 in weight ratio.
%, An alloy containing Cu 1-10%, Zn 0.5-10%
And a white gold alloy containing 0.5 to 10% of In.
The reason for setting Pd to 10 to 35% by weight is as follows.
If the amount is less than 35% by weight, the golden color of Au cannot be completely decolorized. If the amount exceeds 35% by weight, the color tone becomes dark gray and a good color tone cannot be obtained. Also,
The reason why the lower limit addition amounts of Ag and Cu are set to 1% by weight is that if each addition is less than 1% by weight, a synergistic effect with other elements cannot be obtained. This is because there is a possibility that the excellent corrosion resistance may be deteriorated. Furthermore, the reason that the contents of Zn and In are each limited to 0.5 to 10% by weight is that if the content is less than 0.5% by weight, the degassing effect is insufficient and improvement in castability cannot be expected.
This is because if the content exceeds 10% by weight, the melting point is significantly reduced, and the workability is adversely affected. In addition,
The addition of Zn and In is for obtaining an effect by a synergistic action of both. Thus, 10 to 35% by weight of Pd, A
If g and Cu are added in an amount of 1 to 10% by weight and Zn and In are added in an amount of 0.5 to 10% by weight, the fluidity during casting is good, the casting surface of the casting is beautiful, and the inside of the ingot is beautiful. It becomes a white gold alloy with few defects and good workability. Also,
In this white gold alloy, since no Ni is added, yellowing can be prevented and adverse effects on the human body can be prevented.

【0005】ところが、この従来の白色金合金でも、硬
さ(HV )は120〜160であり、眼鏡フレームなど
の構造部品に用いるには、硬度が依然として小さいとい
う問題があった。
[0005] However, in this conventional white gold alloy, hardness (H V) is 120 to 160, the use in structural components such as eyeglass frames, there is a problem that the hardness is still low.

【0006】[0006]

【課題を解決するための手段】本発明に係る白色金合金
は、このような従来技術の問題点に鑑みてなされたもの
であり、特徴とするところは、Auを主成分とし、重量
比でAg1〜10%、Pd10〜35%、Cu1〜10
%を含む合金に、Zn0.5〜10%とIn0.5〜1
0%添加した白色金合金において、前記CuとPdの重
量比を、Pdが50〜68%の範囲になるように設定
し、ビッカース硬度(Hv)を220以上とした点にあ
る。また、本発明に係る白色金合金の製造方法は、Au
を主成分とし、重量比でAg1〜10%、Pd10〜3
5%、Cu1〜10%を含む合金に、Zn0.5〜10
%とIn0.5〜10%添加した白色金合金の製造方法
において、前記CuとPdの重量比を、Pdが50〜6
8%の範囲になるように設定して加熱溶融した後に、5
80℃以上の温度まで降下させて急冷し、再度300℃
以上の温度で加熱する点にある。
SUMMARY OF THE INVENTION The white gold alloy according to the present invention has been made in view of such problems of the prior art, and is characterized by having Au as a main component and a weight ratio. Ag 1-10%, Pd 10-35%, Cu 1-10
% To the alloy containing 0.5 to 10% of Zn and 0.5 to 1% of In.
In the white gold alloy to which 0% is added, the weight ratio of Cu and Pd is set so that Pd is in the range of 50 to 68%, and Vickers hardness (Hv) is set to 220 or more. In addition, the method for producing a white gold alloy according to the present invention includes:
As a main component, Ag1 to 10% by weight, Pd10 to 3
Alloy containing 5%, Cu 1-10%, Zn 0.5-10
% And 0.5 to 10% of In, wherein the weight ratio of Cu and Pd is 50 to 6%.
After heating and melting at a setting of 8%, 5%
Cool down to a temperature of 80 ° C or higher
The point is to heat at the above temperature.

【0007】[0007]

【作用】上記のように、CuとPdの重量比を、Pdが
50〜68%の範囲になるように設定すると、鋳造後に
再加熱した場合、β相のCu−Pd化合物が析出し、非
常に硬度(HV )の大きい白色金合金を製造することが
でき、宝飾品は勿論、眼鏡フレームなどの構造部品にも
用いることができる。
As described above, when the weight ratio of Cu and Pd is set so that Pd is in the range of 50 to 68%, when reheating is performed after casting, a β-phase Cu-Pd compound is precipitated, to be able to produce a large white gold alloy hardness (H V), jewelery course, can also be used for structural parts such as spectacle frames.

【0008】[0008]

【実施例】以下、本発明の実施例を詳細に説明する。本
発明では、Ag Pd Cu系合金に、ZnとInを所
定範囲で添加し、且つCuとPdの重量比を、Pdが5
0〜68%の範囲になるように設定する。すなわち、図
1のPd−Cu合金の状態図に示すように、CuとPd
の重量比を、Pdが12〜38%になるように設定する
と、500℃以下でα相のPd−Cu化合物(PdCu
3 )が多く析出するが、Pdが41〜68%の範囲にな
るように設定するとβ相のPd−Cu化合物(PdC
u)が多く析出する。β相のPd−Cu化合物が多く析
出すると、α相のPd−Cu化合物が多く析出した場合
やこのような特定の相が析出しない場合に比べて硬度が
大きくなり、白色金合金の硬度も大きくなる。一方、本
発明では、他の組成物との関係で、CuとPdの重量比
は、Pdが最低でも50%必要であり、CuとPdの重
量比におけるPdの下限値は50%になると共に、上限
値はβ相のPd−Cu化合物を形成するための最大値で
ある68%になる。
Embodiments of the present invention will be described below in detail. In the present invention, Zn and In are added to an Ag Pd Cu-based alloy in a predetermined range, and the weight ratio of Cu and Pd is 5%.
It is set to be in the range of 0 to 68%. That is, as shown in the phase diagram of the Pd-Cu alloy in FIG.
Is set so that Pd is 12 to 38%, a Pd-Cu compound (PdCu) in the α phase at 500 ° C. or lower
3 ) precipitates a lot, but if Pd is set to be in the range of 41 to 68%, a β-phase Pd-Cu compound (PdC
u) is largely precipitated. When a large amount of the Pd-Cu compound of the β phase precipitates, the hardness increases as compared with the case where the Pd-Cu compound of the α phase precipitates a lot or such a specific phase does not precipitate, and the hardness of the white gold alloy also increases. Become. On the other hand, in the present invention, the weight ratio of Cu to Pd requires at least 50% of Pd in relation to other compositions, and the lower limit of Pd in the weight ratio of Cu to Pd becomes 50%. The upper limit value is 68%, which is the maximum value for forming a β-phase Pd—Cu compound.

【0009】また、β相のPd−Cu化合物を析出させ
るためには、溶湯を鋳型に注湯して600℃程度の温度
まで降下させ、その後水中に投入して急冷し、再び30
0℃以上の温度で再加熱する。水中に投入して冷却した
段階のインゴットの硬度(HV )は160程度である
が、このインゴットを再び300℃以上の温度で再加熱
するとβ相のPd−Cu化合物が析出し、硬度(HV
は220以上になる。この場合、β相のPd−Cu化合
物をより多く析出させるためには、鋳造後に一定温度ま
で降下させて急冷する際、降下温度が580℃以下(β
相の析出領域温度)にならないようにすることが望まし
い。すなわち、鋳造後に580℃以下の温度で降下させ
て急冷すると、300℃以上の温度で再加熱しても、β
相のPd−Cu化合物の析出が少なく、200程度の硬
度(HV )しか得られないからである。
In order to precipitate a Pd-Cu compound in the β phase, a molten metal is poured into a mold, lowered to a temperature of about 600 ° C., then poured into water, rapidly cooled, and cooled again.
Reheat at a temperature above 0 ° C. Although the hardness of the stages of ingot cooled by introducing into water (H V) is about 160, Pd-Cu compound reheat to the β phase at a temperature above the ingot again 300 ° C. is precipitated, hardness (H V )
Is 220 or more. In this case, in order to precipitate a larger amount of the Pd-Cu compound in the β phase, the temperature is lowered to 580 ° C. or lower (β
(The temperature of the phase precipitation region). That is, after the casting, the steel is cooled down at a temperature of 580 ° C. or less and rapidly cooled.
Less precipitation of Pd-Cu compound phase, about 200 of hardness (H V) because only obtained.

【0010】−実験例1− 重量比で、Au58.5%、Ag9.0%、Pd18.
5%、Cu9.0%、Zn3.0%、In2.0%の組
成(CuとPdの重量比は、Pdが65%)とし、全体
で500gになるように混合して、高周波炉で溶解し
た。この時の融点は、1040℃であった。この溶融物
を厚さ10mm、幅25mmの板状の鋳造型に注湯し
て、600℃の温度まで下降させ、鋳造型ごと20℃の
水中に投入して急冷した後、400℃で15分間再加熱
し、鋳造体表面のビッカース硬度を測定した。その結
果、ビッカース硬度(HV )は290であり、従来品の
160に比べて格段に硬度の大きいK14の白色金合金
が得られることを確認した。CuとPdの重量比は、P
dが67%であることから、インゴットを急冷した後
に、450℃で15分間再加熱した際に、β相のPd−
Cu化合物(CuPd)が形成されたものと考えられ
る。
-Experimental Example 1- Au 58.5%, Ag 9.0%, Pd18.
A composition of 5%, Cu 9.0%, Zn 3.0%, and In 2.0% (the weight ratio of Cu and Pd, Pd is 65%) was mixed so as to be 500 g in total and melted in a high frequency furnace. did. The melting point at this time was 1,040 ° C. The melt was poured into a plate-shaped casting mold having a thickness of 10 mm and a width of 25 mm, lowered to a temperature of 600 ° C., poured into 20 ° C. water together with the casting mold, rapidly cooled, and then cooled at 400 ° C. for 15 minutes. After reheating, the Vickers hardness of the surface of the casting was measured. As a result, the Vickers hardness (H V) is 290, it was confirmed that the large K14 white gold alloy of much hardness compared to 160 of the conventional product is obtained. The weight ratio of Cu to Pd is P
Since d is 67%, when the ingot is rapidly cooled and then reheated at 450 ° C. for 15 minutes, the β-phase Pd-
It is considered that a Cu compound (CuPd) was formed.

【0011】−実験例2− 重量比で、Au58.5%、Ag9.0%、Pd18.
5%、Cu9.0%、Zn3.0%、In2.0%の組
成CuとPdの重量比は、Pdが65%とし、全体で5
00gになるように混合して、高周波炉で溶解した。こ
の時の融点は、1040℃であった。この溶融物を厚さ
10mm、幅25mmの板状の鋳造型に注湯して、70
0℃の温度まで下降させ、鋳造型ごと20℃の水中に投
入して急冷した後、350℃で15分間再加熱し、鋳造
体表面のビッカース硬度を測定した。その結果、ビッカ
ース硬度(HV )は、220であり、従来品の160に
比べて、硬度が大きく、眼鏡フレームなどの構造材に使
用できるK14の白色金合金であることを確認した。こ
の場合も、CuとPdの重量比は、Pdが67%である
ことから、インゴットを急冷した後に、350℃で15
分間再加熱した際に、β相のPd−Cu化合物(CuP
d)が形成されたものと考えられる。
-Experimental Example 2- Au 58.5%, Ag 9.0%, Pd18.
Composition of 5%, Cu 9.0%, Zn 3.0%, In 2.0% The weight ratio of Cu to Pd is 65% for Pd and 5% in total.
The mixture was mixed so as to be 00 g and melted in a high frequency furnace. The melting point at this time was 1,040 ° C. The melt was poured into a plate-shaped casting mold having a thickness of 10 mm and a width of 25 mm,
The temperature was lowered to 0 ° C., and the casting mold was put into water at 20 ° C., rapidly cooled, and then reheated at 350 ° C. for 15 minutes to measure the Vickers hardness of the surface of the casting. As a result, the Vickers hardness (H V) is 220, as compared to 160 of the conventional products, large hardness, it was confirmed that the white gold alloy K14 which can be used for structural materials such as eyeglass frames. Also in this case, the weight ratio of Cu to Pd is 15% at 350 ° C. after rapidly cooling the ingot since Pd is 67%.
When reheated for 3 minutes, the β-phase Pd-Cu compound (CuP
It is considered that d) was formed.

【0012】すなわち、眼鏡フレームとして必要な硬度
(HV )は、220以上と言われており、本発明の白色
金合金はいずれもこの基準を満たすものである。
That is, the hardness (H V ) required for an eyeglass frame is said to be 220 or more, and all of the white gold alloys of the present invention satisfy this standard.

【0013】[0013]

【発明の効果】以上のように、本発明に係る白色金合金
によれば、Auを主成分とし、重量比でAg1〜10
%、Pd10〜35%、Cu1〜10%を含む合金に、
Zn0.5〜10%とIn0.5〜10%添加した白色
金合金において、前記CuとPdの重量比を、Pdが5
0〜68%の範囲になるように設定し、ビッカース硬度
(Hv)を220以上としたことから、Niを添加しな
い白色金合金でも、硬度が大きくなり、宝飾品は勿論の
こと眼鏡フレームなどの構造材にも用いることができ
る。また、熱処理が可能な地金であるため、眼鏡および
宝飾品として必要な硬度が得られる白色金合金が得られ
る。さらに、Inを含有することにより、地金を白くす
る元素であるPdが多く含まれていても融点を低くおさ
えることが可能となり、鋳造しやすく、かつ欠陥が生じ
にくい。さらにまた、Ni無添加のため、黄変すること
がなく、黄変しても白く見せるためのロジウムメッキな
どが不必要であると共に、Niが無添加のため、人体へ
の悪影響の心配がない。また、本発明に係る白色金合金
の製造方法によれば、Auを主成分とし、重量比でAg
1〜10%、Pd10〜35%、Cu1〜10%を含む
合金に、Zn0.5〜10%とIn0.5〜10%添加
し、このCuとPdの重量比を、Pdが50〜68%の
範囲になるように設定して加熱溶融した後、580℃以
上の温度まで降下させて急冷し、再度300℃以上の温
度で加熱することから、Niを添加しない白色金合金で
も、ビッカース硬度(Hv)が220以上のものを容易
に得ることができ、宝飾品は勿論のこと眼鏡フレームな
どの構造材にも用いることができる。
As described above, according to the white gold alloy of the present invention, Au is the main component and the weight ratio of Ag1-10
%, Pd10 to 35%, Cu1 to 10% containing alloy,
In a white gold alloy containing 0.5 to 10% of Zn and 0.5 to 10% of In, the weight ratio of Cu to Pd is 5%.
Since the Vickers hardness (Hv) is set to 220 or more, the hardness is increased even in a white gold alloy to which Ni is not added. It can also be used for structural materials. In addition, since it is a base metal that can be heat-treated, a white gold alloy having a hardness required for eyeglasses and jewelry can be obtained. Further, by containing In, it is possible to keep the melting point low even when a large amount of Pd, which is an element that makes the metal white, is included, so that casting is easy and defects are hardly generated. Furthermore, since it does not contain Ni, it does not yellow and does not require rhodium plating or the like to make it look white even if it turns yellow, and there is no fear of adverse effects on the human body because it does not contain Ni. . Further, according to the method for producing a white gold alloy according to the present invention, Au is used as a main component and Ag is used in a weight ratio of Ag.
0.5-10% of Zn and 0.5-10% of In are added to an alloy containing 1-10%, Pd10-35%, and Cu1-10%, and the weight ratio of Cu to Pd is 50-68%. After heating and melting, the temperature is lowered to a temperature of 580 ° C. or more, rapidly cooled, and heated again at a temperature of 300 ° C. or more. Therefore, even for a white gold alloy to which Ni is not added, Vickers hardness ( Hv) of 220 or more can be easily obtained, and can be used not only for jewelry items but also for structural materials such as eyeglass frames.

【図面の簡単な説明】[Brief description of the drawings]

【図1】Pd−Cu合金の状態図である。FIG. 1 is a phase diagram of a Pd—Cu alloy.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 Auを主成分とし、重量比でAg1〜1
0%、Pd10〜35%、Cu1〜10%を含む合金
に、Zn0.5〜10%とIn0.5〜10%添加した
白色金合金において、前記CuとPdの重量比を、Pd
が50〜68%の範囲になるように設定し、ビッカース
硬度(Hv)を220以上としたことを特徴とする白色
金合金。
1. A method according to claim 1, wherein Au is a main component and the weight ratio is Ag1 to Ag1.
In a white gold alloy in which 0.5% to 10% of Zn and 0.5% to 10% of In are added to an alloy containing 0%, 10% to 35% of Pd, and 1% to 10% of Cu, the weight ratio of Cu and Pd is set to Pd.
Is set to be in the range of 50 to 68%, and Vickers
A white gold alloy having a hardness (Hv) of 220 or more .
【請求項2】 Auを主成分とし、重量比でAg1〜12. A composition containing Au as a main component and a weight ratio of Ag1 to Ag1.
0%、Pd10〜35%、Cu1〜10%を含む合金Alloy containing 0%, Pd10-35%, Cu1-10%
に、Zn0.5〜10%とIn0.5〜10%添加した0.5 to 10% of Zn and 0.5 to 10% of In
白色金合金の製造方法において、前記CuとPdの重量In the method for producing a white gold alloy, the weight of the Cu and Pd
比を、Pdが50〜68%の範囲になるように設定してSet the ratio so that Pd is in the range of 50-68%
加熱溶融した後に、580℃以上の温度まで降下させてAfter heating and melting, lower to a temperature of 580 ° C or more
急冷し、再度300℃以上の温度で加熱することを特徴It is characterized by quenching and heating again at a temperature of 300 ° C or more
とする白色金合金の製造方法。A method for producing a white gold alloy.
JP34373592A 1992-12-24 1992-12-24 White gold alloy Expired - Fee Related JP3180982B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34373592A JP3180982B2 (en) 1992-12-24 1992-12-24 White gold alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34373592A JP3180982B2 (en) 1992-12-24 1992-12-24 White gold alloy

Publications (2)

Publication Number Publication Date
JPH06184665A JPH06184665A (en) 1994-07-05
JP3180982B2 true JP3180982B2 (en) 2001-07-03

Family

ID=18363848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34373592A Expired - Fee Related JP3180982B2 (en) 1992-12-24 1992-12-24 White gold alloy

Country Status (1)

Country Link
JP (1) JP3180982B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2195300T3 (en) * 1998-12-14 2003-12-01 Metalor Technologies Int GRAY GOLD ALLOY WITHOUT NICKEL.
US7959855B2 (en) 2006-10-19 2011-06-14 Heru Budihartono White precious metal alloy
CN113862504B (en) * 2021-12-01 2022-03-08 北京达博有色金属焊料有限责任公司 Gold alloy and alloy product and preparation method thereof

Also Published As

Publication number Publication date
JPH06184665A (en) 1994-07-05

Similar Documents

Publication Publication Date Title
US4201577A (en) Ceramic substrate alloy
US4732731A (en) Copper alloy for electronic instruments and method of manufacturing the same
US6139652A (en) Tarnish-resistant hardenable fine silver alloys
US4992297A (en) Castable palladium alloys and their use for making dental restorations, ornaments, and the like
CZ293797B6 (en) Cylinder head casting or engine block casting of aluminium alloy and process for producing thereof
US5147469A (en) Process for producing copper-based alloys having high strength and high electric conductivity
JP3180982B2 (en) White gold alloy
US4557895A (en) Yellow gold alloy
US4539176A (en) Low gold dental alloys
JP3049137B2 (en) High strength copper alloy excellent in bending workability and method for producing the same
JPS6128739B2 (en)
US3403997A (en) Treatment of age-hardenable coppernickel-zinc alloys and product resulting therefrom
US4659377A (en) Method for producing an oxidation resistant magnesium alloy melt
JPS6314830A (en) Sulfidization-resisting hard silver alloy
WO2011065922A1 (en) Tarnish-resistant silver alloy
JPS61217542A (en) Gold alloy and its production
US4608229A (en) Palladium metal base dental alloy
CN1045629C (en) Golden-colour sweat-resistent copper-base alloy
US4067733A (en) High strength aluminum alloy
US10900101B2 (en) Copper alloy for dental prosthesis
KR100382389B1 (en) Manufacturing method of Aluminium alloy's coating of color fixation
JPH0238653B2 (en) PURASUCHITSUKUKANAGATAYODOGOKINOYOBISONOSEIZOHOHO
JP2004513226A (en) Improved rapid quenching of large section precipitation hardenable alloys.
JPH1036927A (en) Alloy for cast parts of spectacles frame or the like, parts, and their production
US4543234A (en) Oxidation resistant magnesium alloy

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees