JP3175079B2 - Iron-based scrap melting method - Google Patents

Iron-based scrap melting method

Info

Publication number
JP3175079B2
JP3175079B2 JP3240296A JP3240296A JP3175079B2 JP 3175079 B2 JP3175079 B2 JP 3175079B2 JP 3240296 A JP3240296 A JP 3240296A JP 3240296 A JP3240296 A JP 3240296A JP 3175079 B2 JP3175079 B2 JP 3175079B2
Authority
JP
Japan
Prior art keywords
iron
molten
scrap
molten metal
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3240296A
Other languages
Japanese (ja)
Other versions
JPH09227925A (en
Inventor
信也 北村
好弘 八太
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP3240296A priority Critical patent/JP3175079B2/en
Publication of JPH09227925A publication Critical patent/JPH09227925A/en
Application granted granted Critical
Publication of JP3175079B2 publication Critical patent/JP3175079B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は電気炉による鉄系ス
クラップ溶解方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for melting iron scrap by using an electric furnace.

【0002】[0002]

【従来の技術】従来電気炉による慣用の鉄系スクラップ
の溶解法においては、溶融スラグ中に炭材は過剰には含
まれていないため、電気炉中に山積みにした鉄系スクラ
ップの山が崩れてフラットバスになるまでは大気による
鉄の酸化が進行して溶融スラグ中のFeOは40%にも
達し、その後フラットバスになってから出湯温度に合わ
せるため電極加熱を実施するが、溶融スラグをフォーミ
ングさせるために炭材を添加しFeOを還元させCOガ
スを発生させるため、溶融スラグはフォーミングするも
のの還元反応により吸熱するため溶鉄温度はなかなか上
昇しないという問題点がある。
2. Description of the Related Art In a conventional method of melting iron-based scrap using an electric furnace, since the carbon material is not excessively contained in the molten slag, the piles of iron-based scrap piled up in the electric furnace collapse. Until a flat bath is formed, the oxidation of iron by the air proceeds and the amount of FeO in the molten slag reaches 40%. Thereafter, after the flat bath is formed, electrode heating is performed to adjust to the tapping temperature. Since a carbon material is added to form Fe to reduce FeO and generate CO gas, the molten slag forms, but absorbs heat by the reduction reaction, so that there is a problem that the temperature of the molten iron does not easily rise.

【0003】[0003]

【発明が解決しようとする課題】本発明は、電気炉によ
る鉄系スクラップ溶解方法において、電極により溶鉄を
加熱する際の加熱効率の向上を図ると共に設備費を節減
することを課題とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a method of melting iron-based scrap using an electric furnace, which aims to improve the heating efficiency when the molten iron is heated by the electrodes and to reduce equipment costs.

【0004】[0004]

【課題を解決するための手段】本発明は、前記課題を解
決するために、酸素ガス、窒素ガスと炭材が供給できる
底吹羽口を設けた電気炉を用い、同電気炉内に予め山積
みした鉄系スクラップの溶解により同スクラップの少な
くともほぼ60%が溶湯になってから、全てのスクラッ
プが溶湯湯面下に埋没してフラットバス化するまでの間
は、炭材を不活性ガスをキャリアーガスとして溶融スラ
グ層に供給して鉄の酸化によるFeOの生成を抑制し、
フラットバス化した以後は、底吹羽口より酸素含有ガス
のみを溶鉄中に吹き込み、脱炭し高速昇温させることを
基本思想とするもので、その要旨とするところは、電気
炉内に予め鉄系スクラップを山積みした後、溶融スラグ
の存在下で同スクラップを溶解して溶鉄を得る鉄系スク
ラップ溶解方法において、鉄系スクラップの溶解によ
り、同スクラップの内、少なくともほぼ60%が溶湯に
なってから、溶湯湯面が次第に上昇して同スクラップの
山が溶湯湯面下になるまでは、溶湯深さから決定される
ガスの吹き抜け限界の吹き込み量以上の不活性ガスを炭
材とともに炉底羽口から吹き込んで同炭材を溶融スラグ
層に添加し、同スクラップが全て生成した溶湯湯面下に
埋没した後は、溶湯深さから決定されるガスの吹き抜け
限界の吹き込み量未満の酸素含有ガスのみを炉底羽口か
ら吹き込んで溶湯を脱炭昇温することを特徴とする鉄系
スクラップ溶解方法にある。
According to the present invention, in order to solve the above-mentioned problems, an electric furnace provided with a bottom blowing port capable of supplying oxygen gas, nitrogen gas and carbonaceous material is provided. From the time that at least about 60% of the scrap is melted due to the melting of the piled iron scrap, until the time when all the scraps are buried under the surface of the molten metal and turned into a flat bath, the carbon material is purged with inert gas. Supply to the molten slag layer as a carrier gas to suppress the generation of FeO due to oxidation of iron,
After the flat bath was adopted, the basic idea was to blow only oxygen-containing gas into the molten iron from the bottom blowing tuyere, decarburize it, and raise the temperature at high speed. After stacking iron-based scraps, in an iron-based scrap melting method in which molten iron is melted in the presence of molten slag to obtain molten iron, at least approximately 60% of the scrap becomes molten metal due to melting of the iron-based scraps. Until the molten metal surface gradually rises and the mountain of the scrap falls below the molten metal surface, the inert gas and carbon After injecting from the tuyere and adding the same carbon material to the molten slag layer, and all the scrap was buried under the surface of the generated molten metal, the blowing amount of the gas blow-through limit determined by the depth of the molten metal was not reached. There only the oxygen-containing gas the melt blown from the furnace bottom tuyeres in ferrous scrap melting method characterized by de TanNoboru temperature.

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

【0005】本発明において、キャリアーガスとしての
不活性ガスの吹込み量を溶鉄深さから決定されるガスの
吹き抜け限界の吹き込み量以上とする理由は、炭材を溶
鉄層に接触させずに溶融スラグ層に直接添加させるため
である。つまり、ガスの吹き抜け限界の吹き込み量より
も少ない場合には炭材が溶鉄と接触するため溶鉄の炭素
量が上昇し、フラットバス化後の脱炭量が多くなり、精
錬時間が長くなるという問題を生じる。不活性ガスとし
ては、窒素、Ar、COが用いられ得るが、コスト的に
は窒素が有利であり、また溶鉄中の窒素濃度を低下させ
る必要がある鋼種を製造する場合には、Arを用いるの
が望ましい。
In the present invention, the reason why the blowing amount of the inert gas as a carrier gas is set to be equal to or more than the blowing amount of the gas blow-through limit determined from the molten iron depth is that the carbon material is melted without contacting the molten iron layer. This is because it is added directly to the slag layer. In other words, if the gas is less than the gas blow-through limit, the carbon material comes into contact with the molten iron, increasing the carbon content of the molten iron, increasing the amount of decarburization after flat bathing, and increasing the refining time. Is generated. As the inert gas, nitrogen, Ar, or CO can be used. However, nitrogen is advantageous in terms of cost, and Ar is used in the case of producing a steel type that needs to reduce the nitrogen concentration in the molten iron. It is desirable.

【0006】なお、本発明に従えば、炭材を炉底羽口か
ら溶融スラグ層に直接添加することができるので、炭材
を溶融スラグ層に供給するための上吹きないしは横吹き
ランスを必要とぜず、設備費を節約することができると
いう利点がある。本発明において、ガスの吹き抜け限界
のガス量(Q:Nm3 /Hr)は下記の式で計算され
る。
According to the present invention, since the carbon material can be directly added to the molten slag layer from the tuyere of the furnace bottom, it is necessary to provide a top blowing or side blowing lance for supplying the carbon material to the molten slag layer. However, there is an advantage that equipment costs can be reduced. In the present invention, the gas amount at the gas blow-through limit (Q: Nm 3 / Hr) is calculated by the following equation.

【0007】Q=5.5×104 ×d×H1.5 ここで、dは底吹きノズル直径(m)、Hは溶鉄深さ
(m)を示す。前記式は、吹き込まれたガスの運動エネ
ルギーと、溶鉄の静圧の相対関係に基づいて実験的に求
められたものである。ガスの吹き抜け限界のガス量以上
の吹き込みガス量の上限値(Q′:Nm3 /Hr)は、
吹き込みガスが溶融スラグ層までも吹き抜けないと言う
条件から、精錬容器の幾何学的形状に基づき溶融スラグ
の比重を2(g/cm3 )として計算されるスラグ厚み
をL(m)とした場合、下記式で示される。
Q = 5.5 × 10 4 × d × H 1.5 where d is the diameter of the bottom blow nozzle (m) and H is the depth of molten iron (m). The above equation is obtained experimentally based on the relative relationship between the kinetic energy of the injected gas and the static pressure of the molten iron. The upper limit value (Q ': Nm 3 / Hr) of the gas flow amount which is equal to or more than the gas flow limit of the gas blow-through limit is
When the specific gravity of the molten slag is 2 (g / cm 3 ) based on the geometrical shape of the refining vessel and the slag thickness is L (m) from the condition that the blown gas does not blow through the molten slag layer. , Is represented by the following equation.

【0008】 Q′=5.5×104 ×d×(H+L/3.5)1.5 炭材の溶融スラグへの添加量は、25〜100kg/溶
融スラグトンとする。その理由は、炭材の溶融スラグへ
の添加量が25kg/溶融スラグトンより少ない場合に
は、溶融スラグ中のFeOが十分に還元されず、そのた
めFeOの生成が抑制できず、他方100kg/溶融ス
ラグトンを超える場合には、溶融スラグ中の炭材が多過
ぎるため、炭材が溶鉄に接触し、溶鉄中の炭素濃度が上
昇するからである。
Q ′ = 5.5 × 10 4 × d × (H + L / 3.5) 1.5 The amount of carbon material added to the molten slag is 25 to 100 kg / molten slag ton. The reason is that when the amount of the carbon material added to the molten slag is less than 25 kg / molten slagton, the FeO in the molten slag is not sufficiently reduced, and therefore the production of FeO cannot be suppressed. This is because, when the temperature exceeds the limit, the amount of carbon material in the molten slag is too large, so that the carbon material comes into contact with the molten iron and the carbon concentration in the molten iron increases.

【0009】さらに本発明において、鉄系スクラップが
全て生成した溶湯湯面下に埋没した後、すなわちフラッ
トバス化した後に、溶鉄深さから決定されるガスの吹き
抜け限界の吹き込み量未満の酸素ガスのみを炉底羽口か
ら吹き込む理由は、酸素が溶鉄と十分に接触し、脱炭酸
素効率を高くするためである。つまり、ガスの吹き込み
量以上の酸素ガスを吹き込んだ場合には、溶鉄と反応せ
ずにスラグ層へ浮上するガスが多くなるため、溶鉄の脱
炭に消費されず、単に上部空間に酸素がそのまま通過す
るに過ぎず、脱炭に長時間を要するという問題を生じ
る。
Further, in the present invention, after all of the iron-based scrap is buried under the surface of the generated molten metal, that is, after being flat-bathed, only oxygen gas having a gas blow-through limit determined by the depth of the molten iron that is less than the blow-in limit is used. Is blown from the furnace bottom tuyere because oxygen sufficiently comes into contact with the molten iron to increase the decarbonation efficiency. In other words, when oxygen gas is blown in at a rate equal to or greater than the amount of gas blown, the amount of gas that floats to the slag layer without reacting with the molten iron increases, so that it is not consumed for decarburization of the molten iron, and oxygen is simply left in the upper space. The problem is that it takes only a long time to decarburize.

【0010】本発明の実施装置の概略を図1に示す。図
において、1は電気炉本体、2は電極、3は炉底電極、
4は溶鉄が存在する炉壁部位に設けられた炭材、キャリ
ヤーガスおよび攪拌ガス吹込み用炉底二重管羽口、5は
溶鉄、6は溶融スラグ層を示す。本発明を実施例に基づ
いて説明する。
FIG. 1 schematically shows an apparatus for implementing the present invention. In the figure, 1 is an electric furnace main body, 2 is an electrode, 3 is a furnace bottom electrode,
Reference numeral 4 denotes a carbon material provided on a furnace wall portion where molten iron is present, a furnace bottom double tube tuyere for injecting a carrier gas and a stirring gas, 5 denotes molten iron, and 6 denotes a molten slag layer. The present invention will be described based on examples.

【0011】[0011]

【実施例】【Example】

実施例−1 100トン電気炉において、鉄系スクラップ(以下単に
スクラップという)を100トン山積み後、直流電極を
上から挿入し、スクラップの溶解を開始した。スクラッ
プの山の頂上部位が溶解・滴下して電気炉内底部に溶湯
が溜まった。スクラップの溶解量の増大につれてスクラ
ップの山の高さが減少し、それに合わせて電極を降下し
ていった。溶融スラグは造滓剤(けい砂、生石灰、マグ
ネシア等)を通電前に装入し、約50〜150kg/ス
クラップ・ton形成した。代表的なスラグ組成は以下
のようなものである。炉底には2重管羽口(以下単に羽
口という)を設置し、内管からは酸素、あるいは窒素を
キャリアーとして粒径が2mm以下、炭材中揮発物が約
7%、固定炭素が75〜80%の無煙炭粉を供給し、外
管からは羽口冷却用のLPGを供給した。ノズル直径
(d)は5mm、溶け落ち後の溶深(H)は約1mであ
った。
Example-1 In a 100 ton electric furnace, after stacking 100 tons of iron-based scrap (hereinafter simply referred to as scrap), a DC electrode was inserted from above, and melting of the scrap was started. The top of the top of the scrap melted and dropped, and the molten metal accumulated at the bottom of the electric furnace. As the amount of scrap dissolved increased, the height of the scrap peak decreased, and the electrode was lowered accordingly. The molten slag was charged with a slag-forming agent (silica sand, quicklime, magnesia, etc.) before energization, and was formed at about 50 to 150 kg / scrap ton. A typical slag composition is as follows. A double tube tuyere (hereinafter simply referred to as tuyere) is installed at the bottom of the furnace. From the inner tube, oxygen or nitrogen is used as a carrier, the particle size is 2 mm or less, volatile matter in carbon material is about 7%, fixed carbon is 75-80% anthracite powder was supplied, and LPG for tuyere cooling was supplied from the outer tube. The nozzle diameter (d) was 5 mm, and the depth (H) after burn-through was about 1 m.

【0012】 CaO :25〜40% Al2 3 :2〜 5% SiO2 : 5〜15% MgO :5〜10% スクラップの内、60%程度が溶湯になり、溶湯湯面が
次第に上昇してスクラップの山が溶湯湯面下になるまで
は、炉底に設けた羽口より窒素ガスと前記無煙炭粉5k
g/スクラップ・トンを供給した。羽口1本当たりの窒
素流量は50〜100Nm3 /Hr、微粉炭供給速度は
40〜60kg/分とした。窒素供給速度(Q;Nm3
/Hr)はQ=5.5×104 ×d×H1.5 なる数式で
計算したが、山崩し前の浴深は、溶け落ち後の浴深に基
づき熱バランス計算から溶解量を計算し算出した。
CaO: 25 to 40% Al 2 O 3 : 2 to 5% SiO 2 : 5 to 15% MgO: 5 to 10% Of the scrap, about 60% becomes molten metal, and the molten metal surface gradually rises. Until the pile of scrap is below the surface of the molten metal, the nitrogen gas and the anthracite powder
g / scrap ton. The nitrogen flow rate per tuyere was 50-100 Nm 3 / Hr, and the pulverized coal feed rate was 40-60 kg / min. Nitrogen supply rate (Q; Nm 3
/ Hr) was calculated by the formula of Q = 5.5 × 10 4 × d × H 1.5 , but the bath depth before the landslide was calculated by calculating the amount of melting from the heat balance calculation based on the bath depth after the burn-through. did.

【0013】スクラップの60%以上が溶湯になりスク
ラップの山が溶湯湯面下になった以降は、炉底に設けた
羽口より羽口1本当たり酸素ガスを200〜300Nm
3 /Hrで供給した。この結果、スラグ中(T・Fe)
は2〜5%に低下し、投入電力とスクラップの溶解潜熱
と顕熱から計算される熱効率は81%にも達した。 実施例−2 実施例1記載の方法において、炉底に2種類の羽口を設
け、羽口Aは内径5mmの2重管羽口で内管からは窒素
をキャリアーとして無煙炭粉5kg/スクラップ・トン
を供給し、外管からは羽口冷却用のLPGを供給し、羽
口Bは内径10mmの2重管羽口で内管からは酸素もし
くは窒素を、外管からは羽口冷却用のLPGもしくは窒
素を供給した。
After 60% or more of the scrap has become molten metal and the mountain of scrap has become below the surface of the molten metal, 200-300 Nm of oxygen gas per tuyere is introduced from the tuyere provided at the furnace bottom.
3 / Hr. As a result, in the slag (T • Fe)
Was reduced to 2 to 5%, and the thermal efficiency calculated from the input power, the latent heat of melting of scrap and the sensible heat reached 81%. Example 2 In the method described in Example 1, two types of tuyeres were provided at the furnace bottom, and tuyere A was a double-tube tuyere having an inner diameter of 5 mm, and 5 kg of anthracite powder / scrap. Tongue, LPG for tuyere cooling is supplied from the outer tube, and tuyere B is a double tube tuyere with an inner diameter of 10 mm. LPG or nitrogen was supplied.

【0014】スクラップの60%程度が溶湯になりスク
ラップの山が溶湯湯面下になるまでは、羽口Aより窒素
ガスと微粉炭を、羽口1本当たりの窒素流量が50〜1
00Nm3 /Hr、微粉炭供給速度が40〜60kg/
分になるように供給し、羽口Bからはノズルへの溶湯の
侵入を防止するように窒素を80〜100Nm3 /Hr
で供給した。
Until about 60% of the scrap becomes molten metal and the peak of the scrap is below the surface of the molten metal, nitrogen gas and pulverized coal are supplied from tuyere A, and the nitrogen flow rate per tuyere is 50 to 1
00Nm 3 / Hr, pulverized coal feed rate is 40-60 kg /
And 80 to 100 Nm 3 / Hr to prevent molten metal from entering the nozzle from the tuyere B.
Supplied with

【0015】スクラップの山が溶湯湯面下になった以降
は、羽口Bからは羽口1本当たり酸素ガスを400〜6
00Nm3 /Hrで供給し、羽口Aからはノズルへの溶
湯の侵入を防止するように窒素を40〜60Nm3 /H
rで供給した。この結果、スラグ中(T・Fe)は2〜
5%に低下し、投入電力とスクラップの溶解潜熱と顕熱
から計算される熱効率は85%にも達した。
After the pile of the scrap falls below the surface of the molten metal, from the tuyere B, the oxygen gas per tuyere is
Nm 3 / supplied by Hr, nitrogen 40 to 60 nm 3 / H so as to prevent penetration of molten metal into the nozzle from the tuyere A
r. As a result, the slag (T.Fe)
It decreased to 5%, and the thermal efficiency calculated from the input power, the latent heat of melting of scrap and sensible heat reached 85%.

【0016】[0016]

【発明の効果】本発明によれば、電気炉による鉄系スク
ラップの溶解に際しての熱効率を著しく高めることがで
きると共に、上吹きあるいは横吹きランス設備が不要と
なるところから、設備費が節減される。
According to the present invention, the thermal efficiency of melting an iron-based scrap by an electric furnace can be remarkably increased, and the equipment cost can be reduced since the top blowing or side blowing lance equipment is not required. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施装置の概略説明図である。FIG. 1 is a schematic explanatory view of an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1:電気炉本体 2:電極 3:炉底電極 4:炉底二重管羽口 5:溶鉄 6:溶融スラグ層 1: Electric furnace body 2: Electrode 3: Furnace bottom electrode 4: Furnace bottom double tube tuyere 5: Molten iron 6: Molten slag layer

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 電気炉内に予め鉄系スクラップを山積み
した後、溶融スラグの存在下で同スクラップを溶解して
溶鉄を得る鉄系スクラップ溶解方法において、鉄系スク
ラップの溶解により、同スクラップの内、少なくともほ
ぼ60%が溶湯になってから、溶湯湯面が次第に上昇し
て同スクラップの山が溶湯湯面下になるまでは、溶湯深
さから決定されるガスの吹き抜け限界の吹き込み量以上
の不活性ガスを炭材とともに炉底羽口から吹き込んで同
炭材を溶融スラグ層に添加し、同スクラップが全て生成
した溶湯湯面下に埋没した後は、溶湯深さから決定され
るガスの吹き抜け限界の吹き込み量未満の酸素含有ガス
のみを炉底羽口から吹き込んで溶湯を脱炭昇温すること
を特徴とする鉄系スクラップ溶解方法。
An iron-based scrap melting method for stacking iron-based scraps in an electric furnace in advance and then melting the scraps in the presence of molten slag to obtain molten iron. From at least 60% of the molten metal, until the molten metal surface gradually rises and the mountain of the scrap falls below the molten metal surface, the gas blow-through limit determined by the depth of the molten metal is equal to or greater than the blowing amount. After the inert gas is blown from the furnace bottom tuyere together with the carbon material, the carbon material is added to the molten slag layer, and all the scrap is buried under the surface of the generated molten metal. An iron-based scrap melting method characterized by blowing only oxygen-containing gas having a blowing amount less than a blow-through limit from a furnace bottom tuyere to decarburize and raise the temperature of a molten metal.
JP3240296A 1996-02-20 1996-02-20 Iron-based scrap melting method Expired - Fee Related JP3175079B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3240296A JP3175079B2 (en) 1996-02-20 1996-02-20 Iron-based scrap melting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3240296A JP3175079B2 (en) 1996-02-20 1996-02-20 Iron-based scrap melting method

Publications (2)

Publication Number Publication Date
JPH09227925A JPH09227925A (en) 1997-09-02
JP3175079B2 true JP3175079B2 (en) 2001-06-11

Family

ID=12357972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3240296A Expired - Fee Related JP3175079B2 (en) 1996-02-20 1996-02-20 Iron-based scrap melting method

Country Status (1)

Country Link
JP (1) JP3175079B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240035546A (en) * 2021-09-30 2024-03-15 닛폰세이테츠 가부시키가이샤 Molten iron manufacturing method

Also Published As

Publication number Publication date
JPH09227925A (en) 1997-09-02

Similar Documents

Publication Publication Date Title
EP2380995B1 (en) Smelting vessel, steel making plant and steel production method
KR100578464B1 (en) Method for smelting fine grained direct reduced iron in an electric arc furnace
EP0693561B1 (en) Electric arc furnace post-combustion method
US5000784A (en) Method for smelting reduction of iron ore
US4936908A (en) Method for smelting and reducing iron ores
CA2698888C (en) Method for manufacturing molten iron
JP3175079B2 (en) Iron-based scrap melting method
WO1989001532A1 (en) Process for melt reduction of cr starting material and melt reduction furnace
US4913732A (en) Method for smelting reduction in electric furnace
EP0290650B1 (en) Method for manufacturing steel through smelting reduction
JP2003147430A (en) Reducing agent for steelmaking, and steelmaking method
JP2000337776A (en) Method for improving secondary combustion rate and heating efficiency of melting furnace, or the like
JP3286114B2 (en) Method for producing high carbon molten iron from scrap iron
JP3236737B2 (en) Operating method of vertical iron scrap melting furnace
JPH09227926A (en) Method for melting stainless steel scrap
WO2022234762A1 (en) Electric furnace and steelmaking method
JP2725466B2 (en) Smelting reduction steelmaking method
SU1638176A1 (en) Process for steel making from metallized pellets in arc furnace
JPH09227924A (en) Method for melting ferrous scrap
JP2021188073A (en) Producing method of molten iron using electric furnace
KR100270119B1 (en) The method of molten metal refining and flux
JP2000345229A (en) Method for arc-melting cold iron source
JP4103503B2 (en) Hot phosphorus dephosphorization method
JPS62116712A (en) Melting and smelting vessel having splash lance
JPH09227917A (en) Method for melting ferrous scrap

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010213

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090406

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees