JP3179278B2 - Photoelectrochemical measurement system - Google Patents

Photoelectrochemical measurement system

Info

Publication number
JP3179278B2
JP3179278B2 JP05224794A JP5224794A JP3179278B2 JP 3179278 B2 JP3179278 B2 JP 3179278B2 JP 05224794 A JP05224794 A JP 05224794A JP 5224794 A JP5224794 A JP 5224794A JP 3179278 B2 JP3179278 B2 JP 3179278B2
Authority
JP
Japan
Prior art keywords
measurement
electrode
photoelectrochemical
light
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05224794A
Other languages
Japanese (ja)
Other versions
JPH07260659A (en
Inventor
明 江川
宏 村松
Original Assignee
セイコーインスツルメンツ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セイコーインスツルメンツ株式会社 filed Critical セイコーインスツルメンツ株式会社
Priority to JP05224794A priority Critical patent/JP3179278B2/en
Publication of JPH07260659A publication Critical patent/JPH07260659A/en
Application granted granted Critical
Publication of JP3179278B2 publication Critical patent/JP3179278B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、化学生物学、物理
学、医学、環境科学、エネルギー科学、電子工学および
その関連工業分野において利用可能な、電気化学的に形
成される表面の被膜の測定、分析を行う装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the measurement of electrochemically formed surface coatings which can be used in the fields of chemical biology, physics, medicine, environmental science, energy science, electronics and related industries. And an apparatus for performing the analysis.

【0002】[0002]

【従来の技術】従来、水晶振動子を用いた電気化学計測
技術としては、水晶振動子表面の重量、粘弾性の変化を
反映する共振周波数変化と粘弾性を反映する共振抵抗の
同時測定技術が本発明者らによって開示されている。こ
の測定により、電気化学反応に伴う水晶振動子の被膜の
重量変化、粘弾性変化を検出することができる。この技
術により、電気化学反応に伴う被膜の組成変化や構造の
変化の検出等についての研究がなされている。また、こ
の際用いられる水晶振動子は金属電極を形成したもので
ある。
2. Description of the Related Art Conventionally, as an electrochemical measurement technique using a quartz oscillator, a simultaneous measurement technique of a resonance frequency change reflecting a weight and a viscoelasticity of a quartz oscillator surface and a resonance resistance reflecting a viscoelasticity is known. It has been disclosed by the present inventors. By this measurement, it is possible to detect a change in weight and a change in viscoelasticity of the film of the quartz oscillator due to the electrochemical reaction. Research has been conducted on the detection of a change in the composition or structure of a film due to an electrochemical reaction by this technique. The crystal unit used at this time has a metal electrode formed thereon.

【0003】分光光度測定は、光透過率の波長依存性を
測定するものであり、光を照射した試料の吸光特性が原
子、分子固有であることを利用し、官能基の検出および
組成分析や構造分析等に用いられている。
[0003] Spectrophotometry measures the wavelength dependence of light transmittance, and makes use of the fact that the light-absorbing characteristics of a sample irradiated with light are inherent to atoms and molecules. It is used for structural analysis.

【0004】[0004]

【発明が解決しようとする課題】前述のような水晶振動
子を用いた電気化学測定において、電気化学反応に伴う
被膜の重量変化や粘弾性変化の検出のみでは、その電気
化学反応における被膜の構造や組成の変化を十分分析で
きないことがあった。同様に光電気化学測定法において
も、光透過率測定のみでは被膜の構造、組成変化を十分
分析できないことがあった。したがって、従来の測定に
加えて、被膜の状態変化を明確にする測定システムの開
発が必要となっている。
In the electrochemical measurement using a quartz oscillator as described above, the structure of the film in the electrochemical reaction is detected only by detecting the change in weight or viscoelasticity of the film due to the electrochemical reaction. And the change of composition cannot be analyzed sufficiently. Similarly, in the photoelectrochemical measurement method, the change in the structure and composition of the coating film cannot be sufficiently analyzed only by measuring the light transmittance. Therefore, in addition to the conventional measurement, there is a need to develop a measurement system that clarifies a change in the state of the coating.

【0005】そこで本発明の目的は、電気化学測定と分
光光度測定を同時に行うことを可能とする水晶振動子お
よび計測システムを提供することにある。
It is an object of the present invention to provide a quartz oscillator and a measuring system which enable simultaneous electrochemical measurement and spectrophotometric measurement.

【0006】[0006]

【課題を解決するための手段】上記の課題を解決するた
め、電極として透明導電膜を有する光電気化学測定用水
晶振動子および電極として透明導電膜上に形成された金
属薄膜を有する光電気化学測定用水晶振動子を考案し、
さらに水晶振動子、光学参照用水晶振動子、光電気化学
測定用セル、光の波長に対して光透過率の測定可能な分
光光度測定手段、電流電位設定測定手段、水晶振動子の
共振周波数、共振抵抗の測定可能な水晶振動子の特性測
定手段、システム全体を制御する制御手段から構成さ
れ、光電気化学測定用セルが、対極及び参照極を有し、
電解質溶液に露出される電極を作用極とする水晶振動子
と光学参照用水晶振動子をそれぞれ分光光度測定手段の
測定光路上と参照光路上に、透明板と近接して固定する
ものであり、電流電位設定測定手段に対極、参照極、作
用極を接続することにより、電気化学反応に伴う電位、
電流、共振周波数、共振抵抗、光透過率を同時に測定で
きる光電気化学測定システムを考案した。
In order to solve the above-mentioned problems, a quartz oscillator for photoelectrochemical measurement having a transparent conductive film as an electrode and a photoelectrochemical device having a metal thin film formed on a transparent conductive film as an electrode are provided. Devised a quartz oscillator for measurement,
Furthermore, a quartz oscillator, a quartz oscillator for optical reference, a cell for photoelectrochemical measurement, a spectrophotometric measuring means capable of measuring light transmittance with respect to the wavelength of light, a current potential setting measuring means, a resonance frequency of the quartz oscillator, Characteristic measurement means of the crystal unit capable of measuring the resonance resistance, comprising control means for controlling the entire system, the photoelectrochemical measurement cell has a counter electrode and a reference electrode,
A quartz oscillator having an electrode exposed to the electrolyte solution as a working electrode and a quartz oscillator for optical reference are fixed on a measurement optical path and a reference optical path of a spectrophotometer, respectively, in close proximity to a transparent plate, By connecting the counter electrode, the reference electrode, and the working electrode to the current potential setting measurement means, the potential associated with the electrochemical reaction,
We devised a photoelectrochemical measurement system that can simultaneously measure current, resonance frequency, resonance resistance, and light transmittance.

【0007】[0007]

【作用】請求項1記載の水晶振動子は、透明導電膜を電
極として形成することにより、水晶振動子上の被膜の分
光光度測定と水晶振動子を用いた電気化学測定を同時に
行うことを可能とする。請求項2記載の水晶振動子は、
電気化学的な金属電極の特性が必要な場合に、光透過率
に影響を与えない程度の金属薄膜を透明導電膜上に形成
することで、上記の測定と同様の測定を可能とする。ま
た、この際の透明導電膜は、金属薄膜と水晶振動子の密
着性を良好に保つ作用も有している。
The quartz resonator according to the first aspect of the present invention is capable of simultaneously performing a spectrophotometric measurement of a film on the quartz resonator and an electrochemical measurement using the quartz resonator by forming a transparent conductive film as an electrode. And The quartz resonator according to claim 2 is
When electrochemical metal electrode characteristics are required, the same measurement as described above can be performed by forming a metal thin film on the transparent conductive film that does not affect the light transmittance. In addition, the transparent conductive film at this time also has an action of maintaining good adhesion between the metal thin film and the quartz oscillator.

【0008】請求項3記載の計測システムは、請求項1
あるいは請求項2記載の水晶振動子を用いて、電気化学
反応に伴う電位、電流、共振周波数、共振抵抗、光透過
率の同時測定を実現するシステムである。このシステム
により、共振周波数変化と共振抵抗変化から被膜の重量
変化と粘弾性変化を分析し、被膜の分光スペクトルから
選定された、その被膜の特徴的な波長での光透過率変化
から被膜の定量分析を行うことにより、電気化学反応に
伴う被膜の状態変化を明確にすることが可能になった。
また、この際使用される測定用セルは、水晶振動子と対
向する透明板との間隔を狭めることによって、溶液の光
吸収を抑える作用を有している。
[0008] The measuring system according to the third aspect is the first aspect.
Alternatively, there is provided a system for realizing simultaneous measurement of potential, current, resonance frequency, resonance resistance, and light transmittance associated with an electrochemical reaction by using the quartz oscillator according to claim 2. This system analyzes changes in weight and viscoelasticity of the coating from changes in resonance frequency and resonance resistance, and quantifies the coating from changes in light transmittance at characteristic wavelengths of the coating, selected from the spectral spectrum of the coating. By performing the analysis, it became possible to clarify the change in the state of the film due to the electrochemical reaction.
In addition, the measuring cell used at this time has an effect of suppressing the light absorption of the solution by narrowing the distance between the quartz oscillator and the opposing transparent plate.

【0009】[0009]

【実施例】以下この発明の実施例を図面に基づいて説明
する。図1は、本発明の光電気化学測定用水晶振動子の
構成を示すものであり、(a)は平面図、(b)は断面
図である。電極となる透明導電膜2は水晶振動子1の両
面に形成される。
Embodiments of the present invention will be described below with reference to the drawings. 1A and 1B show a configuration of a quartz oscillator for photoelectrochemical measurement of the present invention, wherein FIG. 1A is a plan view and FIG. 1B is a cross-sectional view. The transparent conductive film 2 serving as an electrode is formed on both surfaces of the crystal unit 1.

【0010】図2は金属薄膜3を透明導電膜2上に形成
した場合の光電気化学測定用水晶振動子の構成を示した
ものであり、(a)は平面図、(b)は断面図である。
この場合は水晶振動子1の片面のみに金属薄膜3を形成
し電極とする。図3は本発明の光電気化学測定用システ
ムの構成図を示したものである。前述の光電気化学測定
用水晶振動子4は、水晶振動子の特性測定手段6に接続
され、同時に光電気化学測定用水晶振動子4の片面の電
極を作用極として、対極10および参照極11とともに
電流電位設定測定手段12に接続されている。また、光
電気化学測定用セル9は、光電気化学測定用水晶振動子
4および光学参照用水晶振動子5を分光光度測定手段1
4の測定光路7上および参照光路8上に固定し、光電気
化学測定用水晶振動子4の作用極となる面が、電解質溶
液中に露出されるように所定量の溶液を有している。水
晶振動子の特性測定手段6、分光光度測定手段14、電
流電位設定測定手段12は制御手段13に接続されてい
る。
FIGS. 2A and 2B show the structure of a quartz oscillator for photoelectrochemical measurement when a metal thin film 3 is formed on a transparent conductive film 2, wherein FIG. 2A is a plan view and FIG. It is.
In this case, the metal thin film 3 is formed only on one side of the crystal unit 1 to serve as an electrode. FIG. 3 shows a configuration diagram of the photoelectrochemical measurement system of the present invention. The above-described quartz crystal unit 4 for photoelectrochemical measurement is connected to the quartz crystal characteristic measuring means 6, and at the same time, a counter electrode 10 and a reference electrode 11 are formed by using an electrode on one side of the quartz crystal unit 4 for photoelectrochemical measurement as a working electrode. In addition, it is connected to the current potential setting measuring means 12. The cell 9 for photoelectrochemical measurement includes the crystal oscillator 4 for photoelectrochemical measurement and the crystal oscillator 5 for optical reference, and the spectrophotometer 1
4 is fixed on the measurement optical path 7 and the reference optical path 8 and has a predetermined amount of solution so that the surface serving as the working electrode of the quartz oscillator 4 for photoelectrochemical measurement is exposed to the electrolyte solution. . The crystal oscillator characteristic measuring means 6, the spectrophotometric measuring means 14, and the current potential setting measuring means 12 are connected to the control means 13.

【0011】図4は測定に用いた分光光度測定手段14
の構成例を示した図である。光源15で発せられた光は
モノクロメーター16により単色光となって試料室17
に入射される。この単色光の光路が測定光路7および参
照光路8である。試料室内に設置された光電気化学測定
用セル9の透明基板18を通り、光電気化学測定用水晶
振動子4と光学参照用水晶振動子5を透過した単色光
は、それぞれ検出回路19で電気量に変換される。
FIG. 4 shows a spectrophotometric measuring means 14 used for the measurement.
FIG. 3 is a diagram showing an example of the configuration. The light emitted from the light source 15 is converted into monochromatic light by the monochromator 16 and the sample
Is incident on. The optical path of the monochromatic light is the measurement optical path 7 and the reference optical path 8. Monochromatic light that has passed through the transparent substrate 18 of the photoelectrochemical measurement cell 9 installed in the sample chamber and passed through the photoelectrochemical measurement quartz crystal unit 4 and the optical reference quartz crystal unit 5 is electrically detected by the detection circuit 19. Converted to quantity.

【0012】実際の測定例を次に示す。ATカット、9
MHzの水晶振動子上にITO透明導電膜、Au金属薄
膜をスパッタリング法により形成し使用した。対極には
Pt電極、参照極には飽和カロメル電極を用い、電解質
溶液には0.1Mリン酸緩衝液(pH7)を使用し、測
定を行った。また、水晶振動子上の被膜には、反応に伴
う膜のpH変化を測定するため、酸塩基用のpH指示薬
であるチモールブルーを用いた。図5に水晶振動子上に
被覆したチモールブルーを酸、塩基、中性の溶液によっ
て呈色した透過率スペクトルを示す。
An example of actual measurement will be described below. AT cut, 9
An ITO transparent conductive film and an Au metal thin film were formed on a quartz crystal oscillator of MHz by a sputtering method and used. The measurement was performed using a Pt electrode as the counter electrode, a saturated calomel electrode as the reference electrode, and a 0.1 M phosphate buffer (pH 7) as the electrolyte solution. Thymol blue, which is a pH indicator for acid and base, was used for the film on the crystal oscillator to measure the pH change of the film accompanying the reaction. FIG. 5 shows a transmittance spectrum in which thymol blue coated on a quartz oscillator is colored with an acid, a base, and a neutral solution.

【0013】図6、図7、図8、図9には代表的な電気
化学活性種であるヒドロキノン/リン酸緩衝液(3.5
mM)について20mV/sで電位をスイープして得た
電流−電位曲線(サイクリックボルタメトリー)、共振
周波数−電位曲線、共振抵抗−電位曲線、波長552n
mでの光透過率−電位曲線を示した。サイクリックボル
タメトリーの酸化又は還元ピークに対応して、共振周波
数、共振抵抗は変化しているが、共振抵抗の絶対値が小
さいことから、ほぼ弾性膜とみなしてよいことがわか
る。つまり、この反応における共振周波数変化は膜の重
量変化に対応しており、被膜と溶液の間に反応種、カチ
オンあるいはアニオン等の物質の移動があると考えられ
る。また、反応に伴い光透過率も変化しており、被膜の
pH変化が確認できる。このpH変化は図5より酸化反
応時には酸側、還元反応時には塩基側に膜の性質が変化
していることを示している。以上の測定から、膜中の物
質の移動量とpH変化を見積もることができる。
FIG. 6, FIG. 7, FIG. 8, and FIG. 9 show a hydroquinone / phosphate buffer (3.5%) which is a typical electrochemically active species.
mM), a current-potential curve (cyclic voltammetry) obtained by sweeping the potential at 20 mV / s, a resonance frequency-potential curve, a resonance resistance-potential curve, and a wavelength 552n.
The light transmittance-potential curve at m was shown. Although the resonance frequency and the resonance resistance change in accordance with the oxidation or reduction peak of the cyclic voltammetry, the absolute value of the resonance resistance is small, which indicates that the film can be regarded as an almost elastic film. That is, the change in the resonance frequency in this reaction corresponds to the change in the weight of the film, and it is considered that a substance such as a reactive species, cation, or anion moves between the film and the solution. In addition, the light transmittance changes with the reaction, and a change in pH of the coating film can be confirmed. This pH change shows that the properties of the film are changed to the acid side during the oxidation reaction and to the base side during the reduction reaction from FIG. From the above measurements, it is possible to estimate the amount of movement of the substance in the membrane and the change in pH.

【0014】また本発明で用いる電気化学測定として
は、サイクリックボルタメトリー以外にも定電位測定、
定電流測定への応用も可能である。さらに、分光測定手
段としては、マルチ測光器によって吸光スペクトルや発
光、蛍光スペクトルイメージをイメージセンサーで測定
することも可能である。
The electrochemical measurement used in the present invention is not limited to cyclic voltammetry.
Application to constant current measurement is also possible. Further, as a spectrometer, it is possible to measure an absorption spectrum, a light emission, and a fluorescence spectrum image with a multi-photometer with an image sensor.

【0015】[0015]

【発明の効果】本発明の光電気化学測定システムによっ
て、電気化学測定における電流と電位および水晶振動子
の共振周波数、共振抵抗と同時に、光透過率を測定する
ことによって、電気化学反応に伴う電極および被膜の状
態変化をより多角的に検討することが可能となり、広い
分野で利用可能な薄膜の研究開発に新しい研究手段を提
供することが可能になった。
According to the photoelectrochemical measurement system of the present invention, the current and the potential in the electrochemical measurement, the resonance frequency and the resonance resistance of the quartz oscillator, and the light transmittance are measured at the same time. In addition, it has become possible to study the change in the state of the coating film from various angles, and it has become possible to provide a new research tool for the research and development of thin films that can be used in a wide range of fields.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の透明導電膜を有する光電気化学測定用
水晶振動子の摸式図である。
FIG. 1 is a schematic view of a quartz oscillator for photoelectrochemical measurement having a transparent conductive film of the present invention.

【図2】本発明の透明導電膜、金属薄膜を有する光電気
化学測定用水晶振動子の摸式図である。
FIG. 2 is a schematic diagram of a quartz oscillator for photoelectrochemical measurement having a transparent conductive film and a metal thin film of the present invention.

【図3】本発明の光電気化学測定システムの構成図であ
る。
FIG. 3 is a configuration diagram of a photoelectrochemical measurement system of the present invention.

【図4】分光光度測定手段の構成例を示した図である。FIG. 4 is a diagram showing a configuration example of a spectrophotometer.

【図5】チモールブルーpH指示薬の分光スペクトル図
である。
FIG. 5 is a spectrum diagram of a thymol blue pH indicator.

【図6】本発明の光電気化学測定システムでヒドロキノ
ンを測定した際の電流−電位曲線である。
FIG. 6 is a current-potential curve when hydroquinone is measured by the photoelectrochemical measurement system of the present invention.

【図7】図6と同様の測定をした際の共振周波数−電位
曲線である。
FIG. 7 is a resonance frequency-potential curve when the same measurement as in FIG. 6 is performed.

【図8】図6と同様の測定をした際の共振抵抗−電位曲
線である。
FIG. 8 is a resonance resistance-potential curve when the same measurement as in FIG. 6 is performed.

【図9】図6と同様の測定をした際の光透過率−電位曲
線である。
FIG. 9 is a light transmittance-potential curve when the same measurement as in FIG. 6 is performed.

【符合の説明】[Description of sign]

1 水晶振動子 2 透明導電膜 3 金属薄膜 4 光電気化学測定用水晶振動子 5 光学参照用水晶振動子 6 水晶振動子の特性測定手段 7 測定光路 8 参照光路 9 光電気化学測定用セル 10 対極 11 参照極 12 電流電位設定測定手段 13 制御手段 14 分光光度測定手段 15 光源 16 モノクロメーター 17 試料室 18 透明板 19 検出回路 REFERENCE SIGNS LIST 1 crystal oscillator 2 transparent conductive film 3 metal thin film 4 crystal oscillator for photoelectrochemical measurement 5 crystal oscillator for optical reference 6 means for measuring characteristics of crystal oscillator 7 measurement optical path 8 reference optical path 9 cell for photoelectrochemical measurement 10 counter electrode DESCRIPTION OF SYMBOLS 11 Reference pole 12 Current potential setting measuring means 13 Control means 14 Spectrophotometric measuring means 15 Light source 16 Monochromator 17 Sample chamber 18 Transparent plate 19 Detection circuit

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G01N 5/02 G01N 27/416 H01L 21/66 H03H 9/19 JICSTファイル(JOIS)──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) G01N 5/02 G01N 27/416 H01L 21/66 H03H 9/19 JICST file (JOIS)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 水晶振動子の両面に前記水晶振動子を発
振させるための電極となる透明導電膜を有し、光を透過
する光電気化学測定用水晶振動子と、光学参照用水晶振
動子と、光電気化学測定用セルと、光の波長に対して光
透過率を測定する分光光度測定手段と、電流電位設定測
定手段と、前記光電気化学測定用水晶振動子の共振周波
数,共振抵抗を測定する水晶振動子の特性測定手段と、
システム全体を制御する制御手段と、から構成され、 前記光電気化学測定用セルが、対極及び参照極を有し、
電解質溶液に露出される電極を作用極とする前記光電気
化学測定用水晶振動子と前記光学参照用水晶振動子をそ
れぞれ分光光度測定手段の測定光路上と参照光路上に透
明板と近接して固定し、電流電位設定測定手段に対極、
参照極、作用極を接続することにより、電気化学反応に
伴う電位、電流、共振周波数、共振抵抗、光透過率を同
時に測定することを特徴とする光電気化学測定システ
ム。
1. A transparent conductive film serving as an electrode for oscillating the crystal oscillator on both sides of the crystal oscillator, and transmitting light.
A light electrochemical measurement crystal resonator, crystal oscillation optical reference
The probe, the photoelectrochemical measurement cell, and the light
A spectrophotometer for measuring the transmittance and a current potential setting
And a resonance frequency of the quartz oscillator for photoelectrochemical measurement.
Means for measuring the number and resonance resistance of the quartz oscillator,
Control means for controlling the entire system, the photoelectrochemical measurement cell has a counter electrode and a reference electrode,
The optoelectronic device having an electrode exposed to an electrolyte solution as a working electrode.
The crystal unit for chemical measurement and the crystal unit for optical reference
Each is transmitted on the measurement optical path and the reference optical path of the spectrophotometer.
Fixed in close proximity to the light plate, counter electrode to the current potential setting measurement means,
By connecting the reference electrode and working electrode,
The potential, current, resonance frequency, resonance resistance, and light transmittance
Photoelectrochemical measurement system characterized by measurement
M
JP05224794A 1994-03-23 1994-03-23 Photoelectrochemical measurement system Expired - Fee Related JP3179278B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05224794A JP3179278B2 (en) 1994-03-23 1994-03-23 Photoelectrochemical measurement system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05224794A JP3179278B2 (en) 1994-03-23 1994-03-23 Photoelectrochemical measurement system

Publications (2)

Publication Number Publication Date
JPH07260659A JPH07260659A (en) 1995-10-13
JP3179278B2 true JP3179278B2 (en) 2001-06-25

Family

ID=12909406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05224794A Expired - Fee Related JP3179278B2 (en) 1994-03-23 1994-03-23 Photoelectrochemical measurement system

Country Status (1)

Country Link
JP (1) JP3179278B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103728354B (en) * 2013-12-23 2015-10-28 华中科技大学 Based on photocatalysis Optical Electro-Chemistry integrated test system and the method for light regulation and control

Also Published As

Publication number Publication date
JPH07260659A (en) 1995-10-13

Similar Documents

Publication Publication Date Title
Jeanmaire et al. Resonance Raman spectroelectrochemistry. 2. Scattering spectroscopy accompanying excitation of the lowest 2B1u excited state of the tetracyanoquinodimethane anion radical
León et al. Designing spectroelectrochemical cells: A review
AU672711B2 (en) Method and apparatus for conducting electrochemiluminescent measurements
Pyun et al. Construction of a microcomputer controlled near normal incidence reflectance spectroelectrochemical system and its performance evaluation
US5296191A (en) Method and apparatus for conducting electrochemiluminescent measurements
US20220349820A1 (en) Fiber-optic sensing apparatus, system and method for characterizing metal ions in solution
JPS591977B2 (en) Analysis method using color test paper
US20100089773A1 (en) Total organic compound (toc) analyzer
Petek et al. Spectroelectrochemistry. Application of optically transparent minigrid electrodes under semiinfinite diffusion conditions
Richardson et al. Spectroelectrochemical Sensing Based on Multimode Selectivity Simultaneously Achievable in a Single Device. 13. Detection of Aqueous Iron by in Situ Complexation with 2, 2 ‘-Bipyridine
Xu et al. Phase-sensitive second-harmonic generation of electrochemical interfaces
Schröder et al. Microscopic in situ diffuse reflectance spectroelectrochemistry of solid state electrochemical reactions of particles immobilized on electrodes
Henderson et al. Combined electrochemical quartz crystal microbalance (EQCM) and probe beam deflection (PBD): validation of the technique by a study of silver ion mass transport
Gyurcsányi et al. Spectroelectrochemical microscopy: spatially resolved spectroelectrochemistry of carrier-based ion-selective membranes
JP3179278B2 (en) Photoelectrochemical measurement system
Pruiksma et al. Spectroelectrochemical observation of diffusion profiles by the parallel absorption method
Peng et al. In situ plasmonic & electrochemical fiber-optic sensor for multi-metal-ions detection
Brilmyer et al. Application of photothermal spectroscopy to in-situ studies of films on metals and electrodes
Mosier-Boss et al. Versatile, low-volume, thin-layer cell for in situ spectroelectrochemistry
US5621334A (en) Method and apparatus for evaluating impurities in a liquid crystal device
Jan et al. High-sensitivity spectroelectrochemistry based on electrochemical modulation of an absorbing analyte
Berkes et al. Combination of nanogravimetry and visible spectroscopy: A tool for the better understanding of electrochemical processes
Loëte et al. Application of total internal reflexion fluorescence microscopy for studying pH changes in an occluded electrochemical cell: Development of a waveguide sensor
Zook et al. Reverse current pulse method to restore uniform concentration profiles in ion-selective membranes. 1. Galvanostatic pulse methods with decreased cycle time
Fujishima et al. Measurement of gold electrode surface changes in situ by laser photothermal spectroscopy

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090413

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100413

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 10

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120413

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees