JP3176109B2 - Airflow dust removal method - Google Patents

Airflow dust removal method

Info

Publication number
JP3176109B2
JP3176109B2 JP32669391A JP32669391A JP3176109B2 JP 3176109 B2 JP3176109 B2 JP 3176109B2 JP 32669391 A JP32669391 A JP 32669391A JP 32669391 A JP32669391 A JP 32669391A JP 3176109 B2 JP3176109 B2 JP 3176109B2
Authority
JP
Japan
Prior art keywords
air
dust
cooling
air flow
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32669391A
Other languages
Japanese (ja)
Other versions
JPH05137935A (en
Inventor
潤二 松田
真理子 杉原
邦明 川村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mayekawa Manufacturing Co
Original Assignee
Mayekawa Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mayekawa Manufacturing Co filed Critical Mayekawa Manufacturing Co
Priority to JP32669391A priority Critical patent/JP3176109B2/en
Publication of JPH05137935A publication Critical patent/JPH05137935A/en
Application granted granted Critical
Publication of JP3176109B2 publication Critical patent/JP3176109B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Separation Of Particles Using Liquids (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【産業上の利用分野】本発明は、空気流の除塵方法に係
り、特に半導体工場、集積回路工場、製薬工場等に於け
るクリーンルームの空気流の除塵方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for removing dust from an air flow, and more particularly to a method for removing dust from an air flow in a clean room in a semiconductor factory, an integrated circuit factory, a pharmaceutical factory and the like.

【0002】[0002]

【従来の技術】従来より、作業環境の無塵化に関心が有
ったものの、特に最近のLSIでは、パターンの線寸法
がサブミクロン(10-6m以下)のオーダに微細にな
り、製作工程中に汚染されて素子の特性・信頼性に悪影
響が及ぶのを防止するために、作業環境の無塵化が大き
な課題になっている。一般に、クリーンルームを具え、
フィルタを通した清浄空気を天井より層流に供給し、床
の部分から排出し、該クリーンルーム内の清浄度を希望
するレベル以上に維持する構造を採っている。例えば、
室内面積5,400m2、天井高さ3mのクリーンルーム
に清浄空気を167回/h循環させて清浄度クラス10
に保つよう構成されている。従って、処理する空気の量
は45,000m3/minに達する。ちなみに、清浄
度は、1立方フィートの空気中に含まれる径0.5μm
以上の塵埃の個数で表されている。
2. Description of the Related Art Although there has been an interest in making the working environment dust-free, especially in recent LSIs, the line size of a pattern has been reduced to the order of submicrons (10 -6 m or less), and fabrication has become difficult. In order to prevent the characteristics and reliability of the device from being adversely affected by the contamination during the process, there is a great problem of making the working environment dust-free. Generally equipped with a clean room,
The structure is such that the clean air passed through the filter is supplied to the laminar flow from the ceiling, discharged from the floor, and the cleanliness in the clean room is maintained at a desired level or higher. For example,
Clean air is circulated 167 times / h through a clean room with an indoor area of 5,400 m 2 and a ceiling height of 3 m.
It is configured to keep. Therefore, the amount of air to be processed reaches 45,000 m 3 / min. By the way, the cleanliness is 0.5 μm in diameter contained in one cubic foot of air.
It is represented by the number of dusts described above.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、前記ク
リーンルームにあって、清浄度クラス10の清浄空気を
得るためには、フィルタを前置フィルタ(捕集率:20
%)、中間フィルタ(捕集率:60%)及び高効率フィ
ルタ(捕集率:99.97%)と3段に設けるために、
送風動力1,100kw・hを必要としている。更に、
前記したようにパターンの線幅がサブミクロンのオーダ
になって、清浄度の基準とする径0.5μm以下の塵埃
でも問題となり、清浄度の定義そのものが問われる趨勢
の中に在って、もはやフィルタを重ねるだけで除塵を行
う事は限界に近づいているとも言えよう。
However, in order to obtain clean air of a cleanliness class 10 in the clean room, a filter must be mounted on a pre-filter (collection rate: 20).
%), An intermediate filter (collection rate: 60%) and a high-efficiency filter (collection rate: 99.97%) in three stages.
It requires 1,100 kWh of blowing power. Furthermore,
As described above, the line width of the pattern is on the order of submicron, and dust having a diameter of 0.5 μm or less as a reference for cleanliness is also a problem. It can be said that it is almost impossible to remove dust simply by adding filters.

【0004】本発明は、かかる従来技術の欠点に鑑み、
良好なエネルギー効率によって、より完全に除塵可能な
空気流の除塵方法を提供する事を目的とする。
[0004] In view of the drawbacks of the prior art, the present invention provides
It is an object of the present invention to provide a method of removing an air stream that can be more completely removed with good energy efficiency.

【0005】[0005]

【課題を解決する為の手段】請求項1記載の発明は、予
備冷却を行った空気流を加湿し且つ圧縮し、その後該加
湿圧縮された空気流を冷却し、次いで膨張させて露点以
下に急冷する事により結露させて除塵を行う事を特徴と
し、請求項2記載の発明は、請求項1記載の発明に加え
て、前記予備冷却を前記除塵後の冷却空気流で行う事を
特徴とする。従って本発明は、予備冷却させた空気流を
圧縮・加湿し、次いで冷却した後に膨張させて、露点以
下に急冷する事により結露させる。該結露は塵埃を核と
して行われるので、ドレンと共に系外に放流する事で除
塵を行う事が出来る。また、前記加湿を該圧縮工程中に
行う事が好ましい。更に、前記予備冷却を前記除塵後の
冷却空気流で行う事とするなら、空気流系外に熱源を求
めた場合に比較して、熱経済上好ましい。
Means for Solving the Problems The invention described in claim 1 is an embodiment of the present invention.
The cooled air stream is humidified and compressed, and then
The wet compressed air stream is cooled and then is inflated characterized in that performing the dust removal by condensation by quenching to below the dew point, the invention is as claimed in claim 2, wherein, in addition to the first aspect of the invention
The pre-cooling is performed by the cooling airflow after the dust removal. Accordingly, the present invention compresses and humidifies the pre-cooled air stream, then expands after cooling, and condenses by cooling rapidly below the dew point. Since the dew condensation is carried out using dust as a core, the dust can be removed by discharging the dust to the outside together with the drain. Preferably, the humidification is performed during the compression step. Further, if the pre-cooling is performed by the cooling air flow after the dust removal, it is preferable in terms of thermal economy compared with the case where a heat source is obtained outside the air flow system.

【0006】[0006]

【作用】かかる技術手段によれば、予備冷却した空気流
加湿し且つ圧縮し、その後該加湿圧縮された空気流の
冷却と膨張を順次行って、該空気流の温度を露点以下に
急冷するために、空気流中の水蒸気は塵埃を核として結
露するために、膨張機吐出口においてドレンと共に系外
に放流する事により除塵が可能となる。
According to the technical means, the pre-cooled air stream is humidified and compressed, and then the humidified compressed air stream is cooled .
In order to rapidly cool the temperature of the air flow below the dew point by performing cooling and expansion in order, the water vapor in the air flow is discharged out of the system together with the drain at the discharge port of the expander in order to condense with dust as nuclei. Thus, dust can be removed.

【0007】更に、圧縮されて高温になった空気流を、
膨張により低温空気流にする前に、熱交換器によって系
外に放熱し空気流の冷却を行う。この際、前記高温圧縮
空気流の相対湿度が100%になるように加湿しておけ
ば、該熱交換器によって温度が下がると共に飽和水蒸気
圧も下がり、蒸気圧低下に相当する水分が結露し、該熱
交換器出口側においてもドレンと共に系外に放流する事
により除塵が可能となる。この際、空気流の単位容積当
りの塵埃粒子濃度は、空気流が圧縮された分だけ上がる
ため、除塵効果を上げる事が可能となる。
[0007] Furthermore, the compressed air stream having a high temperature is
Before expansion into a low-temperature air flow by expansion, heat is radiated outside the system by a heat exchanger to cool the air flow. At this time, if the humidification is performed so that the relative humidity of the high-temperature compressed air flow becomes 100%, the temperature is reduced by the heat exchanger, and the saturated steam pressure is also reduced. Also at the heat exchanger outlet side, dust can be removed by discharging to the outside of the system together with the drain. At this time, the concentration of dust particles per unit volume of the air flow is increased by an amount corresponding to the compressed air flow, so that the dust removing effect can be improved.

【0008】また、圧縮工程中に加湿したために、圧縮
により高温になると共に飽和水蒸気圧も高くなった高温
圧縮空気流に加湿する事になり、常温常圧の空気流に加
湿する場合に比較して、単位空気容積当りに含ませ得る
水分の量、即ち、加湿量も多くする事ができる。即ち、
圧縮工程に続く膨張工程に於ける結露量も加湿量に応じ
て多くなり、従って除塵効果を上げ得る事になり、より
好ましい。
Further, since the humidifier is humidified during the compression step, the humidifier is humidified to a high-temperature compressed air flow which has a high temperature due to the compression and also has a high saturated steam pressure. Thus, the amount of moisture that can be contained per unit air volume, that is, the humidification amount can be increased. That is,
The amount of dew condensation in the expansion step following the compression step also increases in accordance with the humidification amount, so that the dust removing effect can be improved, which is more preferable.

【0009】更に、圧縮工程中に水噴射により加湿する
なら、高温圧縮空気に比較して相対的に低温な水によ
り、また噴射水の蒸発潜熱に相当する分だけ、該圧縮空
気を冷却させる事ができる。従って、低温化させた分だ
け、圧縮のための動力も減少する事が可能となる。
Further, if humidification is achieved by water injection during the compression step, the compressed air is cooled by water having a relatively low temperature as compared with the high-temperature compressed air, and by an amount corresponding to the latent heat of vaporization of the injected water. Can be. Therefore, the power for compression can be reduced by the lower temperature.

【0010】また、一般に、レシプロ型の圧縮機に比べ
てスクリュー型圧縮機の方が効率が良いとされている
が、スクリュー型圧縮機において、前記加湿を行うなら
より一層効率の向上を図る事ができる。即ち、スクリュ
ー型圧縮機により圧縮を行う際、該圧縮機内に水を噴射
する事により、ロータ間、及びロータとケーシングとの
間に形成される隙間を水でシールする事になり、なお一
層、圧縮効率を上昇させる事ができる。
[0010] Generally, it is said that a screw type compressor is more efficient than a reciprocating type compressor. However, if the humidification is performed in the screw type compressor, the efficiency should be further improved. Can be. That is, when compression is performed by a screw compressor, water is injected into the compressor to seal the gap formed between the rotors and between the rotor and the casing with water. Compression efficiency can be increased.

【0011】また、前記空気流を圧縮する前に予備冷却
を行い、空気流のエンタルピーを減少させておくなら
ば、圧縮工程に続く系外に放出する熱量も少なくなり、
放熱器の容量を小さくする事が可能となる。更に、膨張
工程においても、前記減少エンタルピーに相当する分だ
け低温度に冷却可能であるので、該低温化したその分飽
和水蒸気圧も下がり、多量のドレンを得る事が可能とな
るので好ましい。更に、前記予備冷却を前記除塵後の冷
却空気流で行う事とするなら、空気流系外に熱源を求め
た場合に比較して、熱経済上好ましい。
[0011] A preliminary cooling before compressing the air flow, if allowed to reduce the enthalpy of the air flow, the amount of heat released out of the system that follows the compression stroke becomes smaller,
The capacity of the radiator can be reduced. Furthermore, also in the expansion step, it is possible to cool to a lower temperature by an amount corresponding to the above-mentioned reduced enthalpy, so that the saturated steam pressure is also reduced by the lowered temperature, so that a large amount of drain can be obtained, which is preferable. Further, if the pre-cooling is performed by the cooling air flow after the dust removal, it is preferable in terms of thermal economy compared with the case where a heat source is obtained outside the air flow system.

【0012】[0012]

【実施例】以下、図面に基づいて本発明の実施例を例示
的に詳しく説明する。但しこの実施例に記載されている
構成部品の寸法、材質、形状、その相対配置などは特に
特定的な記載がない限りは、この発明の範囲をそれのみ
に限定する趣旨ではなく単なる説明例に過ぎない。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram showing an embodiment of the present invention; However, unless otherwise specified, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention, but are merely illustrative examples. Not just.

【0013】図1は本発明の実施例に係る空気流の除塵
方法を示す系統図で、10は塵埃の濃度が問題とされる
クリーンルームで、天井ダクト18から清浄空気が導入
され、床面11格子、ダクト40,41を介して、汚染
空気は熱交換器13に導通している。該天井ダクト18
と床面11の間の空間が、いわゆる清浄空間としての作
業場を成すものである。
FIG. 1 is a system diagram showing a method for removing dust from an air flow according to an embodiment of the present invention. Reference numeral 10 denotes a clean room in which the concentration of dust is a problem. The contaminated air is conducted to the heat exchanger 13 via the grid and the ducts 40 and 41. The ceiling duct 18
The space between the floor and the floor 11 constitutes a workplace as a so-called clean space.

【0014】前記ダクト40、41の途中、ダクト48
を介して外気が導入され、循環空気と共に熱交換器13
内で冷却される。なお、12は外気取入装置で、取入れ
口28から取入れられた外気は、該外気取入装置12内
をポンプ30により循環する清浄水によって洗浄・加湿
され、前記ダクト48を介して、循環空気ダクト41に
合流する。ただし、前記ダクト41に於ける循環空気の
物性諸元は、取入れ外気の量は少ないので、クリーンル
ーム10に於ける空気と大差ない。即ち、前記ダクト4
1に於ける循環空気の物性諸元は、温度24℃、相対湿度
RH:40%、単位乾燥空気当りの絶対湿度x:0.0075
kg/kg’、1ata.である。
In the middle of the ducts 40 and 41, a duct 48
Outside air is introduced through the heat exchanger 13 together with the circulating air.
Cooled within. Reference numeral 12 denotes an outside air intake device. The outside air taken in from the intake port 28 is washed and humidified by clean water circulating in the outside air intake device 12 by the pump 30, and is circulated through the duct 48. Merges into the duct 41. However, the physical properties of the circulating air in the duct 41 are not much different from the air in the clean room 10 because the amount of outside air taken in is small. That is, the duct 4
The physical properties of the circulating air in 1 were as follows: temperature 24 ° C., relative humidity RH: 40%, absolute humidity per unit dry air x: 0.0075
kg / kg ', 1ata. It is.

【0015】前記熱交換器13には、後述の除塵後の冷
熱循環空気をもダクト46を介して導入されている。従
って、該熱交換器13に於いて該冷熱空気(46)と、
取入れ後の循環空気(41)との間で熱交換が行われ、
冷却された循環空気は、ダクト42を介して圧縮機14
に導入される。なお、熱交換後の取入循環空気(42)
の物性諸元は、温度13.6℃、RH:76.6%と変化する。
また、20は、前記循環空気(41)が冷却・結露し、
該循環空気系外に放流されるドレンである。本実施例で
は、たまたま相対湿度が100%未満であるため、結露せ
ず、従って、ドレンの量は零である。
Cooling and circulating air after dust removal described later is also introduced into the heat exchanger 13 through a duct 46. Therefore, in the heat exchanger 13, the cold air (46)
Heat exchange is performed with the circulating air (41) after intake,
The cooled circulating air passes through the duct 42 through the compressor 14.
Will be introduced. The intake circulating air after heat exchange (42)
Physical properties change to 13.6 ° C. and RH: 76.6%.
Also, 20 is that the circulating air (41) is cooled and dewed,
The drain is discharged outside the circulating air system. In the present example, the relative humidity happens to be less than 100%, so there is no condensation and, therefore, the amount of drain is zero.

【0016】前記圧縮機14において、循環空気(4
2)は、2ata.に圧縮される。なお、該圧縮機14
は、モータMによって駆動されており、また、該モータ
Mは、後述の膨張機17とも直結されていて、省エネル
ギーに寄与している。圧縮工程中、純水貯水槽31の純
水はポンプ32に加圧されて、前記圧縮機14内に供給
される。従って、前記循環空気(42)は、これにより
加湿され、物性諸元は、温度40.49℃、RH:100%、
x:0.02403kg/kg’となる。かように加圧・加湿
された循環空気は、ダクト43を介して、熱交換器16
に導入される。
In the compressor 14, the circulating air (4
2) is 2ata. Compressed. The compressor 14
Are driven by a motor M, and the motor M is also directly connected to an expander 17 described later, which contributes to energy saving. During the compression step, the pure water in the pure water storage tank 31 is pressurized by the pump 32 and supplied into the compressor 14. Therefore, the circulating air (42) is humidified thereby, and the physical properties are as follows: temperature: 40.49 ° C., RH: 100%,
x: 0.02403 kg / kg '. The circulated air thus pressurized and humidified passes through the duct 43 through the heat exchanger 16.
Will be introduced.

【0017】前記熱交換器16に於いて前記循環空気
(43)は、ポンプ34により該熱交換器16と冷却塔
33との間を循環する冷却水により冷却されて、続いて
配管44、ドレン分離器21、配管45を介して膨張機
17に導入される。なお、22は、前記ドレン分離器2
1において、循環空気系外に放流されるドレンである。
前記熱交換器16において循環空気(43)は、温度3
8.43℃に冷却されるために、この温度に於ける飽和水蒸
気圧に相当する絶対湿度x:0.02146kg/kg’と、
前記循環空気(43)の絶対湿度x:0.02403kg/k
g’との差X:0.00257kg/kg’が、ドレン22と
して放流される。
In the heat exchanger 16, the circulating air (43) is cooled by cooling water circulating between the heat exchanger 16 and the cooling tower 33 by a pump 34, followed by a pipe 44 and a drain. It is introduced into the expander 17 via the separator 21 and the pipe 45. In addition, 22 is the drain separator 2
In 1, the drain is discharged outside the circulating air system.
In the heat exchanger 16, the circulating air (43)
To be cooled to 8.43 ° C., an absolute humidity x: 0.02146 kg / kg ′ corresponding to the saturated steam pressure at this temperature;
Absolute humidity x of the circulating air (43): 0.02403 kg / k
The difference X from g ′: 0.00257 kg / kg ′ is discharged as drain 22.

【0018】前記膨張機17に於いて、圧力2ata.
の循環空気(45)は1ata.に膨張し、ドレン分離
器23、ダクト46を介して前記熱交換器13に導入さ
れる。なお前記したように、膨張による仕事は、直結さ
れたモータMを介して圧縮機14に返還される。なお、
24は、前記ドレン分離器23において、循環空気系外
に放流されるドレンである。前記膨張後の循環空気(4
6)は、温度9.57にまで降下し、従って、この温度に於
ける飽和水蒸気圧に相当する絶対湿度x:0.0073kg/
kg’と、前記循環空気(45)の絶対湿度x:0.0214
6kg/kg’との差X:0.01416kg/kg’が、ドレ
ン24として放流される。
In the expander 17, a pressure of 2 at.
Of circulating air (45) is 1 data. And is introduced into the heat exchanger 13 through the drain separator 23 and the duct 46. As described above, the work due to the expansion is returned to the compressor 14 via the directly connected motor M. In addition,
Reference numeral 24 denotes a drain discharged from the drain separator 23 outside the circulating air system. The circulating air after expansion (4
6) drops to a temperature of 9.57, and therefore an absolute humidity x corresponding to the saturated water vapor pressure at this temperature x: 0.0073 kg /
kg 'and the absolute humidity x of the circulating air (45): 0.0214
A difference X from 6 kg / kg ′: 0.01416 kg / kg ′ is discharged as drain 24.

【0019】前記熱交換器13に導入された循環空気
(46)は、前述したとおり、循環空気(41)と熱交
換し、ダクト47を介して前記クリーンルーム10に送
風される。なお、循環空気(47)の物性諸元は、温度
20℃、RH:51%、x:0.0073kg/kg’となる。
The circulating air (46) introduced into the heat exchanger 13 exchanges heat with the circulating air (41) and is sent to the clean room 10 through the duct 47 as described above. The physical properties of the circulating air (47) are temperature
20 ° C., RH: 51%, x: 0.0073 kg / kg ′.

【0020】前述のように、熱交換器13、16と接触
した循環空気は急冷され、また、膨張機17に於いて断
熱膨張を行う事により循環空気自身温度を降下させて、
循環空気に含まれた水蒸気の内、冷却された温度に於け
る飽和水蒸気圧力を超える量だけ霧・水滴となって凝縮
・結露する。この際、前記したとおり、水蒸気は循環空
気中に含まれる塵埃を核として結露した方が容易なの
で、該霧・水滴をドレンとして系外に放流する事で、循
環空気の除塵・清浄化が達成できる。本実施例では、ド
レン20、22及び24の量Xは、循環乾燥空気1k
g’当り0.01673kgに達する。
As described above, the circulating air that has come into contact with the heat exchangers 13 and 16 is rapidly cooled, and is subjected to adiabatic expansion in the expander 17 to lower the temperature of the circulating air itself.
Of the water vapor contained in the circulating air, only the amount exceeding the saturated water vapor pressure at the cooled temperature is condensed and formed as fog and water droplets. At this time, as described above, since it is easier for water vapor to condense with dust contained in the circulating air as nuclei, the mist and water droplets are discharged outside the system as a drain, thereby achieving dust removal and purification of the circulating air. it can. In this embodiment, the amount X of the drains 20, 22 and 24 is set to 1 k of circulating dry air.
It reaches 0.01673 kg per g '.

【0021】[0021]

【効果】以上記載した如く本発明によれば、予備冷却し
空気流を加圧・加湿した後、膨張させて露点以下に急
冷する事により結露させて除塵を行ったために、良好な
エネルギー効率によって、より完全に除塵可能な空気流
の除塵方法を提供する事が可能となる。また、塵埃を廃
水と共に排除するために、従来技術のフィルタ方式の場
合に見られる如く、経時的に塵埃の捕集率が劣化する事
もなく、更に、人的労力によってフィルタ交換が如き保
全作業を排除する事ができる。また、集積回路工場にお
けるクリーンルームにあっては、従来技術のフィルタ方
式においても空調設備は欠かせない設備であり、純水装
置も必須の設備であるので、格別の付帯設備を必要せず
に本発明に基づく設備を導入する事ができる。
According to the present invention, as described above, the pre-cooling
After pressurizing and humidifying the air flow, it is expanded and quenched to a temperature below the dew point to condense and remove dust. Therefore, it is possible to provide a method of removing the air flow that can completely remove dust with good energy efficiency. Things become possible. In addition, since the dust is removed together with the wastewater, the dust collection rate does not deteriorate over time, as in the case of the conventional filter system. Can be eliminated. In a clean room in an integrated circuit factory, air conditioning equipment is indispensable even in the conventional filter system, and a pure water system is also an essential equipment. Equipment based on the invention can be introduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例に係る空気流の除塵方法を示す
系統図
FIG. 1 is a system diagram illustrating a method for removing dust from an air flow according to an embodiment of the present invention.

フロントページの続き (56)参考文献 特開 昭52−111874(JP,A) 特開 昭63−221822(JP,A) 特開 昭61−61609(JP,A) (58)調査した分野(Int.Cl.7,DB名) B01D 47/00 - 47/18 B01D 50/00 - 51/10 Continuation of the front page (56) References JP-A-52-111874 (JP, A) JP-A-63-221822 (JP, A) JP-A-61-61609 (JP, A) (58) Fields investigated (Int) .Cl. 7 , DB name) B01D 47/00-47/18 B01D 50/00-51/10

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 予備冷却を行った空気流を加湿し且つ圧
縮し、その後該加湿圧縮された空気流を冷却し、次いで
膨張させて露点以下に急冷する事により結露させて除塵
を行う事を特徴とする空気流の除塵方法。
1. A method for humidifying a pre-cooled air stream and applying a pressure
A method for removing dust by removing air by condensing, cooling the humidified and compressed air stream, and then expanding and rapidly cooling the air stream to a temperature below the dew point to form dew.
【請求項2】 予備冷却を行った空気流を加湿し且つ圧
縮し、その後該加湿圧縮された空気流を冷却し、次いで
膨張させて露点以下に急冷する事により結露させて除塵
を行うとともに、前記予備冷却を前記除塵後の冷却空気
流で行う事を特徴とする空気流の除塵方法。
2. Pre-cooled air flow is humidified and pressurized.
And then cooling the humidified compressed air stream, and then
Expand and quench below the dew point to condense and remove dust
And performing the preliminary cooling with the cooling airflow after the dust removal.
【請求項3】 前記予備冷却を行った空気流の圧縮工程
中で前記加湿を行う事を特徴とする請求項1若しくは2
記載の空気流の除塵方法。 【0001】
3. The step of compressing the pre-cooled air flow.
3. The method according to claim 1 , wherein the humidification is performed in the inside.
The dust removal method of the air flow described. [0001]
JP32669391A 1991-11-15 1991-11-15 Airflow dust removal method Expired - Fee Related JP3176109B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32669391A JP3176109B2 (en) 1991-11-15 1991-11-15 Airflow dust removal method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32669391A JP3176109B2 (en) 1991-11-15 1991-11-15 Airflow dust removal method

Publications (2)

Publication Number Publication Date
JPH05137935A JPH05137935A (en) 1993-06-01
JP3176109B2 true JP3176109B2 (en) 2001-06-11

Family

ID=18190612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32669391A Expired - Fee Related JP3176109B2 (en) 1991-11-15 1991-11-15 Airflow dust removal method

Country Status (1)

Country Link
JP (1) JP3176109B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112999793B (en) * 2021-04-09 2022-11-11 四川安浪家纺有限责任公司 Continuous blowing dust collector

Also Published As

Publication number Publication date
JPH05137935A (en) 1993-06-01

Similar Documents

Publication Publication Date Title
CN107940801B (en) A kind of space division system recycling compressed air waste-heat
CN104848583B (en) Air compressor suction-type lithium bromide evaporates cooling and dehumidifying air-conditioning system
WO2000036345A1 (en) Air conditioner
CN107246681A (en) A kind of small-sized household formula solution humidifying Fresh air handling units of external low-temperature receiver
CN100359250C (en) One-unit double system household ventilating dehumidifier
CN110345584A (en) A kind of humiture independence control air conditioner system of injection throttling
JP2000514913A (en) Make-up air treatment device by direct expansion dehumidification
JP2008111643A (en) Liquid desiccant device utilizing engine waste heat
JP3176109B2 (en) Airflow dust removal method
JP2008111644A (en) Liquid desiccant device utilizing waste heat of air conditioner
JPH0395331A (en) Dehumidifier
JP3183899B2 (en) Blow-up type air purifier
CN1207516C (en) Air dehumidifying and cooling device with haet recovery
JPS62223573A (en) Air cycle heat pump
KR20000014336A (en) Dehumidifier and dehumidifying method
KR200487525Y1 (en) The cooling device of a communication machinery
JP2002227788A (en) Screw compressor with air dryer
JP3832569B2 (en) Cooling system
JP3289155B2 (en) Low-temperature air generation method and apparatus
JPH0596118A (en) Method for removing dust from air current
JP4207370B2 (en) Air conditioning system
JPH1030568A (en) Refrigerating type dryer in compressed air dehumidifier system
CN203928250U (en) Double-level evaporation-type conditioner
CN109890184B (en) Heat radiator for electronic device
CN2593094Y (en) Air dehumidifying and cooling apparatus with heat recovery

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees