JP3180419B2 - Bonding tool - Google Patents

Bonding tool

Info

Publication number
JP3180419B2
JP3180419B2 JP06925392A JP6925392A JP3180419B2 JP 3180419 B2 JP3180419 B2 JP 3180419B2 JP 06925392 A JP06925392 A JP 06925392A JP 6925392 A JP6925392 A JP 6925392A JP 3180419 B2 JP3180419 B2 JP 3180419B2
Authority
JP
Japan
Prior art keywords
bonding tool
polycrystalline diamond
pressing surface
diamond
bonding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06925392A
Other languages
Japanese (ja)
Other versions
JPH05226421A (en
Inventor
克享 田中
敬一朗 田辺
利也 高橋
明彦 池ヶ谷
直治 藤森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP06925392A priority Critical patent/JP3180419B2/en
Publication of JPH05226421A publication Critical patent/JPH05226421A/en
Application granted granted Critical
Publication of JP3180419B2 publication Critical patent/JP3180419B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/143Reduction of greenhouse gas [GHG] emissions of methane [CH4]

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、ICやLSI等の半導
体素子を基板等の上に実装する際に使用されるボンディ
ングツールに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bonding tool used for mounting a semiconductor device such as an IC or LSI on a substrate or the like.

【0002】[0002]

【従来の技術】半導体素子を実用できる形に実装して、
その電気的特性を引き出すためには、半導体素子に形成
された電極とパッケージのリードとの接続、並びにこの
リードとプリント配線基板等の外部端子との接続が必要
である。
2. Description of the Related Art A semiconductor device is mounted in a practical form,
In order to bring out the electrical characteristics, it is necessary to connect the electrodes formed on the semiconductor element to the leads of the package and to connect the leads to external terminals such as a printed wiring board.

【0003】半導体素子の電極とパッケージのリードと
の接続は、従来から金あるいは銅等からなる金属細線を
導線(ボンディングワイヤー)とし、キャピラリーと呼
ばれる工具を用いて1本づつ接続するワイヤボンディン
グ法によって行われてきた。又、最近では、パターン形
成された銅箔に錫メッキしたフィルムキャリアテープと
呼ばれるリードを用い、このパターン化されたリードと
半導体素子の全電極とを、所定温度に加熱されたボンデ
ィングツールを用いて一括して次々に連続的に接続する
TAB方式(Tape Automated Bonding)等のワイヤレス
ボンディングも広く普及している。一方、パッケージの
リードとプリント配線基板等の外部端子との接続は、プ
リント配線基板上にスクリーン印刷等により形成された
半田等の電極とリードとを、所定温度に加熱されたボン
ディングツールを用いて接合させている。
The connection between the electrode of the semiconductor element and the lead of the package is made by a wire bonding method in which a thin metal wire made of gold or copper is used as a conducting wire (bonding wire) and connected one by one using a tool called a capillary. Has been done. Also, recently, a lead called a film carrier tape tin-plated on a patterned copper foil is used, and the patterned lead and all the electrodes of the semiconductor element are bonded using a bonding tool heated to a predetermined temperature. Wireless bonding, such as TAB (Tape Automated Bonding), in which connections are collectively and successively made one after another, is also widespread. On the other hand, the connection between the package lead and an external terminal such as a printed wiring board is performed by bonding an electrode such as solder formed on the printed wiring board by screen printing or the like and the lead using a bonding tool heated to a predetermined temperature. Are joined.

【0004】TAB方式等のワイヤレスボンディングや
外部端子との接続に用いるボンディングツールには、M
o、Fe−Ni合金、Ni合金、Ti又はTi合金、W
又はW合金、Fe−Ni−Co合金等が従来から使用さ
れていた。しかし、これら金属単体からなるボンディン
グツールは、先端の押圧面の平坦度が低く、耐摩耗性に
劣り工具寿命が短い等の欠点があった。又、ボンディン
グツールは所定温度(例えば400℃)に加熱した状態
で用いるため、一般に通電して抵抗加熱させるが、金属
単体のボンディングツールでは熱が速やかに全体に伝達
せず、特に先端の押圧面の温度分布が良くないという欠
点があった。
[0004] A bonding tool used for wireless bonding such as a TAB method or for connection to an external terminal includes M
o, Fe-Ni alloy, Ni alloy, Ti or Ti alloy, W
Alternatively, W alloys, Fe-Ni-Co alloys, and the like have been used. However, these bonding tools made of a single metal have disadvantages such as low flatness of the pressing surface at the tip, poor abrasion resistance, and short tool life. In addition, since the bonding tool is used in a state where it is heated to a predetermined temperature (for example, 400 ° C.), it is generally energized to perform resistance heating. Has a drawback that the temperature distribution is not good.

【0005】最近では、これら金属単体のボンディング
ツールの欠点を改良するために、先端の押圧面部分に低
圧気相合成法により製造した多結晶ダイヤモンド、ダイ
ヤモンド単結晶、ダイヤモンド焼結体、立方晶窒化ホウ
素焼結体(cBN)等の硬質物質を設けたボンディング
ツールが多く用いられている。ところが、前記硬質物質
のなかでも多結晶ダイヤモンド、ダイヤモンド単結晶、
cBN焼結体等は比抵抗率が高く通電しにくいことか
ら、これら硬質物質を接合した金属製シャンクに通電し
て抵抗加熱により発熱させ、その熱を接合面を通して伝
達させることにより押圧面部分の硬質物質を所定温度ま
で加熱している。このため、金属単体のボンディングツ
ールに比較して温度応答性が悪い、即ち加熱及び冷却に
要する時間が長いという問題があり、実装時間短縮の妨
げとなっていた。
[0005] Recently, in order to improve the disadvantages of these metal-only bonding tools, a polycrystalline diamond, a diamond single crystal, a diamond sintered body, a cubic nitride and a polycrystalline diamond manufactured by a low-pressure gas phase synthesis method at a tip pressing surface portion. A bonding tool provided with a hard substance such as a boron sintered body (cBN) is often used. However, among the hard materials, polycrystalline diamond, diamond single crystal,
Since the cBN sintered body and the like have a high specific resistance and are difficult to conduct electricity, the metal shank to which these hard materials are joined is energized to generate heat by resistance heating, and the heat is transmitted through the joining surface to thereby make the pressing surface portion of the shank compact. The hard material is heated to a predetermined temperature. For this reason, there is a problem that the temperature responsiveness is poor, that is, the time required for heating and cooling is longer than that of a bonding tool made of a single metal, which hinders a reduction in mounting time.

【0006】勿論、金属製シャンクに通電する電流を大
きくすることによって、押圧面部分の硬質物質が所定温
度に到達するまでの時間を短縮することも可能である
が、その場合には硬質物質が急速に加熱されることにな
るから、シャンク材及び接合ロウ材等の損傷が大きくな
り、工具寿命の点で新たな問題が生じていた。
Of course, it is possible to shorten the time required for the hard material on the pressing surface to reach a predetermined temperature by increasing the current flowing through the metal shank. Since the material is rapidly heated, damage to the shank material and the brazing material becomes large, and a new problem occurs in terms of tool life.

【0007】一方、ダイヤモンド焼結体は、多数のダイ
ヤモンド微粒子をCo等の鉄系金属を結合材として結合
したものであるから、鉄系金属の含有量を調整すること
により比抵抗率を制御することが可能である。従って、
ダイヤモンド焼結体を押圧面部分に設けたボンディング
ツールでは、ダイヤモンド焼結体自身に通電して抵抗加
熱させることができ、熱伝導率も金属に比べて高いこと
から、温度応答性の点に問題はない。しかしながら、所
定温度に加熱して使用している間に、ダイヤモンド焼結
体中の結合材金属がリードのメッキ材であるSnやプリ
ント基板上にパターニングされた半田等と合金化を起こ
すため、押圧面が汚れ易く、クリーニングを頻繁に行う
必要があった。このため、実装作業が繁雑になり、実装
時間短縮の点でも大きな妨げとなっていた。
On the other hand, since a diamond sintered body is formed by bonding a large number of fine diamond particles using a ferrous metal such as Co as a binder, the resistivity is controlled by adjusting the content of the ferrous metal. It is possible. Therefore,
With a bonding tool with a diamond sintered body provided on the pressing surface, the diamond sintered body itself can be energized for resistance heating, and its thermal conductivity is higher than that of metal. There is no. However, since the binder metal in the diamond sintered body is alloyed with Sn, which is a plating material of the lead, and solder, etc., which are patterned on a printed circuit board, during use while being heated to a predetermined temperature. The surface was easily stained, requiring frequent cleaning. For this reason, the mounting work becomes complicated, and the mounting time is also greatly hindered.

【0008】[0008]

【発明が解決しようとする課題】本発明はかかる従来の
事情に鑑み、押圧面の平坦度、耐摩耗性、温度分布に優
れると共に、押圧面に汚れが付着し難く、加熱及び冷却
における温度応答性に優れたボンディングツールを提供
することを目的とする。
SUMMARY OF THE INVENTION In view of the above circumstances, the present invention is excellent in flatness, abrasion resistance, and temperature distribution of a pressing surface, is hardly contaminated with a pressing surface, and has a temperature response in heating and cooling. An object of the present invention is to provide a bonding tool having excellent performance.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するた
め、本発明の半導体素子の実装に用いるボンディングツ
ールにおいては、少なくとも押圧面部分がホウ素を含む
導電性の多結晶ダイヤモンドからなり、多結晶ダイヤモ
ンドの炭素に対するホウ素の濃度が0.1〜50000
ppmであって、その多結晶ダイヤモンドが抵抗加熱の
ための通電用の端子部を備えることを特徴とする。
In order to achieve the above object, in a bonding tool used for mounting a semiconductor device according to the present invention, at least a pressing surface portion is made of conductive polycrystalline diamond containing boron, and a polycrystalline diamond is used.
Concentration of boron to carbon in the carbon is 0.1 to 50,000.
ppm, and the polycrystalline diamond is provided with a current-carrying terminal for resistance heating.

【0010】[0010]

【作用】本発明のボンディングツールでは、少なくとも
その押圧面部分を導電性の多結晶ダイヤモンドにより構
成しているので、この多結晶ダイヤモンドに直接通電し
て抵抗加熱させることができる。しかも、金属単体のボ
ンディングツールや金属シャンクの押圧面部分に非導電
性のダイヤモンド等を設けた従来のボンディングツール
に比べ、第1に所定温度に加熱する部分の熱容量が小さ
く、第2に熱伝導率が10W/cm・℃以上と大きいこ
とから、温度の応答性に優れており、従来に比較して短
時間での加熱及び冷却が可能である。
In the bonding tool of the present invention, since at least the pressing surface portion is made of conductive polycrystalline diamond, the polycrystalline diamond can be heated directly by applying a current. In addition, compared to a single metal bonding tool or a conventional bonding tool in which a non-conductive diamond or the like is provided on the pressing surface of a metal shank, first, the heat capacity of a portion heated to a predetermined temperature is small, and second, heat conduction is reduced. Since the rate is as large as 10 W / cm · ° C. or higher, the temperature response is excellent, and heating and cooling can be performed in a shorter time as compared with the related art.

【0011】かかる導電性の多結晶ダイヤモンドは、多
結晶ダイヤモンドにB、Al、P、Sb、Si、Li、
S、Se、Cl、N、W、Ta、Re、Cr等の金属、
半金属、非金属元素のうち、1種又は2種以上の不純物
を含有させることにより得られることは既に知られてい
る。その具体的な製造方法としては、多結晶ダイヤモン
ドを合成するための公知の低圧気相合成法において、水
素とメタン等の炭素含有ガスとの原料ガスに上記不純物
のガス又は不純物を含有するガスを適量加えることによ
り、基材上に直接合成することができる。又、低圧気相
合成法により合成された多結晶ダイヤモンドに、公知の
拡散法やイオン注入法を用いて不純物を添加することも
できる。
[0011] Such conductive polycrystalline diamond includes B, Al, P, Sb, Si, Li,
Metals such as S, Se, Cl, N, W, Ta, Re, Cr,
It is already known that it can be obtained by including one or two or more types of impurities among semimetals and nonmetallic elements. As a specific production method, in a known low-pressure gas-phase synthesis method for synthesizing polycrystalline diamond, a gas containing the impurity or a gas containing the impurity is used as a raw material gas of hydrogen and a carbon-containing gas such as methane. By adding an appropriate amount, it can be directly synthesized on a substrate. Further, impurities can also be added to polycrystalline diamond synthesized by a low-pressure vapor phase synthesis method using a known diffusion method or ion implantation method.

【0012】このように不純物を添加した多結晶ダイヤ
モンドは、添加した不純物の種類により導電性の程度は
異なるが、同一不純物では含有量が多いほど導電性も大
きくなる。しかし、本発明で用いる導電性の多結晶ダイ
ヤモンドとして好ましい比抵抗率は、10-5〜105Ω・
cmの範囲であり、10-3〜103Ω・cmの範囲が更に
好ましい。比抵抗率が105Ω・cmより大きいと、直接
通電して所定温度まで抵抗加熱させることが困難であ
り、逆に10-5Ω・cmより小さい場合には簡単に通電
できるが、不純物含有量が多くなるので高温での耐摩耗
性や平坦度が低下しやすいからである。
Although the degree of conductivity of the polycrystalline diamond to which impurities are added varies depending on the type of the added impurities, the conductivity increases as the content of the same impurity increases. However, the specific resistivity preferable as the conductive polycrystalline diamond used in the present invention is 10 −5 to 10 5 Ω ·
cm, more preferably from 10 -3 to 10 3 Ω · cm. When the specific resistivity is larger than 10 5 Ω · cm, it is difficult to directly heat and carry out resistance heating to a predetermined temperature. Conversely, when the specific resistance is smaller than 10 -5 Ω · cm, the current can be easily supplied. This is because, since the amount increases, the wear resistance at high temperatures and the flatness tend to decrease.

【0013】添加する不純物については、ダイヤモンド
は格子定数が3.56672Åで原子間距離が非常に短
いので、原子半径の小さいものが好ましい。又、金属元
素は多結晶ダイヤモンドの耐摩耗性や実用上の平坦度に
大きく影響するうえ、原子半径が大きいものが多いので
ダイヤモンドの格子間や置換型としては入り難く、粒界
に偏析して結晶性を低下させるので、その添加量は少な
いほど好ましい。このような観点から、多結晶ダイヤモ
ンドに導電性を付与するために添加する不純物としては
ホウ素(B)が特に好ましい。
As for the impurities to be added, diamond has a lattice constant of 3.56562 ° and a very small interatomic distance, and therefore, it is preferable that diamond has a small atomic radius. Metal elements greatly affect the wear resistance and practical flatness of polycrystalline diamond.Because many of them have large atomic radii, they are difficult to enter as a diamond interstitial or substitutional type, and segregate at grain boundaries. Since the crystallinity is reduced, it is preferable that the amount of addition is small. From such a viewpoint, boron (B) is particularly preferable as an impurity added for imparting conductivity to polycrystalline diamond.

【0014】又、多結晶ダイヤモンドの炭素に対する添
加不純物の濃度は、不純物の種類により異なるが、多結
晶ダイヤモンドの結晶性を維持して優れた耐摩耗性や平
坦度を保ったまま、通電により抵抗加熱できる程度の導
電性を付与し得る範囲とする。例えば、ホウ素の場合の
炭素に対する濃度は、0.1ppm未満では比抵抗率が
高すぎ通電による抵抗加熱が不可能であり、50000
ppmを越えるとダイヤモンドの結晶性が劣化し、低圧
気相合成法の場合はグラファイトやアモルファスカーボ
ン等が同時に析出し、従って高温での耐摩耗性や平坦度
が極端に低下するので、0.1〜50000ppmの範
囲が好ましい。
The concentration of the impurity added to the carbon of the polycrystalline diamond depends on the type of the impurity. However, while maintaining the crystallinity of the polycrystalline diamond and maintaining excellent abrasion resistance and flatness, the resistance is increased by energization. The range is set so that conductivity sufficient to be heated can be imparted. For example, when the concentration of boron with respect to carbon is less than 0.1 ppm, the specific resistance is too high and resistance heating by energization is impossible, and 50,000
If the content exceeds ppm, the crystallinity of diamond deteriorates, and in the case of low-pressure gas phase synthesis, graphite, amorphous carbon, etc. are simultaneously precipitated, and therefore, the wear resistance and flatness at high temperatures are extremely reduced. A range of 5050,000 ppm is preferred.

【0015】このように導電性を付与するため添加され
た不純物は、多結晶ダイヤモンドの結晶格子内に侵入し
又は格子の一部と置換した型で含有されるので、本発明
による導電性の多結晶ダイヤモンドは全体として単一の
ダイヤモンドとしての性状を保持しており、多数のダイ
ヤモンド微粒子を結合金属で結合したダイヤモンド焼結
体と異なる。従って、含有不純物が実装中にリードのメ
ッキ材であるSnやプリント基板上の半田等と合金化す
ることがなく、押圧面が汚れないので、ダイヤモンド焼
結体を用いた従来のボンディングツールよりもクリーニ
ング頻度を低減させることができる。
The impurities added to impart conductivity as described above are contained in a form in which the impurities penetrate into the crystal lattice of the polycrystalline diamond or are substituted for a part of the lattice. Crystalline diamond retains the properties of a single diamond as a whole, and is different from a diamond sintered body in which a large number of fine diamond particles are bonded with a bonding metal. Therefore, the contained impurities do not alloy with the lead plating material Sn or the solder on the printed circuit board during mounting, and the pressing surface is not stained, so that the conventional bonding tool using a diamond sintered body is not used. The frequency of cleaning can be reduced.

【0016】尚、本発明のボンディングツールは、全体
を導電性の多結晶ダイヤモンド単体で構成しても良い
が、経済的及び強度的な観点からSiCやSi34等の
基材又はシャンクを使用し、その少なくとも押圧面の部
分に導電性の多結晶ダイヤモンドを析出させ又はロウ付
け等により接合しても良い。
The bonding tool of the present invention may be entirely composed of a single conductive polycrystalline diamond. However, from the viewpoint of economy and strength, a base or shank such as SiC or Si 3 N 4 is used. Alternatively, conductive polycrystalline diamond may be deposited on at least a portion of the pressing surface, or may be joined by brazing or the like.

【0017】[0017]

【実施例1】原料ガスとして水素、メタン、ジボラン
(B26)を用いた低圧気相合成法により、全ガス流量
1000SCCM、B/C比1000ppm、圧力40
Torrの条件で、Si基材上に不純物としてBを含む
多結晶ダイヤモンドを1.5mmの厚さに析出させ、そ
の後Si基材を硝フッ酸で溶解除去して、図1に示す押
圧面2の寸法が幅1.3mm及び長さ(L)25mmの、
導電性の多結晶ダイヤモンド1のみからなる本発明例の
ボンディングツールを作製した。この多結晶ダイヤモン
ドは、SIMS(Secondary Ion Mass Spectrometry)
法によりCに対するB濃度を定量したところ550pp
mであり、比抵抗率は10-1Ω・cmであった。
Example 1 A low-pressure gas-phase synthesis method using hydrogen, methane, and diborane (B 2 H 6 ) as raw material gases was performed at a total gas flow rate of 1000 SCCM, a B / C ratio of 1000 ppm, and a pressure of 40.
Under the condition of Torr, a polycrystalline diamond containing B as an impurity is deposited to a thickness of 1.5 mm on the Si base, and then the Si base is dissolved and removed with nitric hydrofluoric acid, and the pressing surface 2 shown in FIG. Is 1.3mm wide and 25mm long (L)
A bonding tool according to the present invention made of only the conductive polycrystalline diamond 1 was produced. This polycrystalline diamond is manufactured by SIMS (Secondary Ion Mass Spectrometry).
550 pp
m, and the specific resistivity was 10 −1 Ω · cm.

【0018】一方、比較例として、上記ボンディングツ
ールと同一寸法形状のMo単体からなるボンディングツ
ール、同じMo単体をシャンクとし、図2に示すごと
く、このMo製シャンク4の押圧面側となる一側面に厚
さ1.5mmの硬質物質5としてcBN焼結体及びダイ
ヤモンド焼結体をロウ付けしたボンディングツールをそ
れぞれ作製した。
On the other hand, as a comparative example, a bonding tool made of Mo alone having the same dimensions and shape as the above-mentioned bonding tool, and the same Mo alone as a shank, as shown in FIG. Then, a bonding tool in which a cBN sintered body and a diamond sintered body were brazed as a hard substance 5 having a thickness of 1.5 mm was manufactured.

【0019】各々のボンディングツールの端子部3の間
に通電し、断面積の小さい押圧面部で抵抗加熱させるこ
とにより、押圧面2が400℃に到達するまでの加熱時
間を測定し、更に400℃での押圧面2の温度分布を測
定し、次に空冷により押圧面2が400℃から200℃
に到達するまでの冷却時間を求め、これらの結果を表1
に示した。尚、押圧面2の温度は赤外温度計を用いて測
定した。
Electric current is applied between the terminal portions 3 of the respective bonding tools, and resistance heating is performed on the pressing surface portion having a small cross-sectional area, so that the heating time until the pressing surface 2 reaches 400 ° C. is measured. The temperature distribution of the pressing surface 2 is measured at 400 ° C., and then the pressing surface 2 is heated to 400 ° C. to 200 ° C. by air cooling.
The cooling time until the temperature reached was determined, and these results were shown in Table 1.
It was shown to. In addition, the temperature of the pressing surface 2 was measured using an infrared thermometer.

【0020】[0020]

【表1】 400℃までの 400℃から200℃ 400℃でのボンディングツール 加熱時間(秒) への冷却時間(秒) 温度分布(℃) 本 発 明 例 0.6 2.0 7 Mo 単 体 1.2 3.0 60 Moシャンク+cBN焼結体 1.5 6.0 16 Moシャンク+タ゛イヤモント゛焼結体 1.8 7.5 30 上記表1から、本発明例の多結晶ダイヤモンド単体から
なるボンディングツールは、従来例のボンディングツー
ルに比べ温度応答性及び押圧面の温度分布が共に優れて
いることが分かる。
Table 1 Cooling time (sec) from 400 ° C up to 400 ° C to 200 ° C to 400 ° C bonding tool heating time (sec) Temperature distribution (° C) Example of present invention 0.6 2.07 Mo unit 1.2 3.0 60 Mo shank + cBN sintered body 1.5 6.0 16 Mo shank + Tiamont sintered body 1.8 7.5 30 From the above Table 1, bonding made of polycrystalline diamond alone of the present invention example It can be seen that the tool is superior in both the temperature response and the temperature distribution of the pressing surface as compared with the conventional bonding tool.

【0021】[0021]

【実施例2】実施例1と同一条件の低圧気相合成法によ
り、図3及び図4に示すごとく、Si基材6の表面及び
押圧面2となるべき一側面にBを含む多結晶ダイヤモン
ド1を0.5mmの厚さに析出させ、押圧面2の寸法が
幅(W)2.0mm及び長さ(L)30mmの本発明例のボ
ンディングツールを作製した。この多結晶ダイヤモンド
のCに対するB濃度及び比抵抗率は実施例1と同じであ
った。
Embodiment 2 As shown in FIGS. 3 and 4, polycrystalline diamond containing B on the surface of the Si substrate 6 and one side to be the pressing surface 2 by the low-pressure gas phase synthesis method under the same conditions as in Embodiment 1. 1 was deposited to a thickness of 0.5 mm, and a pressing tool 2 having a width (W) of 2.0 mm and a length (L) of 30 mm was prepared as a bonding tool of the present invention. The B concentration and the specific resistivity to C of the polycrystalline diamond were the same as those in Example 1.

【0022】一方、比較例として、上記ボンディングツ
ールと同一寸法形状のMo単体からなるボンディングツ
ール、及びこのMo単体をシャンクとし、図2の場合と
同様に、このMo製シャンク4の押圧面側となる一側面
に厚さ1.5mmの硬質物質5としてcBN焼結体及び
ダイヤモンド焼結体をロウ付けしたボンディングツール
をそれぞれ作製した。
On the other hand, as a comparative example, a bonding tool made of Mo alone having the same dimensions and shape as the above-mentioned bonding tool, and this Mo alone was used as a shank. As shown in FIG. A bonding tool in which a cBN sintered body and a diamond sintered body were brazed as a hard substance 5 having a thickness of 1.5 mm on one side surface was prepared.

【0023】各々のボンディングツールの端子部3の間
に通電して抵抗加熱し、実施例1と同様にして、押圧面
2が200℃に到達するまでの加熱時間を測定し、更に
200℃での押圧面2の温度分布を測定し、次に空冷に
より押圧面2が200℃から100℃に到達するまでの
冷却時間を求め、これらの結果を表2に示した。
Electric current is applied between the terminals 3 of the respective bonding tools to perform resistance heating, and the heating time until the pressing surface 2 reaches 200 ° C. is measured in the same manner as in the first embodiment. The temperature distribution of the pressing surface 2 was measured, and then the cooling time until the pressing surface 2 reached 200 ° C. to 100 ° C. by air cooling was determined. The results are shown in Table 2.

【0024】[0024]

【表2】 200℃までの 200℃から100℃ 200℃でのボンディングツール 加熱時間(秒) への冷却時間(秒) 温度分布(℃) 本 発 明 例 0.3 4.7 5 Mo 単 体 0.6 9.0 50 Moシャンク+cBN焼結体 0.8 12.0 10 Moシャンク+タ゛イヤモント゛焼結体 0.9 13.5 18 上記表2から、本発明例のSiシャンク上に多結晶ダイ
ヤモンドを設けたボンディングツールは、従来例のボン
ディングツールに比べ温度応答性及び押圧面の温度分布
が共に優れていることが分かる。
TABLE 2 Cooling time (seconds) Temperature distribution from 200 ° C. to 200 ° C. to 100 ° C. 200 ° C. bonding tool heating time in seconds (° C.) the onset bright example 0.3 4.7 5 Mo single body 0.6 9.0 50 Mo shank + cBN sintered body 0.8 12.0 10 Mo shank + Tiamont sintered body 0.9 13.5 18 From Table 2 above, polycrystalline diamond on Si shank of the present invention example It can be seen that the bonding tool provided with is superior in both the temperature responsiveness and the temperature distribution of the pressing surface as compared with the bonding tool of the conventional example.

【0025】[0025]

【実施例3】実施例1と同様の低圧気相合成法により、
ただしメタンに対するジボランの濃度を変化させて、C
に対するBの濃度が0.01ppm、200pp
m、5000ppm、及び80000ppmの多結
晶ダイヤモンドを、Si基材上に1.5mmの厚さに析
出させた。しかる後、Si基材をフッ硝酸で溶解除去し
て、それぞれ実施例1と同一寸法の多結晶ダイヤモンド
単体からなるボンディングツールを作製した。
Example 3 By the same low-pressure gas phase synthesis method as in Example 1,
However, by changing the concentration of diborane to methane,
Concentration of B with respect to 0.01 ppm, 200 pp
m, 5000 ppm, and 80,000 ppm of polycrystalline diamond were deposited on Si substrates to a thickness of 1.5 mm. Thereafter, the Si base material was dissolved and removed with hydrofluoric nitric acid to produce a bonding tool made of a single polycrystalline diamond having the same dimensions as in Example 1.

【0026】得られた各ボンディングツールについて、
比抵抗率を測定すると共に、実施例1と同様にして、押
圧面2が400℃に到達するまでの加熱時間、400℃
での押圧面2の温度分布、及び押圧面2が400℃から
200℃に到達するまでの冷却時間を求め、これらの結
果を表3に示した。
For each of the obtained bonding tools,
The specific resistance was measured, and the heating time until the pressing surface 2 reached 400 ° C., 400 ° C. in the same manner as in Example 1.
The temperature distribution of the pressed surface 2 and the cooling time required for the pressed surface 2 to reach 200 ° C. from 400 ° C. were obtained. The results are shown in Table 3.

【0027】[0027]

【表3】 試 料 比抵抗率 400℃までの 400℃から200℃ 400℃でのB 濃 度 (Ω・cm) 加熱時間(秒) への冷却時間(秒) 温度分布(℃) 0.01ppm 109 通電不可 通電不可 通電不可 200ppm 100 0.8 2.3 8.2 5000ppm 10-2 0.6 2.0 7 80000ppm 10-6 1.1 2.8 55 (注)試料のとは比較例である。[Table 3] Sample Specific resistivity B-concentration at 400 ° C from 400 ° C to 200 ° C 400 ° C Concentration (Ωcm) Heating time (second) Cooling time (second) Temperature distribution (° C) 0.01 ppm 10 9 energized not energized not energized Call 200ppm 10 0 0.8 2.3 8.2 5000ppm 10 -2 0.6 2.0 7 80000ppm 10 -6 1.1 2.8 55 ( Note) Comparative examples as samples It is.

【0028】[0028]

【実施例4】水素とメタンを原料ガスとする通常の低圧
気相合成法により多結晶ダイヤモンドをSi基板上に析
出させ、Si基板を溶解除去して実施例1と同一形状寸
法のボンディングツールを作製した。次に、公知のイオ
ン注入法を用いて、ボンディングツールの多結晶ダイヤ
モンド表面からBとCを同時にイオン注入した。注入条
件は、加速エネルギー200kV、Bのドーピング量1
15/cm2及びCのドーピング量5×1015/cm2
した。
Fourth Embodiment Polycrystalline diamond is deposited on a Si substrate by a normal low-pressure gas phase synthesis method using hydrogen and methane as raw material gases, and the Si substrate is dissolved and removed to obtain a bonding tool having the same shape and dimensions as in the first embodiment. Produced. Next, B and C were simultaneously ion-implanted from the surface of the polycrystalline diamond of the bonding tool using a known ion implantation method. The implantation conditions are as follows: acceleration energy 200 kV, B doping amount 1
0 15 / cm 2 and the C doping amount were 5 × 10 15 / cm 2 .

【0029】得られた多結晶ダイヤモンドは、SIMS
法により測定したCに対するB濃度が10ppmであ
り、比抵抗率は102Ω・cm(抵抗値約50kΩ)であ
った。又、このBを含有した多結晶ダイヤモンド単体か
らなるボンディングツールについて、実施例1と同様に
して温度応答性及び押圧面の温度分布を求めたところ、
押圧面が400℃に到達するまでの加熱時間は0.7
秒、押圧面が400℃から200℃に到達するまでの冷
却時間は2.0秒、及び400℃での押圧面の温度分布
は7℃であり、温度応答性及び温度分布共に優れている
ことが判った。
The obtained polycrystalline diamond was obtained by SIMS
The B concentration with respect to C measured by the method was 10 ppm, and the specific resistivity was 10 2 Ω · cm (resistance value about 50 kΩ). Further, with respect to the bonding tool consisting of a simple polycrystalline diamond containing B, the temperature responsiveness and the temperature distribution of the pressed surface were determined in the same manner as in Example 1.
The heating time until the pressing surface reaches 400 ° C is 0.7
Seconds, the cooling time for the pressing surface to reach 200 ° C from 400 ° C is 2.0 seconds, and the temperature distribution of the pressing surface at 400 ° C is 7 ° C, and both the temperature responsiveness and the temperature distribution are excellent. I understood.

【0030】[0030]

【発明の効果】本発明によれば、不純物を添加して導電
性を付与した多結晶ダイヤモンドを用いてボンディング
ツールを構成し、しかも熱伝導率の高い多結晶ダイヤモ
ンド自身に通電して抵抗加熱させるようにしたので、従
来のボンディングツールに比べて温度応答性並びに押圧
面の温度分布を大幅に改善することができる。
According to the present invention, a bonding tool is constituted by using polycrystalline diamond to which impurities are added to impart conductivity, and the polycrystalline diamond itself having a high thermal conductivity is supplied with electric current for resistance heating. As a result, the temperature responsiveness and the temperature distribution on the pressing surface can be significantly improved as compared with the conventional bonding tool.

【0031】しかも、多結晶ダイヤモンドを用いること
によって、ボンディングツールの押圧面の平坦度及び耐
摩耗性にも優れるばかりか、多結晶ダイヤモンドに含有
される不純物はダイヤモンド焼結体と違ってリードのメ
ッキ材やプリント基板上の半田等と合金化することがな
いので、押圧面に汚れが付着し難く、クリーニングを頻
繁に行う必要がなくなる。
Moreover, by using polycrystalline diamond, not only is the flatness and abrasion resistance of the pressing surface of the bonding tool excellent, but also the impurities contained in the polycrystalline diamond are different from the diamond sintered body in that the plating of the lead is performed. Since there is no alloying with the material or the solder on the printed circuit board, dirt hardly adheres to the pressing surface, and frequent cleaning is not required.

【0032】従って、本発明のボンディングツールを用
いることによって、ボンディングツール自身の加熱及び
冷却が迅速で且つ押圧面のクリーニング頻度を低減でき
るので、半導体素子の実装に要する時間を短縮すること
ができ、押圧面の平坦度と温度分布の改良に伴う精度の
向上と相俟って、半導体素子実装工程の高能率化及び高
精度化に極めて有効である。
Therefore, by using the bonding tool of the present invention, the heating and cooling of the bonding tool itself can be performed quickly and the frequency of cleaning the pressing surface can be reduced, so that the time required for mounting the semiconductor element can be reduced. This is extremely effective in improving the efficiency and accuracy of the semiconductor element mounting process, in combination with the improvement in accuracy due to the improvement in the flatness of the pressing surface and the temperature distribution.

【図面の簡単な説明】[Brief description of the drawings]

【図1】導電性の多結晶ダイヤモンドのみからなる本発
明のボンディングツールの一具体例を示す正面図であ
る。
FIG. 1 is a front view showing a specific example of a bonding tool of the present invention made of only conductive polycrystalline diamond.

【図2】金属製シャンクに硬質物質を接合した従来のボ
ンディングツールの一具体例を示す正面図である。
FIG. 2 is a front view showing a specific example of a conventional bonding tool in which a hard material is bonded to a metal shank.

【図3】基材上に導電性の多結晶ダイヤモンドを設けた
本発明のボンディングツールの一具体例を示す正面図で
ある。
FIG. 3 is a front view showing a specific example of the bonding tool of the present invention in which conductive polycrystalline diamond is provided on a substrate.

【図4】図3に示すボンディングツールの側面図であ
る。
FIG. 4 is a side view of the bonding tool shown in FIG. 3;

【符号の説明】[Explanation of symbols]

1 多結晶ダイヤモンド 2 押圧面 3 端子部 4 Mo製シャンク 5 硬質物質 6 Si基材 DESCRIPTION OF SYMBOLS 1 Polycrystalline diamond 2 Pressing surface 3 Terminal part 4 Mo shank 5 Hard substance 6 Si base

───────────────────────────────────────────────────── フロントページの続き (72)発明者 池ヶ谷 明彦 兵庫県伊丹市昆陽北一丁目1番1号 住 友電気工業株式会社 伊丹製作所内 (72)発明者 藤森 直治 兵庫県伊丹市昆陽北一丁目1番1号 住 友電気工業株式会社 伊丹製作所内 (56)参考文献 特開 平1−280327(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 21/60 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Akihiko Ikegaya 1-1-1, Koyo Kita, Itami-shi, Hyogo Sumitomo Electric Industries, Ltd. Itami Works (72) Inventor Naoji Fujimori 1-chome, Koyo-Kita, Itami-shi, Hyogo No. 1-1 In Itami Works, Sumitomo Electric Industries, Ltd. (56) References JP-A-1-280327 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01L 21/60

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 半導体素子の実装に用いるボンディング
ツールにおいて、少なくとも押圧面部分がホウ素を含む
導電性の多結晶ダイヤモンドからなり、多結晶ダイヤモ
ンドの炭素に対するホウ素の濃度が0.1〜50000
ppmであって、その多結晶ダイヤモンドが抵抗加熱の
ための通電用の端子部を備えることを特徴とするボンデ
ィングツール。
In a bonding tool used for mounting a semiconductor element, at least a pressing surface portion is made of conductive polycrystalline diamond containing boron, and a polycrystalline diamond is formed.
Concentration of boron to carbon in the carbon is 0.1 to 50,000.
A bonding tool, characterized in that the polycrystalline diamond is provided with a current-carrying terminal for resistance heating.
【請求項2】 前記多結晶ダイヤモンドの比抵抗率が1
−5〜10Ω・cmであることを特徴とする、請求
項1記載のボンディングツール。
2. The polycrystalline diamond has a specific resistivity of 1
0 -5 characterized in that it is a ~10 5 Ω · cm, bonding tool of claim 1, wherein.
JP06925392A 1992-02-18 1992-02-18 Bonding tool Expired - Fee Related JP3180419B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06925392A JP3180419B2 (en) 1992-02-18 1992-02-18 Bonding tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06925392A JP3180419B2 (en) 1992-02-18 1992-02-18 Bonding tool

Publications (2)

Publication Number Publication Date
JPH05226421A JPH05226421A (en) 1993-09-03
JP3180419B2 true JP3180419B2 (en) 2001-06-25

Family

ID=13397386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06925392A Expired - Fee Related JP3180419B2 (en) 1992-02-18 1992-02-18 Bonding tool

Country Status (1)

Country Link
JP (1) JP3180419B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100445275B1 (en) * 1996-05-27 2004-10-14 스미토모덴키고교가부시키가이샤 Tool tip and bonding tool comprising the tool tip and control method for the bonding tool
US7389905B2 (en) * 1999-02-25 2008-06-24 Reiber Steven F Flip chip bonding tool tip

Also Published As

Publication number Publication date
JPH05226421A (en) 1993-09-03

Similar Documents

Publication Publication Date Title
US4005454A (en) Semiconductor device having a solderable contacting coating on its opposite surfaces
KR100310478B1 (en) Thermoelectric piece and process of making the same
US5653376A (en) High strength bonding tool and a process for the production of the same
EP0248445A2 (en) Semiconductor device having a diffusion barrier and process for its production
US2555001A (en) Bonded article and method of bonding
AU743474B2 (en) Thermoelectric element
US5512873A (en) Highly-oriented diamond film thermistor
JP4699822B2 (en) Manufacturing method of semiconductor module
JP3646548B2 (en) SiC semiconductor devices
WO1996022611A1 (en) A method of producing an ohmic contact and a semiconductor device provided with such ohmic contact
KR100445275B1 (en) Tool tip and bonding tool comprising the tool tip and control method for the bonding tool
KR102125051B1 (en) Thermoelectric module
KR970005162B1 (en) Improvements in or relating to high-tc superconducting units having low contact surface resistivity
JPH0555640A (en) Manufacture of thermoelectric converter and thermoelectric converter manufactured by the same
JP3180419B2 (en) Bonding tool
JP2878887B2 (en) Semiconductor electrode structure
EP3139419A1 (en) Thermoelectric conversion module and manufacturing method thereof
JPH07245276A (en) Method for manufacturing silicon carbide electronic device
US3071854A (en) Method of producing a broad area low resistance contact to a silicon semiconductor body
US20040065711A1 (en) Compression bonding tools and associated bonding methods
EP0424857B1 (en) Process for producing ohmic electrode for p-type cubic system boron nitride
JP2022078352A (en) Current detection resistor and manufacturing method thereof
US4017266A (en) Process for making a brazed lead electrode, and product thereof
EP0942469A2 (en) Connecting lead for semiconductor devices and method for fabricating the lead
US3442718A (en) Thermoelectric device having a graphite member between thermoelement and refractory hot strap

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090420

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090420

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100420

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110420

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees