JP3177361B2 - Optical transmitter - Google Patents

Optical transmitter

Info

Publication number
JP3177361B2
JP3177361B2 JP28849193A JP28849193A JP3177361B2 JP 3177361 B2 JP3177361 B2 JP 3177361B2 JP 28849193 A JP28849193 A JP 28849193A JP 28849193 A JP28849193 A JP 28849193A JP 3177361 B2 JP3177361 B2 JP 3177361B2
Authority
JP
Japan
Prior art keywords
optical
dispersion
fiber
chromatic dispersion
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28849193A
Other languages
Japanese (ja)
Other versions
JPH07143060A (en
Inventor
裕章 中田
優 布施
和貴 前田
義春 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP28849193A priority Critical patent/JP3177361B2/en
Publication of JPH07143060A publication Critical patent/JPH07143060A/en
Application granted granted Critical
Publication of JP3177361B2 publication Critical patent/JP3177361B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Optical Communication System (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、光CATVシステムに
用いる光送信装置において、特に波長分散による伝送特
性の劣化を低減する光送信装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical transmission device used in an optical CATV system, and more particularly to an optical transmission device for reducing deterioration of transmission characteristics due to chromatic dispersion.

【0002】[0002]

【従来の技術】波長1.3um帯の半導体レ−ザを光源
に用いた多チャネルアナログ映像信号光伝送方式は、現
在国内外のCATVシステムで広く用いられている。こ
の場合の伝送路には、波長1.3um帯でゼロ分散のシ
ングルモ−ドファイバ(以下、Single Mode Fiber:S
MFと略記する。)が主流である。ところが近年、実用
化段階になった光ファイバアンプの導入を考慮して波長
1.5um帯の光源が採用されようとしている。この場
合、既に敷設されているSMFを伝送路に用いると、フ
ァイバの波長分散特性により波形劣化が生じることが知
られている。多数のアナログ映像信号を周波数多重しレ
−ザ光を直接輝度変調し伝送する場合には、特に2次歪
みが劣化し伝送距離によってはCATVに要求される歪
性能を満たせなくなる恐れがあった。
2. Description of the Related Art A multi-channel analog video signal light transmission system using a 1.3 μm wavelength semiconductor laser as a light source is currently widely used in domestic and overseas CATV systems. In this case, a transmission line has a zero-dispersion single mode fiber (hereinafter, Single Mode Fiber: S) in a 1.3 μm band.
Abbreviated as MF. ) Is the mainstream. However, in recent years, a light source having a wavelength band of 1.5 μm is being adopted in consideration of the introduction of an optical fiber amplifier which has been put into practical use. In this case, it is known that when an SMF already laid is used for a transmission line, waveform deterioration occurs due to chromatic dispersion characteristics of the fiber. In the case where a large number of analog video signals are frequency-multiplexed and the laser light is directly luminance-modulated and transmitted, there is a possibility that the second-order distortion is deteriorated and the distortion performance required for CATV cannot be satisfied depending on the transmission distance.

【0003】そこで、従来は波長1.5um帯でゼロ分
散のシングルモ−ドファイバ(以下、Dispersion Sift
Fiber:DSFと略記する。)を用いる方法や、SMFと
逆の波長分散特性を有する特殊な高分散ファイバにより
伝送距離に応じて波長分散を補償する方法が採られてい
た。
Therefore, conventionally, a single mode fiber (hereinafter, referred to as a dispersion mode) having a zero-dispersion wavelength in the 1.5 μm band.
Fiber: Abbreviated as DSF. ) Or a method of compensating for chromatic dispersion according to the transmission distance by using a special high-dispersion fiber having a chromatic dispersion characteristic opposite to that of SMF.

【0004】この特殊な高分散ファイバは波長分散補償
ファイバ(以下、Dispersion Compensation Fiber:D
CFと略記する。)と呼ばれる。DCFによる波長分散
補償の原理について簡単に説明する。SMFは、波長
1.5um帯では約17ps/km/nmの波長分散係
数を有する。10kmのSMFでは、170ps/nm
の波長に依存した光信号の遅延差が生じることになる。
よって−170ps/nmの負の波長分散係数のDCF
をSMFと直列に接続すればSMF10km相当の波長
分散は相殺できることになる。
This special high dispersion fiber is a chromatic dispersion compensating fiber (hereinafter referred to as “Dispersion Compensation Fiber: D”).
Abbreviated as CF. ). The principle of chromatic dispersion compensation by DCF will be briefly described. SMF has a chromatic dispersion coefficient of about 17 ps / km / nm in the 1.5 μm wavelength band. 170 ps / nm for 10 km SMF
The delay difference of the optical signal depending on the wavelength is generated.
Therefore, the DCF having a negative chromatic dispersion coefficient of -170 ps / nm
Is connected in series with the SMF, the chromatic dispersion equivalent to 10 km of the SMF can be canceled.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記D
SFはSMFに比べコストが高く、また既設のSMFを
全く利用できなくなる。このため伝送路敷設費用は莫大
なものになる。また、上記DCFを用いる場合は、伝送
路として用いるSMFの長さに応じてDCFの長さを決
める必要があるため、伝送距離が変わればDCFの長さ
を変える必要があった。従って、CATVシステムにお
いてサ−ビスエリアの拡大や点在する新規加入者宅への
伝送などに際しては、光送信設備の変更が必要になるな
どの欠点があった。
However, the above D
The SF is more expensive than the SMF, and the existing SMF cannot be used at all. For this reason, transmission line laying costs are enormous. When the DCF is used, it is necessary to determine the length of the DCF according to the length of the SMF used as a transmission path. Therefore, if the transmission distance changes, the length of the DCF needs to be changed. Therefore, in the CATV system, when the service area is expanded or transmitted to new subscribers' homes scattered, the optical transmission equipment needs to be changed.

【0006】本発明はかかる、DSF、DCF等の課題
に鑑み、CATVセンタの光送信装置に複数のDCFを
直列に接続することにより、CATVの伝送系の拡張や
変更に際しても設備の変更を行わずに対応できる経済性
に優れた光送信装置の提供を目的としている。
The present invention has been made in view of such problems as DSF, DCF, etc., and by connecting a plurality of DCFs in series to an optical transmission device of a CATV center, the equipment is changed even when the CATV transmission system is expanded or changed. It is an object of the present invention to provide an optical transmission device which is economical and can respond without any problem.

【0007】[0007]

【課題を解決するための手段】本発明は、レ−ザ光を伝
送する負の波長分散係数をもつ高分散ファイバと該高分
散ファイバの出力端に接続された1×n光分岐器とから
成りn個の分岐光を出力する分散補償手段をk個設け、
分散補償手段からの分岐光の少なくともひとつを他の分
散補償手段に入力してk個の分散補償手段を直列に接続
しレ−ザ光を送出するものである。
According to the present invention, there is provided a high-dispersion fiber having a negative chromatic dispersion coefficient for transmitting laser light, and a 1.times.n optical splitter connected to an output end of the high-dispersion fiber. K dispersion compensating means for outputting n branched lights are provided;
At least one of the branched lights from the dispersion compensating means is input to another dispersion compensating means, and k dispersion compensating means are connected in series to transmit laser light.

【0008】[0008]

【作用】上記手段により、レ−ザ信号光が第1の分散補
償手段を通過すれば、負の波長分散性を有することにな
る。この信号光が直列に接続された分散補償手段を順次
通過することにより、さらに同様の負の波長分散特性が
付加されることになる。これらの信号光は、分散補償手
段に設けられた各光分岐器により分岐されている。この
結果、k個の直列に接続された分散補償手段を通過すれ
ば、k種類の負の波長分散特性を有する信号光が得られ
る。
According to the above means, if the laser signal light passes through the first dispersion compensating means, it will have a negative wavelength dispersion. By sequentially passing the signal light through the dispersion compensating means connected in series, a similar negative chromatic dispersion characteristic is added. These signal lights are split by each optical splitter provided in the dispersion compensating means. As a result, if the light passes through the k pieces of dispersion compensating means connected in series, k kinds of signal lights having negative chromatic dispersion characteristics can be obtained.

【0009】従って伝送路であるSMFの長さに応じ
て、SMFの正の波長分散を相殺できる信号光をk種類
の信号光のなかから選択することができる。このため、
伝送距離が変化しても柔軟に対応できる。
Therefore, according to the length of the SMF as the transmission path, the signal light capable of canceling the positive chromatic dispersion of the SMF can be selected from the k kinds of signal lights. For this reason,
Even if the transmission distance changes, it can respond flexibly.

【0010】[0010]

【実施例】以下、本発明の実施例について図面を参照し
て説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0011】図1は本発明の一実施例の光送信装置を示
すブロック図である。図1において1は波長1.5um
帯半導体レ−ザ、21、22、23は波長1.5um帯
用光ファイバアンプ、31、32、33は1×2光分岐
器、41、42、43は負の波長分散係数をもつ高分散
ファイバ、51、52、53、54は光出力端である。
高分散ファイバ41〜43は、それぞれ−70ps/n
mの負の波長分散係数をもつ。
FIG. 1 is a block diagram showing an optical transmission device according to one embodiment of the present invention. In FIG. 1, 1 is a wavelength of 1.5 μm.
Band semiconductor lasers, 21, 22, and 23 are optical fiber amplifiers for the 1.5-um band, 31, 32, and 33 are 1 × 2 optical splitters, and 41, 42, and 43 are high-dispersion optical elements having negative chromatic dispersion coefficients. The fibers 51, 52, 53, 54 are light output ends.
The high dispersion fibers 41 to 43 are respectively -70 ps / n
m has a negative chromatic dispersion coefficient.

【0012】次に、本実施例の動作に付いて説明する。Next, the operation of this embodiment will be described.

【0013】放送波のように多チャネルのアナログ映像
信号信号が周波数多重された多重信号により、波長1.
5um帯半導体レ−ザ光1を直接輝度変調する。変調さ
れた信号光は、波長1.5um帯用光ファイバアンプ2
1により光増幅され1×2光分岐器31により2分岐さ
れる。分岐光のひとつは高分散ファイバ41に入力され
るとともに、他方の分岐光は光出力端54に送出され
る。高分散ファイバ41に入力された信号光は、波長
1.5um帯用光ファイバアンプ22により再度光増幅
され1×2光分岐器32により2分岐され、同様に分岐
光の一方は高分散ファイバ42へ、他方は光出力端53
に送出される。同様にして第3番目の高分散ファイバ4
3から出力される信号光は光出力端51に、そして1×
2光分岐器33からの分岐光は光出力端52に送出され
る。
A multiplexed signal obtained by frequency-multiplexing a multi-channel analog video signal signal such as a broadcast wave has a wavelength of 1.
The luminance of the 5 μm band semiconductor laser light 1 is directly modulated. The modulated signal light is supplied to the optical fiber amplifier 2 for the 1.5-um wavelength band.
The light is amplified by 1 and split into two by a 1 × 2 optical splitter 31. One of the split lights is input to the high dispersion fiber 41, and the other split light is sent to the optical output end 54. The signal light input to the high-dispersion fiber 41 is again amplified by the optical fiber amplifier 22 for the wavelength of 1.5 μm and is split into two by the 1 × 2 optical splitter 32. To the other, the light output end 53
Sent to Similarly, the third high dispersion fiber 4
3 is output to an optical output terminal 51, and then 1 ×
The split light from the two-light splitter 33 is sent to the optical output end 52.

【0014】このように、本実施例の光送信装置は、4
種類の波長分散特性を有する光出力端51〜54をも
つ。伝送路のSMFの波長分散係数は、前述のように1
km当たり波長1.5um帯では17ps/nmであ
る。従って、−70ps/nmの高分散ファイバ41を
通過した光出力端53から送出される信号光は、約4k
mのSMFの長さの波長分散を補償できる。同様に光出
力端52から送出される信号光は約8km、光出力端5
1から送出される信号光は約12kmの波長分散を補償
できる。従って、伝送距離のことなる地点への伝送に
は、光出力端51〜54のうちから最適な信号光を選択
すれば良く、システムの変更に柔軟に対応できる。ま
た、高分散ファイバ41〜43を直列に接続することに
より、近距離から遠距離までもっとも少ない高分散ファ
イバで対応できるという利点がある。
As described above, the optical transmission apparatus of the present embodiment
It has light output ends 51 to 54 having different wavelength dispersion characteristics. The chromatic dispersion coefficient of the SMF of the transmission line is 1 as described above.
It is 17 ps / nm in the 1.5 μm band per km. Therefore, the signal light transmitted from the optical output end 53 that has passed through the high dispersion fiber 41 of -70 ps / nm is about 4 k
m SMF length chromatic dispersion can be compensated. Similarly, the signal light transmitted from the optical output terminal 52 is approximately 8 km, and the optical output terminal 5
The signal light transmitted from 1 can compensate for the chromatic dispersion of about 12 km. Therefore, for transmission to a point having a different transmission distance, an optimum signal light may be selected from the optical output terminals 51 to 54, and it is possible to flexibly cope with a change in the system. Further, by connecting the high dispersion fibers 41 to 43 in series, there is an advantage that it is possible to cope with shortest dispersion fibers from a short distance to a long distance.

【0015】次に第2の本発明の一実施例を説明する。
図2は本発明の一実施例の構成を示すブロック図であ
る。図2において図1と同様の作用を有する構成品には
同一の番号を付し詳細な説明は省略する。図2において
61、62、63は1×2光スイッチ、7は4×1光ス
イッチである。
Next, an embodiment of the second invention will be described.
FIG. 2 is a block diagram showing the configuration of one embodiment of the present invention. In FIG. 2, components having the same functions as those in FIG. 1 are denoted by the same reference numerals, and detailed description is omitted. In FIG. 2, 61, 62 and 63 are 1 × 2 optical switches, and 7 is a 4 × 1 optical switch.

【0016】本実施例において、伝送路であるSMFの
長さに応じて、光送信装置内で1×2光スイッチ61〜
63および4×1光スイッチ7の切り替えにより分散補
償ファイバの組合せを選択出来る。従って、光スイッチ
の切り替えだけで、伝送距離の変更に対して適切に波長
分散の補償を即時に行える。
In this embodiment, 1 × 2 optical switches 61 to 61 are provided in the optical transmission apparatus according to the length of the SMF as the transmission path.
The combination of the dispersion compensating fibers can be selected by switching the 63 and 4 × 1 optical switches 7. Therefore, the chromatic dispersion can be immediately compensated for the change in the transmission distance only by switching the optical switch.

【0017】[0017]

【発明の効果】以上述べたところから明らかなように、
本発明によれば、少ない分散補償ファイバにより種々の
伝送距離に対応できる光送信装置が実現できることか
ら、既存のSMFそのまま活用して波長1.5um帯用
の光増幅器を導入し、加入者宅まで光伝送できるため、
システム全体の設備投資を最小に抑えることができる。
As is apparent from the above description,
According to the present invention, an optical transmitter capable of supporting various transmission distances can be realized with a small number of dispersion compensating fibers. Because optical transmission is possible,
Capital investment of the entire system can be minimized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例の構成を示すブロック図
である。
FIG. 1 is a block diagram showing a configuration of a first exemplary embodiment of the present invention.

【図2】本発明の第2の実施例の構成を示すブロック図
である。
FIG. 2 is a block diagram showing a configuration of a second exemplary embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 波長1.5um帯半導体レ−ザ 21〜23 波長1.5um帯用光ファイバアンプ 31〜33 1×2光分岐器 41〜43 負の波長分散係数をもつ高分散ファイバ 51〜54 光出力端 61〜63 1×2光スイッチ 7 4×1光スイッチ DESCRIPTION OF SYMBOLS 1 1.5-micrometer wavelength semiconductor laser 21-23 Optical fiber amplifier for 1.5-micrometer wavelength band 31-33 1x2 optical splitter 41-43 High dispersion fiber with negative chromatic dispersion coefficient 51-54 Optical output terminal 61-63 1 × 2 optical switch 74 × 1 optical switch

フロントページの続き (72)発明者 工藤 義春 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 平6−112907(JP,A) 特開 平5−152645(JP,A) 特開 平5−3453(JP,A) 特開 昭62−65529(JP,A) (58)調査した分野(Int.Cl.7,DB名) H04B 10/00 - 10/28 H04J 14/00 - 14/08 G02B 6/10 Continuation of front page (72) Inventor Yoshiharu Kudo 1006 Kazuma Kadoma, Kazuma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (56) References JP-A-6-112907 (JP, A) JP-A 5-152645 (JP) , A) JP-A-5-3453 (JP, A) JP-A-62-265529 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H04B 10/00-10/28 H04J 14/00-14/08 G02B 6/10

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】光CATVに用いる光送信装置において、 波長1.5um帯半導体レ−ザと、前記レ−ザ光を伝送
する負の波長分散係数をもつ高分散ファイバおよび、そ
の高分散ファイバからの出力を入力し、n個の分岐光を
出力する1×n光分岐器とを有する分散補償手段とを備
え、 前記分散補償手段は、k個設けられ、その中の一つから
の分岐光の少なくともひとつを他の分散補償手段に入力
して、それらk個の分散補償手段が直列に接続されてな
ることを特徴とする光送信装置。
1. An optical transmitter for use in an optical CATV, comprising: a 1.5 μm wavelength semiconductor laser, a high dispersion fiber having a negative chromatic dispersion coefficient for transmitting the laser light, and the high dispersion fiber. And a 1 × n optical splitter that inputs n outputs and outputs n split lights. The dispersion compensating means is provided with k split lights, and the split light from one of them is provided. Wherein at least one of the dispersion compensation means is input to another dispersion compensation means, and the k dispersion compensation means are connected in series.
【請求項2】高分散ファイバの出力を波長1.5 um
帯光増幅器により増幅・分岐することを特徴とする請求
項1記載の光送信装置。
2. The output of a high dispersion fiber is 1.5 μm wavelength.
2. The optical transmission device according to claim 1, wherein the optical transmission device is amplified and branched by a band optical amplifier.
【請求項3】分散補償手段の前記各高分散ファイバの波
長分散係数を同一にしたことを特徴とする請求項1又は
2記載の光送信装置。
3. The optical transmission device according to claim 1, wherein the chromatic dispersion coefficients of the high dispersion fibers of the dispersion compensating means are the same.
【請求項4】光分岐器を、1×2光分岐器としたことを
特徴とする請求項1〜3のいずれかの光送信装置。
4. The optical transmitter according to claim 1, wherein the optical splitter is a 1 × 2 optical splitter.
【請求項5】光CATVに用いる光送信装置において、 波長1.5um帯半導体レ−ザと、前記レ−ザ光を伝送
する負の波長分散係数をもつ、k個の直列接続された高
分散ファイバと、前記高分散ファイバ間を接続している
光スイッチとを備え、 前記光スイッチの選択により、前記レ−ザ光を、次段の
高分散ファイバ又は光出力端に出力することを特徴とす
る光送信装置。
5. An optical transmitter for use in an optical CATV, comprising: a 1.5 μm-band semiconductor laser; and k serially connected high-dispersion coefficients having a negative chromatic dispersion coefficient for transmitting the laser light. A fiber, and an optical switch connecting the high-dispersion fiber, wherein the selection of the optical switch outputs the laser light to a next-stage high-dispersion fiber or an optical output end. Optical transmitter.
JP28849193A 1993-11-17 1993-11-17 Optical transmitter Expired - Fee Related JP3177361B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28849193A JP3177361B2 (en) 1993-11-17 1993-11-17 Optical transmitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28849193A JP3177361B2 (en) 1993-11-17 1993-11-17 Optical transmitter

Publications (2)

Publication Number Publication Date
JPH07143060A JPH07143060A (en) 1995-06-02
JP3177361B2 true JP3177361B2 (en) 2001-06-18

Family

ID=17730905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28849193A Expired - Fee Related JP3177361B2 (en) 1993-11-17 1993-11-17 Optical transmitter

Country Status (1)

Country Link
JP (1) JP3177361B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE45923E1 (en) 2001-08-07 2016-03-15 Saint-Gobain Ceramics & Plastics, Inc. High solids HBN slurry, HBN paste, spherical HBN powder, and methods of making and using them

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10163962A (en) * 1996-11-25 1998-06-19 Nec Corp Automatic dispersion compensation optical transmission system
JP2000236297A (en) * 1999-02-16 2000-08-29 Fujitsu Ltd Method and system for optical transmission applied with dispersion compensation
JP4517423B2 (en) * 1999-12-03 2010-08-04 住友電気工業株式会社 Dispersion compensation module, line switching device, and optical communication system
JP2002325064A (en) * 2001-04-26 2002-11-08 Furukawa Electric Co Ltd:The Dispersion-compensated module and optical switch
JP4520097B2 (en) * 2003-03-06 2010-08-04 ソフトバンクテレコム株式会社 Dispersion compensation method for optical communication path with dynamic control
JP5496525B2 (en) * 2009-03-17 2014-05-21 住友電工デバイス・イノベーション株式会社 Semiconductor laser test method and laser test apparatus
CN109377907B (en) * 2018-12-25 2024-05-03 安徽蓝海之光科技有限公司 Underground escape system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE45923E1 (en) 2001-08-07 2016-03-15 Saint-Gobain Ceramics & Plastics, Inc. High solids HBN slurry, HBN paste, spherical HBN powder, and methods of making and using them
USRE47635E1 (en) 2001-08-07 2019-10-08 Saint-Gobain Ceramics & Plastics, Inc. High solids hBN slurry, hBN paste, spherical hBN powder, and methods of making and using them

Also Published As

Publication number Publication date
JPH07143060A (en) 1995-06-02

Similar Documents

Publication Publication Date Title
US6173094B1 (en) Optical-transmission system having a split-gain amplifier and a signal-modifying device
JP3200386B2 (en) Symmetric optical fiber cable with controlled dispersion characteristics and optical transmission system using the same
US6292603B1 (en) Dispersion compensation device
JP3522438B2 (en) Dispersion compensation in optical fiber communication
US5589969A (en) Wavelength division multiplexed optical fiber transmission equipment
JP3929520B2 (en) Multi-channel optical fiber communication
US5956440A (en) Optical transmission line for wavelength division multiplexed optical signals
JP2911074B2 (en) Optical transmission device for RF subcarrier in adjacent signal band
US6021245A (en) Method and optical transmission system for compensating dispersion in optical transmission paths
US6188823B1 (en) Method and apparatus for providing dispersion and dispersion slope compensation in an optical communication system
US6563978B2 (en) Optical transmission system and optical coupler/branching filter
US20010038478A1 (en) Structure of a bidirectional wavelength optical function module
JPH10209965A (en) Branching device
JP3177361B2 (en) Optical transmitter
JPH10163962A (en) Automatic dispersion compensation optical transmission system
KR20020012319A (en) Dispersion compensation system
US7221872B2 (en) On-line dispersion compensation device for a wavelength division optical transmission system
JPH08171102A (en) Optical fiber communication system using optical phase conjugation
JPH07135493A (en) Optical transmission and optical transmitter
JP2000236297A (en) Method and system for optical transmission applied with dispersion compensation
JP3494110B2 (en) Optical branching device
JPH08237222A (en) Optical transmission system
JP2000068944A (en) Two-way optical coaxial transmission system
JPH08307347A (en) Wavelength dispersion compensating device
JP3503720B2 (en) Soliton transmission line

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080406

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090406

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100406

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees