JP3175021B2 - Method and apparatus for stabilizing the potential of a pH measurement electrode - Google Patents

Method and apparatus for stabilizing the potential of a pH measurement electrode

Info

Publication number
JP3175021B2
JP3175021B2 JP03867492A JP3867492A JP3175021B2 JP 3175021 B2 JP3175021 B2 JP 3175021B2 JP 03867492 A JP03867492 A JP 03867492A JP 3867492 A JP3867492 A JP 3867492A JP 3175021 B2 JP3175021 B2 JP 3175021B2
Authority
JP
Japan
Prior art keywords
electrode
potential
measurement
solution
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03867492A
Other languages
Japanese (ja)
Other versions
JPH05203615A (en
Inventor
明彦 加藤
昌春 山里
芳紀 柳田
裕子 金野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DKK TOA Corp
Original Assignee
DKK TOA Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DKK TOA Corp filed Critical DKK TOA Corp
Priority to JP03867492A priority Critical patent/JP3175021B2/en
Publication of JPH05203615A publication Critical patent/JPH05203615A/en
Application granted granted Critical
Publication of JP3175021B2 publication Critical patent/JP3175021B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は一般的には溶液のpHを
測定するpH測定電極に関し、特に金属酸化物又は金属
をpH感応膜とするpH測定電極の電極電位を短時間で
元の電位状態に復帰させる電位安定化方法及び装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention generally relates to a pH measuring electrode for measuring the pH of a solution, and more particularly, to a method in which the electrode potential of a pH measuring electrode using a metal oxide or a metal as a pH-sensitive film is reduced to the original potential in a short time. The present invention relates to a potential stabilizing method and device for returning to a state.

【0002】[0002]

【従来の技術】周知のように、溶液のpH測定には水素
イオン選択性の感応膜を有するpH測定電極が使用さ
れ、その代表的なものにガラスをpH感応膜とするガラ
ス電極がある。また、高温溶液等の特殊な溶液や特殊な
用途においては、白金等の金属や酸化チタン等の金属酸
化物をpH感応膜とするpH測定電極が使用されてい
る。通常、pHを測定する場合には、上記のpH測定電
極を作用電極とし、この作用電極を甘汞電極や銀−塩化
銀電極等の比較電極と共に測定すべき溶液(被測定溶
液)中に浸漬し、両電極間の電位差から被測定溶液のp
H値が求められる。
2. Description of the Related Art As is well known, a pH measuring electrode having a hydrogen ion selective sensitive membrane is used for measuring the pH of a solution, and a typical example thereof is a glass electrode using glass as a pH sensitive membrane. For special solutions such as high-temperature solutions and special applications, pH measurement electrodes using a metal such as platinum or a metal oxide such as titanium oxide as a pH-sensitive film are used. Usually, when measuring pH, the above-mentioned pH measuring electrode is used as a working electrode, and this working electrode is dipped in a solution to be measured (solution to be measured) together with a reference electrode such as a calomel electrode or a silver-silver chloride electrode. Then, from the potential difference between the two electrodes, p
The H value is determined.

【0003】ガラス電極は安定性がすこぶる良く、測定
精度が高いので、種々の溶液のpHの測定に大いに利用
されている。しかしながら、ガラス電極は壊れ易いため
に取扱いが面倒であり、また、耐薬品性に劣るために使
用できる溶液に制限がある。さらに、pH計その他のp
H測定装置に対する小型化の要望が高まる中で、膜抵抗
値が高いために製造技術的にガラス電極を微小化するこ
とが困難であるという欠点があった。
[0003] Glass electrodes have very good stability and high measurement accuracy, and thus are widely used for measuring the pH of various solutions. However, glass electrodes are fragile and difficult to handle because they are fragile, and there are limitations on the solutions that can be used because of poor chemical resistance. In addition, pH meter and other p
As the demand for miniaturization of the H measuring device has increased, there has been a drawback that it is difficult to miniaturize the glass electrode due to the manufacturing technology due to the high film resistance value.

【0004】このため、これら欠点を除去することがで
きるpH測定電極が種々検討されており、上述の金属や
金属酸化物をpH感応膜として用いたpH測定電極が提
案されている。
[0004] For this reason, various pH measurement electrodes capable of eliminating these defects have been studied, and pH measurement electrodes using the above-mentioned metals and metal oxides as pH-sensitive films have been proposed.

【0005】金属酸化物をpH感応膜とするpH測定電
極は、一般的に、溶液との界面での金属酸化物の酸化還
元平衡電位が溶液中の水素イオン濃度に依存して変化す
ることを利用するものであるが、安定性の点で問題があ
り、例えば、濃度10-1〜100 Mのアスコルビン酸、
フェロシアン、フェリシアンといった共存物質の影響を
受けると電極電位がしばしば変動することがある。同様
に、金属をpH感応膜とするpH測定電極の場合にも共
存物質の影響を受け、電極電位がしばしば変動すること
がある。
A pH measuring electrode using a metal oxide as a pH-sensitive film generally shows that the oxidation-reduction equilibrium potential of the metal oxide at the interface with the solution changes depending on the hydrogen ion concentration in the solution. but it is intended to be used, there are problems in terms of stability, for example, concentration 10 -1 to 10 0 M ascorbic acid,
When affected by coexisting substances such as ferrocyan and ferricyan, the electrode potential often fluctuates. Similarly, in the case of a pH measurement electrode using a metal as a pH sensitive film, the potential of the electrode often fluctuates due to the influence of coexisting substances.

【0006】このように電極電位が変動したpH測定電
極は、従来、pH一定(例えばpH6.86)の標準液
に元の電位状態に復帰するまで浸漬する必要があり、通
常、元の電位状態に復帰するまでに最短で10時間を必
要とし、1日(24時間)〜2日(48時間)かかるも
のも多数あった。
Conventionally, the pH measuring electrode whose electrode potential fluctuates must be immersed in a standard solution having a constant pH (for example, pH 6.86) until the electrode returns to the original potential state. It took a minimum of 10 hours to return to, and many took 1 day (24 hours) to 2 days (48 hours).

【0007】[0007]

【発明が解決しようとする課題】しかしながら、pH測
定電極の電位の復帰に10時間以上もの長い時間を必要
としたのでは、その間はpH測定電極が使用できないの
で、極めて効率が悪い。また、影響の受け方によっては
全く復帰しないこともある。電極電位が変動すると、不
斉電位が大きくなるから、pH計での校正が不能とな
り、不良品として廃棄せざるを得なくなる。
However, if it takes as long as 10 hours or more to restore the potential of the pH measuring electrode, the pH measuring electrode cannot be used during that time, which is extremely inefficient. Also, it may not return at all depending on how it was affected. If the electrode potential fluctuates, the asymmetry potential increases, so that calibration with a pH meter becomes impossible, and it must be discarded as a defective product.

【0008】従って、本発明の1つの目的は、金属酸化
物や金属をpH感応膜とするpH測定電極の変動した電
極電位を短時間で元の電位状態に復帰させることができ
る電位安定化方法を提供することである。
Accordingly, one object of the present invention is to provide a potential stabilizing method capable of returning a fluctuated electrode potential of a pH measuring electrode using a metal oxide or metal to a pH-sensitive film to an original potential state in a short time. It is to provide.

【0009】本発明の他の目的は、金属酸化物や金属を
pH感応膜とするpH測定電極の変動した電極電位を短
時間で元の電位状態に復帰させることができるpH測定
電極の電位安定化装置を提供することである。
Another object of the present invention is to stabilize the potential of a pH measuring electrode which can return a changed electrode potential to an original potential state in a short time by using a metal oxide or a metal as a pH-sensitive film. It is to provide a chemical conversion device.

【0010】[0010]

【課題を解決するための手段】上記目的は本発明に係る
pH測定電極の電位安定化方法及び装置によって達成さ
れる。要約すれば、本発明は、電極電位の変動した金属
酸化物又は金属をpH感応膜とする複数個のpH測定電
極を、互いに電気的に短絡させた状態で、pH一定の溶
液中に浸漬することを特徴とするpH測定電極の電位安
定化方法である。
The above object is achieved by the method and apparatus for stabilizing the potential of a pH measuring electrode according to the present invention. In summary, the present invention provides a method of immersing a plurality of pH measuring electrodes using a metal oxide or a metal having a fluctuating electrode potential as a pH-sensitive membrane in a constant pH solution in a state where they are electrically short-circuited to each other. This is a method for stabilizing the potential of a pH measurement electrode.

【0011】或は、本発明は、電極電位の変動した金属
酸化物又は金属をpH感応膜とするpH測定電極と、該
pH測定電極のpH感応膜と同じ金属酸化物又は金属を
内極として使用する比較電極とを、互いに電気的に短絡
させた状態で、前記比較電極の内部液と同一のpH一定
の溶液中に浸漬することを特徴とするpH測定電極の電
位安定化方法である。
Alternatively, the present invention provides a pH measurement electrode using a metal oxide or metal having a fluctuated electrode potential as a pH-sensitive film, and using the same metal oxide or metal as the pH-sensitive film of the pH measurement electrode as an inner electrode. A method for stabilizing the potential of a pH measurement electrode, comprising immersing a reference electrode to be used in a solution having a constant pH same as the internal liquid of the reference electrode in a state of being electrically short-circuited with each other.

【0012】さらに、本発明は、金属酸化物又は金属を
pH感応膜とする複数個のpH測定電極を収納する電極
収納部と、該電極収納部内に入れられたpH一定の溶液
と、前記電極収納部に収納された複数個のpH測定電極
を互いに電気的に短絡する手段とを具備し、前記電極収
納部内で複数個のpH測定電極を前記pH一定の溶液に
浸漬させ、かつこれらpH測定電極を互いに電気的に短
絡させて各pH測定電極の電極電位を安定化させること
を特徴とするpH測定電極の電位安定化装置である。
Further, the present invention relates to an electrode accommodating portion for accommodating a plurality of pH measuring electrodes using a metal oxide or metal as a pH-sensitive film, a solution having a constant pH contained in the electrode accommodating portion, Means for electrically short-circuiting the plurality of pH measurement electrodes housed in the housing part to each other, immersing the plurality of pH measurement electrodes in the solution having a constant pH in the electrode housing part, and A potential stabilizing device for a pH measuring electrode, wherein the electrodes are electrically short-circuited to each other to stabilize the electrode potential of each pH measuring electrode.

【0013】或は、本発明は、金属酸化物又は金属をp
H感応膜とするpH測定電極と該pH測定電極のpH感
応膜と同じ金属酸化物又は金属を内極として使用する比
較電極とを収納する電極収納部と、該電極収納部内に入
れられた前記比較電極の内部液と同一のpH一定の溶液
と、前記電極収納部に収納されたpH測定電極及び比較
電極を互いに電気的に短絡する手段とを具備し、前記電
極収納部内でpH測定電極及び比較電極を前記pH一定
の溶液に浸漬させ、かつこれら電極を互いに電気的に短
絡させて前記pH測定電極の電極電位を安定化させるこ
とを特徴とするpH測定電極の電位安定化装置である。
Alternatively, the present invention provides a method for converting a metal oxide or metal to p
An electrode storage portion for storing a pH measurement electrode to be an H-sensitive film, a comparison electrode using the same metal oxide or metal as the pH-sensitive film of the pH measurement electrode as an inner electrode, and the electrode storage portion accommodated in the electrode storage portion. A solution having the same pH as the internal solution of the reference electrode, and a means for electrically short-circuiting the pH measurement electrode and the comparison electrode housed in the electrode housing part to each other, wherein the pH measurement electrode and A potential stabilizing device for a pH measurement electrode, characterized in that a reference electrode is immersed in the solution having a constant pH, and the electrodes are electrically short-circuited to each other to stabilize an electrode potential of the pH measurement electrode.

【0014】[0014]

【実施例】以下、本発明の実施例について添付図面を参
照して詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings.

【0015】本発明者達は金属酸化物について種々の研
究を行なった結果、化学的に安定でフッ化水素酸を含む
酸に侵されない、しかも膜抵抗値の低い酸化イリジウム
がpHに感応する事実を確認し、この酸化イリジウム膜
を、例えば反応性スパッタによって、所定形状及び寸法
の白金、タンタルなどの金属基板に製膜し、酸化イリジ
ウム膜をpH感応膜とするpH測定電極を製造した。
As a result of various studies on metal oxides, the present inventors have found that iridium oxide, which is chemically stable, is not attacked by acids including hydrofluoric acid, and has a low film resistance, is sensitive to pH. Was confirmed, and this iridium oxide film was formed on a metal substrate such as platinum or tantalum having a predetermined shape and dimensions by, for example, reactive sputtering, thereby producing a pH measurement electrode using the iridium oxide film as a pH-sensitive film.

【0016】(実施例1)上記構成の酸化イリジウムの
pH測定電極を4本用意し、酸化イリジウムのpH測定
電極に影響を与える物質が共存した溶液のpHの測定に
使用した後、pH6.86の標準液である中性リン酸塩
溶液に浸漬し、それらの電極電位を測定したところ、各
電極の電位はそれぞれ281、321、256、及び3
85mVと大幅に変動していた。この電極電位の測定に
は比較電極として飽和塩化カリウム溶液に接触させた銀
−塩化銀電極(Satu.KCl-Ag/AgCl、当社製品HS-205C)を使
用した。
(Example 1) Four iridium oxide pH measurement electrodes having the above structure were prepared and used for measuring the pH of a solution in which a substance affecting the iridium oxide pH measurement electrode coexisted. The electrodes were immersed in a neutral phosphate solution as a standard solution, and their electrode potentials were measured. The potentials of the respective electrodes were 281, 321, 256, and 3, respectively.
It fluctuated greatly to 85 mV. For the measurement of the electrode potential, a silver-silver chloride electrode (Satu. KCl-Ag / AgCl, our product HS-205C) was used as a reference electrode in contact with a saturated potassium chloride solution.

【0017】次に、図1に示すように、これら4本のp
H測定電極1〜4を、それらの電極導出線(リード線)
1a〜4aを互いに電気的に接続して各電極を電気的に
短絡させた状態で、同じpH6.86の中性リン酸塩溶
液5に浸漬し、1時間放置した。放置後、上記pH6.
86の中性リン酸塩溶液5に浸漬した状態で、比較電極
として上記飽和塩化カリウム溶液に接触させた銀−塩化
銀電極を使用して各電極の電位を測定したところ、電極
1〜4の電位はそれぞれ261、261、261、及び
261mVであった。また、これら4本の電極1〜4を
pH4.01の標準液であるフタル酸塩溶液中に浸漬
し、同じ比較電極を使用して各電極の電位を測定したと
ころ、電極1〜4の電位はそれぞれ430、429、4
30、及び430mVであった。これらの結果を次の表
1に示す。
Next, as shown in FIG. 1, these four p
H measurement electrodes 1 to 4 are connected to their lead wires (lead wires).
In a state where the electrodes 1a to 4a were electrically connected to each other and the electrodes were electrically short-circuited, the electrodes were immersed in the same neutral phosphate solution 5 at pH 6.86 and left for 1 hour. After standing, the above pH6.
86, while immersed in neutral phosphate solution 5, the potential of each electrode was measured using a silver-silver chloride electrode contacted with the saturated potassium chloride solution as a reference electrode. The potentials were 261, 261, 261, and 261 mV, respectively. When the four electrodes 1 to 4 were immersed in a phthalate solution as a standard solution of pH 4.01, and the potential of each electrode was measured using the same comparative electrode, the potential of the electrodes 1 to 4 was measured. Are 430, 429, 4 respectively
30, and 430 mV. The results are shown in Table 1 below.

【0018】[0018]

【表1】 [Table 1]

【0019】上記表1から明白なように、4本の電極を
互いに電気的に短絡し、pH6.86の中性リン酸塩溶
液に1時間浸漬させると、大幅に変動した4本の酸化イ
リジウムのpH測定電極1〜4の電極電位は1時間とい
う短時間でほぼ同一となり、かつほぼ元の電位状態に復
帰し、安定化されることが分かる。また、1pH当りの
傾きも理論値と一致した。このように酸化イリジウムの
pH測定電極の電位が短時間でほぼ元の状態に復帰し、
安定化するのは、酸化イリジウムが半導体金属酸化物で
あるため、相互に電気的に短絡することで電流が流れ、
平衡状態になる作用が生ずるものと考えられる。
As is evident from Table 1 above, when the four electrodes were electrically short-circuited to each other and immersed in a neutral phosphate solution of pH 6.86 for 1 hour, the four iridium oxides which fluctuated greatly changed. It can be seen that the electrode potentials of the pH measurement electrodes 1 to 4 become almost the same in a short time of 1 hour, and return to almost the original potential state and are stabilized. Also, the slope per pH was in agreement with the theoretical value. In this way, the potential of the pH measurement electrode of iridium oxide returns to almost the original state in a short time,
What stabilizes is that since iridium oxide is a semiconductor metal oxide, current flows by electrically short-circuiting each other,
It is considered that the effect of equilibrium occurs.

【0020】(実施例2)上記実施例1と同じ構成の酸
化イリジウムのpH測定電極を5本用意し、酸化イリジ
ウムのpH測定電極に影響を与える物質が共存した溶液
のpHの測定に使用した後、pH6.86の標準液であ
る中性リン酸塩溶液に浸漬し、それらの電極電位を測定
したところ、各電極の電位はそれぞれ270、282、
235、258、及び282mVと大幅に変動してい
た。この電極電位の測定には比較電極として上記実施例
1と同じ飽和塩化カリウム溶液に接触させた銀−塩化銀
電極(Satu.KCl-Ag/AgCl、当社製品HS-205C)を使用した。
(Example 2) Five iridium oxide pH measuring electrodes having the same structure as in the above-mentioned Example 1 were prepared and used for measuring the pH of a solution in which a substance affecting the iridium oxide pH measuring electrode coexisted. Thereafter, the electrodes were immersed in a neutral phosphate solution, which is a standard solution of pH 6.86, and their electrode potentials were measured. The potentials of the respective electrodes were 270, 282,
235, 258 and 282 mV. For the measurement of the electrode potential, a silver-silver chloride electrode (Satu. KCl-Ag / AgCl, our product HS-205C) which was brought into contact with the same saturated potassium chloride solution as in Example 1 was used as a comparative electrode.

【0021】次に、これら5本のpH測定電極をpH
4.01の標準液であるフタル酸塩溶液中に浸漬し、5
本の電極の電極導出線を相互に電気的に接続して短絡さ
せ、1時間放置した。放置後、上記pH4.01のフタ
ル酸塩溶液中に浸漬した状態で、比較電極として上記飽
和塩化カリウム溶液に接触させた銀−塩化銀電極を使用
して各電極の電位を測定したところ、これら電極の電位
はそれぞれ425、426、430、426、及び42
6mVであった。また、これら5本の電極を上記pH
6.86の中性リン酸塩溶液中に浸漬し、同じ比較電極
を使用して各電極の電位を測定したところ、これら電極
の電位はそれぞれ258、261、260、260、及
び258mVであった。これらの結果を次の表2に示
す。
Next, these five pH measuring electrodes were adjusted to pH
Dipped in a phthalate solution as a standard solution of 4.01;
The electrode lead wires of the electrodes were electrically connected to each other, short-circuited, and left for 1 hour. After standing, the potential of each electrode was measured using a silver-silver chloride electrode in contact with the saturated potassium chloride solution as a reference electrode while immersed in the phthalate solution of pH 4.01. The potentials of the electrodes are 425, 426, 430, 426, and 42, respectively.
6 mV. In addition, these five electrodes are connected to the above pH.
When the electrodes were immersed in 6.86 neutral phosphate solution and the potential of each electrode was measured using the same reference electrode, the potentials of these electrodes were 258, 261, 260, 260, and 258 mV, respectively. . The results are shown in Table 2 below.

【0022】[0022]

【表2】 [Table 2]

【0023】上記表2から明白なように、大幅に変動し
た5本の酸化イリジウムのpH測定電極の電位は、pH
4.01のフタル酸塩溶液中に浸漬した場合でも、1時
間という短時間でほぼ同一となり、かつほぼ元の電位状
態に復帰し、安定化されることが分かる。また、1pH
当りの傾きも理論値と一致した。
As is evident from Table 2 above, the potential of the five iridium oxide pH measuring electrodes which fluctuated greatly was determined by the pH
It can be seen that even when immersed in the 4.01 phthalate solution, it becomes almost the same in a short time of one hour, and returns to almost the original potential state and is stabilized. In addition, 1pH
The slope per hit also agreed with the theoretical value.

【0024】また、上記表1及び2から、pH測定電極
を浸漬する溶液はpH一定の溶液であれば良く、電極を
互いに短絡してそのpH一定の溶液中に短時間の間浸漬
すれば、ほぼ均一で安定な元の電極電位に復帰するとい
うことが理解できよう。
From Tables 1 and 2 above, the solution in which the pH measuring electrode is immersed may be a solution having a constant pH. If the electrodes are short-circuited and immersed in the solution having a constant pH for a short time, It can be understood that the electrode returns to the substantially uniform and stable original electrode potential.

【0025】なお、電極電位の変動した各pH測定電
極、或は電極電位の変動したpH測定電極と比較電極
は、互いに電気的に短絡させてからpH一定の溶液に浸
漬させても、浸漬させてから互いに電気的に短絡させて
も良い。
Each of the pH measuring electrodes having a fluctuating electrode potential, or the pH measuring electrode having a fluctuating electrode potential and a reference electrode are electrically short-circuited with each other and then dipped in a solution having a constant pH. After that, they may be electrically short-circuited to each other.

【0026】(実施例3)本実施例はpH測定電極のp
H感応膜のみならず、比較電極の内極にも酸化イリジウ
ムを使用した場合の電極電位安定化方法である。図2に
示すように、比較電極10は内筒11及び外筒12にそ
れぞれジャンクション11a及び12aを有するダブル
ジャンクション形のものが使用され、内筒11内の内部
液13中に浸漬された内極14に酸化イリジウムが使用
されている。この内極14は、図3に拡大して示すよう
に、所定の形状及び寸法の導電性の電極支持体21と、
この支持体21の1つの面に、例えばスパッタリングに
よって製膜された酸化イリジウム膜22とから構成さ
れ、電極支持体21が内筒11内に同軸的に配置された
支持管体16の底面に形成された透孔中に液密状態に取
り付けられることによって、酸化イリジウム膜22は内
筒11内の内部液13中に完全に浸漬した状態で支持さ
れている。
(Embodiment 3) In this embodiment, the pH measurement electrode
This is a method for stabilizing the electrode potential when iridium oxide is used not only for the H-sensitive film but also for the inner electrode of the reference electrode. As shown in FIG. 2, the reference electrode 10 is a double junction type having junctions 11 a and 12 a for the inner cylinder 11 and the outer cylinder 12, respectively. The inner electrode immersed in the internal liquid 13 in the inner cylinder 11 is used. 14, iridium oxide is used. As shown in an enlarged manner in FIG. 3, the inner pole 14 includes a conductive electrode support 21 having a predetermined shape and dimensions,
The electrode support 21 is formed on one surface of the support 21 and an iridium oxide film 22 formed by, for example, sputtering. The electrode support 21 is formed on the bottom surface of the support tube 16 coaxially arranged in the inner cylinder 11. The iridium oxide film 22 is supported in a state of being completely immersed in the internal liquid 13 in the inner cylinder 11 by being attached in a liquid-tight state in the formed through hole.

【0027】電極支持体21は酸化イリジウム膜22の
支持体として機能するもので、アルミニウム、白金、タ
ンタル、チタン、イリジウムなど導電性を有するもので
あればどんな金属でも良いが、本実施例では細長い板状
体のタンタルの金属板が使用され、酸化イリジウム膜2
2が被着された以外の全表面は絶縁膜24で電気的に絶
縁されている。また、電極支持体21の内部液13と接
触しない上端部にはリード線23が電気的に接続され、
このリード線23は支持管体16内を通って図示しない
測定処理回路の入力ジャックに接続される。
The electrode support 21 functions as a support for the iridium oxide film 22 and may be made of any conductive material such as aluminum, platinum, tantalum, titanium, and iridium. A plate-shaped tantalum metal plate is used, and an iridium oxide film 2 is used.
The entire surface other than the surface where 2 is applied is electrically insulated by the insulating film 24. Further, a lead wire 23 is electrically connected to an upper end portion of the electrode support 21 which does not contact the internal liquid 13,
The lead wire 23 passes through the support tube 16 and is connected to an input jack of a measurement processing circuit (not shown).

【0028】なお、図3では酸化イリジウム膜22と電
極支持体21との間に絶縁膜24が存在しないが、電極
支持体21には初めにその全面に絶縁膜24が被着され
ており、酸化イリジウム膜22を、例えばスパッタリン
グ被着することによってその間にある絶縁膜が除去さ
れ、酸化イリジウム膜22は電極支持体21と電気的に
強固に接続される。従って、酸化イリジウム膜を形成す
る部分の絶縁膜を予め電極支持体21から除去しておく
必要はない。
Although the insulating film 24 does not exist between the iridium oxide film 22 and the electrode support 21 in FIG. 3, the insulating film 24 is first deposited on the entire surface of the electrode support 21. The iridium oxide film 22 is, for example, deposited by sputtering to remove the insulating film therebetween, and the iridium oxide film 22 is electrically and strongly connected to the electrode support 21. Therefore, it is not necessary to remove the insulating film at the portion where the iridium oxide film is to be formed from the electrode support 21 in advance.

【0029】また、電極支持体21として、例えばサフ
ァイヤ、ガラス、セラミックスなどの無機材料やポリ塩
化ビニル(PVC)、フッ素樹脂などのプラスチック材
料よりなる絶縁物の板状体を使用してもよい。この場合
には酸化イリジウム膜22の上部を支持管体16内に配
置し、リード線23を酸化イリジウム膜22の上端部に
接続することになる。一方、絶縁膜24としては、五酸
化タンタル(Ta2O5) 、アルミナ(Al2O3) 、二酸化ケイ素
(SiO2)、窒化ケイ素(Si3N4) などの絶縁性の酸化物、窒
化物とフッ素樹脂などのプラスチック材料が使用でき
る。絶縁膜24は自然酸化膜を利用しても良いし、スパ
ッタリング、CVDなどの真空薄膜製造技術、加熱酸
化、金属アルコキシドを材料としたディップコーティン
グ法などの製造方法を使用して形成しても良い。なお、
電極支持体21の形状や寸法は任意に選択できるもので
あり、例えば、棒状体、円筒及び角筒状体等の種々の形
状の支持体が使用できる。また、金属酸化物としては、
酸化イリジウムの他に、例えば酸化パラジウム、酸化チ
タンなどの金属酸化物が使用できる。勿論、比較電極1
0の内極14は任意の構成のものが使用できる。
The electrode support 21 may be an insulating plate made of an inorganic material such as sapphire, glass, ceramics, or a plastic material such as polyvinyl chloride (PVC) or fluororesin. In this case, the upper part of the iridium oxide film 22 is disposed in the support tube 16, and the lead wire 23 is connected to the upper end of the iridium oxide film 22. On the other hand, as the insulating film 24, tantalum pentoxide (Ta 2 O 5 ), alumina (Al 2 O 3 ), silicon dioxide
Insulating oxides such as (SiO 2 ) and silicon nitride (Si 3 N 4 ), and plastic materials such as nitride and fluororesin can be used. The insulating film 24 may use a natural oxide film, or may be formed using a manufacturing method such as a vacuum thin film manufacturing technique such as sputtering or CVD, a thermal oxidation, or a dip coating method using a metal alkoxide as a material. . In addition,
The shape and dimensions of the electrode support 21 can be arbitrarily selected. For example, various shapes of supports such as a rod, a cylinder, and a rectangular tube can be used. Also, as the metal oxide,
In addition to iridium oxide, for example, metal oxides such as palladium oxide and titanium oxide can be used. Of course, reference electrode 1
The inner pole 14 of 0 may be of any configuration.

【0030】このような酸化イリジウムを内極14とす
る比較電極10が使用されているときには、上記図2に
示すように、電極電位の変動した酸化イリジウムのpH
測定電極30と比較電極10を、比較電極10の内筒1
1内に注入されている内部液13と同じpH一定の溶液
15中に浸漬し、pH測定電極30のリード線31と比
較電極10のリード線23とを電気的に接続して両電極
を互いに電気的に短絡し、所定時間放置する。本実施例
では、pH6.86の標準液である中性リン酸塩溶液で
の電極電位が320mVである酸化イリジウムのpH測
定電極30と247mVの比較電極10とを互いに電気
的に短絡して、この比較電極10の内筒11内に注入さ
れているpH一定の内部液13と同じ溶液15中に浸漬
し、1時間放置した。その後このpH測定電極30を上
記pH6.86の中性リン酸塩溶液に浸漬してその電極
電位を測定したところ、比較電極10と同じ247mV
であった。
When such a comparative electrode 10 having iridium oxide as the inner electrode 14 is used, as shown in FIG. 2, the pH of the iridium oxide with the electrode potential fluctuated.
The measurement electrode 30 and the comparison electrode 10 are connected to the inner cylinder 1 of the comparison electrode 10.
1 is immersed in a solution 15 having the same pH as that of the internal liquid 13 injected into the inside 1, and the lead wire 31 of the pH measurement electrode 30 and the lead wire 23 of the comparison electrode 10 are electrically connected to connect both electrodes to each other. Short-circuit electrically and leave for a predetermined time. In the present embodiment, the pH measurement electrode 30 of iridium oxide having an electrode potential of 320 mV and the reference electrode 10 of 247 mV in a neutral phosphate solution which is a standard solution of pH 6.86 are electrically short-circuited to each other. It was immersed in the same solution 15 as the constant pH internal solution 13 injected into the inner cylinder 11 of the comparative electrode 10 and left for 1 hour. Thereafter, this pH measuring electrode 30 was immersed in the above-mentioned neutral phosphate solution of pH 6.86, and its electrode potential was measured.
Met.

【0031】このように、比較電極の内極にもpH測定
電極と同じ金属酸化物が使用されているときには、比較
電極の内筒内に注入されている内部液と同じ溶液にpH
測定電極と比較電極を浸漬し、両電極を互いに電気的に
短絡して短時間放置することによっても、pH測定電極
の電極電位の変動をほぼ元の状態に復帰させ、安定化さ
せることができる。
As described above, when the same metal oxide as that of the pH measurement electrode is used for the inner electrode of the reference electrode, the pH is changed to the same solution as the internal solution injected into the inner cylinder of the reference electrode.
By immersing the measurement electrode and the reference electrode, electrically short-circuiting the two electrodes and leaving the electrodes for a short time, the fluctuation of the electrode potential of the pH measurement electrode can be restored to almost the original state and stabilized. .

【0032】上記酸化イリジウムのpH測定電極30の
一例を図4に拡大して示す。このpH測定電極30は、
所定の形状及び寸法の導電性の電極支持体32と、この
支持体32の1つの面に、例えばスパッタリングによっ
て製膜された酸化イリジウム膜よりなるpH感応膜33
とを含み、このpH感応膜33を支持する電極支持体3
2が、例えばガラスの支持管34の底面に固着されるこ
とによって、pH感応膜33は支持管34に支持され
る。本実施例では、電極支持体32として直径2mm、
厚さ0.2mmの白金の円板を使用し、この白金円板に
白金のリード線31を接続し、このリード線31をpH
測定電極30のガラスの支持管34の端面に形成された
リード線挿通孔に挿通して白金円板のリード線31が接
続された面をガラス支持管34の端面に接触させ、加熱
して白金円板をガラス支持管34の端面に融着させた。
このときリード線挿通孔は閉塞され、リード線31はガ
ラス支持管34の端面に封止された。次に、酸洗浄によ
り十分に表面の酸化被膜を除去した後、白金円板の表面
の中心部に直径1mmの円形の感応膜形成部を残して、
残りの部分をマスキングし、これをスパッタリング装置
の成膜室に入れて、酸化性雰囲気下でIrターゲットを
電圧0.8KVにて100分間スパッタリングして酸化
イリジウム膜を形成し、次いで、この成膜された酸化イ
リジウム膜をマスキングし、アルカリ性の溶液中に24
時間浸漬して酸化イリジウム膜部分を除く白金円板の全
露出面に酸化膜(絶縁膜)35を形成した。
An example of the iridium oxide pH measuring electrode 30 is shown in FIG. This pH measurement electrode 30
A conductive electrode support 32 having a predetermined shape and dimensions, and a pH-sensitive film 33 made of, for example, an iridium oxide film formed on one surface of the support 32 by sputtering.
And the electrode support 3 supporting the pH-sensitive membrane 33.
The pH-sensitive film 33 is supported by the support tube 34 by fixing 2 to the bottom surface of the support tube 34 made of glass, for example. In this embodiment, the electrode support 32 has a diameter of 2 mm,
A platinum disk having a thickness of 0.2 mm was used, and a platinum lead wire 31 was connected to the platinum disk.
The surface of the platinum electrode plate to which the lead wire 31 is connected is brought into contact with the end surface of the glass support tube 34 by being inserted into a lead wire insertion hole formed on the end surface of the glass support tube 34 of the measurement electrode 30, and heated to form platinum. The disk was fused to the end face of the glass support tube 34.
At this time, the lead wire insertion hole was closed, and the lead wire 31 was sealed on the end face of the glass support tube 34. Next, after the oxide film on the surface is sufficiently removed by acid cleaning, a circular sensitive film forming portion having a diameter of 1 mm is left at the center of the surface of the platinum disk.
The remaining part is masked, put into a film forming chamber of a sputtering apparatus, and an Ir target is sputtered at a voltage of 0.8 KV for 100 minutes in an oxidizing atmosphere to form an iridium oxide film. The iridium oxide film is masked and placed in an alkaline solution.
After immersion for a time, an oxide film (insulating film) 35 was formed on the entire exposed surface of the platinum disk except for the iridium oxide film portion.

【0033】また、他の実施例においては、電極支持体
32として厚さ0.5mm、直径4mmのタンタルの円
板を使用し、このタンタル円板の全面に自然酸化により
形成された五酸化タンタルの被膜を絶縁膜35とし、こ
の絶縁被膜を有するタンタル円板上にマスキング材を用
いて直径3mmの酸化イリジウム膜をスパッタリングに
より被着し、厚さ約1000ÅのpH感応膜33を形成
した。
In another embodiment, a tantalum disk having a thickness of 0.5 mm and a diameter of 4 mm is used as the electrode support 32, and tantalum pentoxide formed by natural oxidation on the entire surface of the tantalum disk. This film was used as an insulating film 35, and an iridium oxide film having a diameter of 3 mm was deposited on the tantalum disk having the insulating film by sputtering using a masking material to form a pH-sensitive film 33 having a thickness of about 1000 °.

【0034】なお、図4では酸化イリジウムのpH感応
膜33と白金円板の電極支持体32との間に絶縁膜35
が存在しないが、電極支持体32には初めにその全面に
絶縁膜35が被着されており、酸化イリジウムの金属酸
化物膜を、例えばスパッタリング被着することによって
その間にある絶縁膜が除去され、金属酸化物膜は電極支
持体32と電気的に強固に接続される。従って、金属酸
化物膜を形成する部分の絶縁膜を予め電極支持体32か
ら除去しておく必要はない。
In FIG. 4, the insulating film 35 is provided between the pH-sensitive film 33 of iridium oxide and the electrode support 32 of a platinum disk.
However, an insulating film 35 is first applied to the entire surface of the electrode support 32, and the insulating film therebetween is removed by applying a metal oxide film of iridium oxide, for example, by sputtering. The metal oxide film is electrically and strongly connected to the electrode support 32. Therefore, it is not necessary to remove the portion of the insulating film where the metal oxide film is to be formed from the electrode support 32 in advance.

【0035】上記導電性の電極支持体32は金属酸化物
膜のpH感応膜33の支持体として機能するもので、ア
ルミニウム、白金、タンタル、チタン、イリジウムなど
導電性を有するものであればどんな金属でも良い。ま
た、絶縁膜35としては、五酸化タンタル(Ta2O5) 、ア
ルミナ(Al2O3) 、二酸化ケイ素(SiO2)、窒化ケイ素(Si3
N4) などの絶縁性の酸化物、窒化物とフッ素樹脂などの
プラスチック材料が使用できる。絶縁膜35は自然酸化
膜を利用しても良いし、スパッタリング、CVDなどの
真空薄膜製造技術、加熱酸化、金属アルコキシドを材料
としたディップコーティング法などの製造方法を使用し
て形成しても良い。さらに、金属酸化物膜としては、酸
化イリジウム、酸化パラジウム、酸化チタンなどの金属
酸化物が使用でき、スパッタリング、CVDなどの真空
薄膜製造技術によって電極支持体32上に製膜される。
勿論、上記pH測定電極の構成、使用材料、製造方法等
は単なる例示であり、必要に応じて種々に変形、変更可
能である。
The conductive electrode support 32 functions as a support for the pH-sensitive film 33 of a metal oxide film, and can be made of any conductive material such as aluminum, platinum, tantalum, titanium, and iridium. But it is good. As the insulating film 35, tantalum pentoxide (Ta 2 O 5 ), alumina (Al 2 O 3 ), silicon dioxide (SiO 2 ), silicon nitride (Si 3
Plastic materials such as insulating oxides such as N 4 ), nitrides and fluororesins can be used. The insulating film 35 may use a natural oxide film, or may be formed using a manufacturing method such as a vacuum thin film manufacturing technique such as sputtering or CVD, heat oxidation, or a dip coating method using a metal alkoxide as a material. . Further, as the metal oxide film, a metal oxide such as iridium oxide, palladium oxide, or titanium oxide can be used, and is formed on the electrode support 32 by a vacuum thin film manufacturing technique such as sputtering or CVD.
Of course, the configuration of the pH measurement electrode, the materials used, the manufacturing method, and the like are merely examples, and various modifications and changes can be made as needed.

【0036】図5は本発明によるpH測定電極の電位安
定化装置の一実施例を示す概略構成図であり、2本のp
H測定電極41、42がアダプタ43の電極収納部に収
納されている状態を示す。このアダプタ43はその内部
にpH一定の溶液44が注入されており、また、各pH
測定電極41、42のリード線41a、42aの先端に
それぞれ取り付けられた電極プラグ(図示せず)が差し
込める端子(入力ジャック)45、46を備えている。
これら端子間にはオン・オフスイッチ47が接続されて
おり、このスイッチ47をオンにすると、2つのpH測
定電極41、42が電気的に短絡できるように構成され
ている。
FIG. 5 is a schematic diagram showing one embodiment of a potential stabilizing device for a pH measuring electrode according to the present invention.
This shows a state where the H measurement electrodes 41 and 42 are housed in the electrode housing part of the adapter 43. A constant pH solution 44 is injected into the adapter 43, and each adapter 43 has a different pH.
Terminals (input jacks) 45 and 46 into which electrode plugs (not shown) attached to the tips of the lead wires 41a and 42a of the measurement electrodes 41 and 42, respectively, are provided.
An on / off switch 47 is connected between these terminals. When the switch 47 is turned on, the two pH measuring electrodes 41 and 42 can be electrically short-circuited.

【0037】上記構成のアダプタ43をpH測定装置に
取り付けておけば(取り外し可能に構成すると好便であ
る)、測定終了後、pH測定電極をこのアダプタ43内
に収納し、スイッチ47をオンにすることによって、簡
単に、しかも短時間で、pH測定電極を安定化させるこ
とができるので、直ちに次の測定が行なえるようにな
り、非常に好都合である。
If the adapter 43 having the above configuration is attached to the pH measuring device (it is convenient to make it detachable), after the measurement is completed, the pH measuring electrode is housed in the adapter 43 and the switch 47 is turned on. By doing so, the pH measurement electrode can be stabilized easily and in a short time, so that the next measurement can be immediately performed, which is very convenient.

【0038】なお、上記実施例ではアダプタ43に2本
のpH測定電極を収納する電極収納部を設けたが、電極
収納部を3本以上のpH測定電極が収納できるように構
成すれば、一度に多数のpH測定電極が安定化できる。
勿論、この場合には電極収納部に収納されたすべてのp
H測定電極を互いに電気的に短絡できるように短絡手段
を構成する。また、アダプタ43を1本又は複数本のp
H測定電極と1本(複数本でも良い)の比較電極とが収
納できるように構成しても良い。この場合には、アダプ
タ43内に比較電極の内部液と同一のpH一定の溶液を
入れておく。さらに、アダプタ43の電極収納部内に比
較電極の内部液と同一のpH一定の溶液を入れておけ
ば、複数本のpH測定電極を収納した場合でも、pH測
定電極と比較電極とを収納した場合でも、pH測定電極
の安定化が迅速に行なえるという利点がある。
In the above embodiment, the adapter 43 is provided with an electrode housing for accommodating two pH measuring electrodes. However, if the electrode housing is configured to be able to accommodate three or more pH measuring electrodes, it is necessary to provide one. Thus, many pH measuring electrodes can be stabilized.
Of course, in this case, all the p stored in the electrode storage section
Short-circuit means are configured so that the H measurement electrodes can be electrically short-circuited to each other. In addition, one or more adapters 43
The configuration may be such that the H measurement electrode and one (or a plurality of) comparison electrodes can be accommodated. In this case, the same constant pH solution as the internal solution of the reference electrode is put in the adapter 43. Furthermore, if the same constant pH solution as the internal solution of the reference electrode is put in the electrode storage portion of the adapter 43, even when a plurality of pH measurement electrodes are stored, the pH measurement electrode and the comparison electrode are stored. However, there is an advantage that the pH measurement electrode can be stabilized quickly.

【0039】上記アダプタ43は取り外せるから、pH
測定電極を保存しておく場合に、取り外したアダプタ4
3に収納して電気的に短絡しておけば、保存中のトラブ
ルが全くなくなるという利点がある。また、pH測定電
極を保存する場合や、エージング不足の場合等には、電
気的に短絡する際に、適当な抵抗を短絡回路中に挿入す
ると、好結果が得られる。この抵抗は0〜ギガΩ程度の
可変抵抗とすると、操作が容易になり、好便である。さ
らに、電位安定化装置をアダプタ形式とせず、pH測定
装置とは全く別体に構成しても良いことは勿論である。
Since the adapter 43 can be removed,
Remove the adapter 4 to save the measurement electrode.
3 and electrically short-circuited, there is an advantage that trouble during storage is completely eliminated. In addition, when the pH measurement electrode is stored or when aging is insufficient, a good result can be obtained by inserting an appropriate resistor into the short circuit when electrically short-circuiting. If this resistance is a variable resistance of about 0 to gigaΩ, the operation becomes easy and it is convenient. Further, it is a matter of course that the potential stabilizing device may not be of the adapter type, but may be completely separate from the pH measuring device.

【0040】なお、上記各実施例では金属酸化物として
酸化イリジウムを使用したが、類似する性質の他の金属
酸化物の場合にも上記実施例と同様の作用効果が期待で
きる。また、金、銀、白金などの金属をpH感応膜とす
るpH測定電極に対しても上述した本発明は適用でき、
同様の作用効果が期待できる。
Although iridium oxide is used as the metal oxide in each of the above embodiments, the same operation and effect as in the above embodiment can be expected in the case of other metal oxides having similar properties. In addition, the present invention described above can be applied to a pH measurement electrode using a metal such as gold, silver, and platinum as a pH-sensitive film,
Similar effects can be expected.

【0041】[0041]

【発明の効果】以上の説明で明白なように、本発明によ
れば、電極電位の変動した金属酸化物又は金属をpH感
応膜とする複数個のpH測定電極を互いに電気的に短絡
させた状態で、pH一定の溶液に短時間浸漬するだけ
で、或はpH感応膜と同じ金属酸化物又は金属を内極と
した比較電極を使用する場合にはpH測定電極とこの比
較電極を互いに電気的に短絡させた状態で、比較電極の
内部液と同じpH一定の溶液に短時間浸漬するだけで、
これらpH測定電極の変動した電極電位を、たとえ大幅
に変動していても、ほぼ元の電位状態に復帰させ、安定
化させることができるから、非常に効率が良く、また、
十分に校正ができる電位状態に復帰させ、安定化させる
ことができるから、従来のように不良品として廃棄処分
することなく再使用できる等の顕著な効果がある。
As is apparent from the above description, according to the present invention, a plurality of pH measuring electrodes using a metal oxide or a metal whose electrode potential fluctuates as a pH-sensitive film are electrically short-circuited to each other. In this state, if the electrode is simply immersed in a constant pH solution for a short period of time, or when using a reference electrode having the same metal oxide or metal as the pH-sensitive membrane as the inner electrode, the pH measurement electrode and this reference electrode are electrically connected to each other. In a short-circuited state, simply immersing in a solution with the same pH as the internal solution of the reference electrode for a short time,
Even if these fluctuating electrode potentials of the pH measurement electrode fluctuate significantly, they can be returned to almost the original potential state and stabilized, so that it is very efficient, and
Since it can be restored to a potential state that can be sufficiently calibrated and stabilized, it has a remarkable effect that it can be reused without being discarded as a defective product as in the related art.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明によるpH測定電極の電位安定化方法を
実施する一態様を例示する概略説明図である。
FIG. 1 is a schematic explanatory view illustrating one embodiment of a method for stabilizing the potential of a pH measurement electrode according to the present invention.

【図2】本発明によるpH測定電極の電位安定化方法を
実施する他の態様を例示する概略説明図である。
FIG. 2 is a schematic explanatory view illustrating another embodiment of a method for stabilizing the potential of a pH measurement electrode according to the present invention.

【図3】比較電極の一例を拡大して示す構成図である。FIG. 3 is an enlarged configuration diagram illustrating an example of a comparative electrode.

【図4】pH測定電極の一例を拡大して示す構成図であ
る。
FIG. 4 is an enlarged configuration diagram showing an example of a pH measurement electrode.

【図5】本発明によるpH測定電極の電位安定化装置の
一実施例を示す概略構成図である。
FIG. 5 is a schematic configuration diagram showing one embodiment of a potential stabilizing device for a pH measurement electrode according to the present invention.

【符号の説明】[Explanation of symbols]

1〜4 pH測定電極 5 pH6.86の中性リン酸塩溶液 10 比較電極 11 比較電極の内筒 12 比較電極の外筒 13 内筒内の内部液 14 比較電極の内極 15 内筒内の内部液と同じpH一定の溶
液 16 支持管体 21 電極支持体 22 酸化イリジウム膜 23 リード線 30 pH測定電極 31 リード線 32 電極支持体 33 酸化イリジウムのpH感応膜 34 支持管 35 絶縁膜 41、42 pH測定電極 43 アダプタ 44 pH一定の溶液 47 スイッチ
1-4 pH measuring electrode 5 pH 6.86 neutral phosphate solution 10 Comparative electrode 11 Inner cylinder of comparative electrode 12 Outer cylinder of comparative electrode 13 Internal liquid in inner cylinder 14 Inner electrode of comparative electrode 15 In inner cylinder Solution having the same pH as the internal solution 16 Support tube 21 Electrode support 22 Iridium oxide film 23 Lead wire 30 pH measurement electrode 31 Lead wire 32 Electrode support 33 pH-sensitive film of iridium oxide 34 Support tube 35 Insulation film 41, 42 pH measuring electrode 43 Adapter 44 Constant pH solution 47 Switch

───────────────────────────────────────────────────── フロントページの続き (72)発明者 金野 裕子 埼玉県狭山市大字北入曽613番地 東亜 電波工業株式会社 狭山工場内 (56)参考文献 特開 昭61−195344(JP,A) 特開 昭58−221156(JP,A) 特開 昭61−51554(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01N 27/416 G01N 27/26 381 G01N 27/30 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Yuko Konno 613 Kitairiso, Sayama-shi, Saitama Toa Denpa Kogyo Co., Ltd. Sayama Plant (56) References JP-A-61-195344 (JP, A) 58-221156 (JP, A) JP-A-61-51554 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G01N 27/416 G01N 27/26 381 G01N 27/30

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 電極電位の変動した金属酸化物又は金属
をpH感応膜とする複数個のpH測定電極を、互いに電
気的に短絡させた状態で、pH一定の溶液中に浸漬する
ことを特徴とするpH測定電極の電位安定化方法。
1. A method of immersing a plurality of pH measuring electrodes using a metal oxide or a metal having a fluctuating electrode potential as a pH-sensitive film in a constant pH solution in a state of being electrically short-circuited with each other. The method for stabilizing the potential of the pH measurement electrode.
【請求項2】 電極電位の変動した金属酸化物又は金属
をpH感応膜とするpH測定電極と、該pH測定電極の
pH感応膜と同じ金属酸化物又は金属を内極として使用
する比較電極とを、互いに電気的に短絡させた状態で、
前記比較電極の内部液と同一のpH一定の溶液中に浸漬
することを特徴とするpH測定電極の電位安定化方法。
2. A pH measurement electrode using a metal oxide or metal whose electrode potential fluctuates as a pH-sensitive film, and a comparative electrode using the same metal oxide or metal as the pH-sensitive film of the pH measurement electrode as an inner electrode. Are electrically short-circuited to each other,
A potential stabilizing method for a pH measuring electrode, characterized by immersing the electrode in a solution having the same pH as the internal liquid of the comparative electrode.
【請求項3】 前記金属酸化物が、Ir、Pd、Pt、
Sn、Rh、Ta、Os、Ru、W、Tiから選ばれた
金属の酸化物であることを特徴とする請求項1又は2の
pH測定電極の電位安定化方法。
3. The method according to claim 1, wherein the metal oxide is Ir, Pd, Pt,
3. The potential stabilizing method for a pH measuring electrode according to claim 1, wherein the method is an oxide of a metal selected from the group consisting of Sn, Rh, Ta, Os, Ru, W, and Ti.
【請求項4】 前記金属酸化物が酸化イリジウムである
ことを特徴とする請求項1又は2のpH測定電極の電位
安定化方法。
4. The method for stabilizing a potential of a pH measurement electrode according to claim 1, wherein the metal oxide is iridium oxide.
【請求項5】 前記pH一定の溶液中に浸漬する時間が
1時間程度であることを特徴とする請求項1又は2のp
H測定電極の電位安定化方法。
5. The method according to claim 1, wherein the immersion time in the solution having a constant pH is about 1 hour.
A method for stabilizing the potential of the H measurement electrode.
【請求項6】 金属酸化物又は金属をpH感応膜とする
複数個のpH測定電極を収納する電極収納部と、該電極
収納部内に入れられたpH一定の溶液と、前記電極収納
部に収納された複数個のpH測定電極を互いに電気的に
短絡する手段とを具備し、前記電極収納部内で複数個の
pH測定電極を前記pH一定の溶液に浸漬させ、かつこ
れらpH測定電極を互いに電気的に短絡させて各pH測
定電極の電極電位を安定化させることを特徴とするpH
測定電極の電位安定化装置。
6. An electrode accommodating section for accommodating a plurality of pH measuring electrodes using a metal oxide or a metal as a pH-sensitive film, a constant pH solution contained in the electrode accommodating section, and accommodating in the electrode accommodating section. Means for electrically shorting the plurality of pH measurement electrodes to each other, immersing the plurality of pH measurement electrodes in the solution having a constant pH in the electrode housing portion, and electrically connecting the pH measurement electrodes to each other. Characterized in that the electrode potential of each pH measuring electrode is stabilized by short-circuiting
Potential stabilizer for measuring electrode.
【請求項7】 金属酸化物又は金属をpH感応膜とする
pH測定電極と該pH測定電極のpH感応膜と同じ金属
酸化物又は金属を内極として使用する比較電極とを収納
する電極収納部と、該電極収納部内に入れられた前記比
較電極の内部液と同一のpH一定の溶液と、前記電極収
納部に収納されたpH測定電極及び比較電極を互いに電
気的に短絡する手段とを具備し、前記電極収納部内でp
H測定電極及び比較電極を前記pH一定の溶液に浸漬さ
せ、かつこれら電極を互いに電気的に短絡させて前記p
H測定電極の電極電位を安定化させることを特徴とする
pH測定電極の電位安定化装置。
7. An electrode housing section for housing a pH measuring electrode using a metal oxide or metal as a pH sensitive film and a comparative electrode using the same metal oxide or metal as the inner electrode as the pH sensitive film of the pH measuring electrode. And a solution having the same pH as the internal solution of the comparison electrode contained in the electrode storage portion, and means for electrically short-circuiting the pH measurement electrode and the comparison electrode stored in the electrode storage portion to each other. And p in the electrode housing.
The H measurement electrode and the reference electrode are immersed in the constant pH solution, and these electrodes are electrically short-circuited to each other to form the p electrode.
A potential stabilizing device for a pH measuring electrode, which stabilizes an electrode potential of an H measuring electrode.
JP03867492A 1992-01-29 1992-01-29 Method and apparatus for stabilizing the potential of a pH measurement electrode Expired - Fee Related JP3175021B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03867492A JP3175021B2 (en) 1992-01-29 1992-01-29 Method and apparatus for stabilizing the potential of a pH measurement electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03867492A JP3175021B2 (en) 1992-01-29 1992-01-29 Method and apparatus for stabilizing the potential of a pH measurement electrode

Publications (2)

Publication Number Publication Date
JPH05203615A JPH05203615A (en) 1993-08-10
JP3175021B2 true JP3175021B2 (en) 2001-06-11

Family

ID=12531824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03867492A Expired - Fee Related JP3175021B2 (en) 1992-01-29 1992-01-29 Method and apparatus for stabilizing the potential of a pH measurement electrode

Country Status (1)

Country Link
JP (1) JP3175021B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4936536B2 (en) * 2006-07-13 2012-05-23 国立大学法人富山大学 Quantitative and qualitative analysis methods
JP4857288B2 (en) * 2006-11-08 2012-01-18 株式会社堀場製作所 Cleaning preservation solution for glass electrodes, etc.
DE102013109105A1 (en) * 2013-08-22 2015-02-26 Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. KG measuring arrangement

Also Published As

Publication number Publication date
JPH05203615A (en) 1993-08-10

Similar Documents

Publication Publication Date Title
JP2825206B2 (en) Metal oxide electrode
US4062750A (en) Thin film electrochemical electrode and cell
US6572748B1 (en) Reference electrode
US5573798A (en) Method of manufacturing an electrode for measuring pH
EP0472398B1 (en) Electrode for measuring pH and method for manufacturing the same
EP0580869A1 (en) Humidity sensor and its manufacture
JP3175021B2 (en) Method and apparatus for stabilizing the potential of a pH measurement electrode
EP0270751A2 (en) Electrolyte solution for use in electrodes for measuring ions and method for its manufacture
JP3175022B2 (en) pH measuring device and its calibration method
US4481813A (en) Dew sensor
GB1512526A (en) Resistance temperature sensing device and method
JPH02120657A (en) Concentration measuring sensor and sensor receiving member
JP6208435B2 (en) pH measurement electrode
JP2943028B2 (en) pH measuring electrode and method for producing the same
JP2861131B2 (en) Ion electrode
JPS5888645A (en) Measuring sensor for content of oxygen in gas
JPH04250353A (en) Ph measuring apparatus
JP2692020B2 (en) pH measuring electrode
JP2810779B2 (en) Capacitive thin film humidity sensor and method of manufacturing the same
JPH0147740B2 (en)
JPS63193053A (en) Ph measuring apparatus for high temperature
JPH0518929A (en) Electrode for measuring ph and its manufacture
JPS625167A (en) Non-polarizable electrode
RU2032897C1 (en) Method of determination of equilibrium potential in electrolyte and comparison electrode for its implementation
JP2599819Y2 (en) Measuring electrode

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees