JP3174573U - Fourier transform infrared spectrometer - Google Patents

Fourier transform infrared spectrometer Download PDF

Info

Publication number
JP3174573U
JP3174573U JP2012000143U JP2012000143U JP3174573U JP 3174573 U JP3174573 U JP 3174573U JP 2012000143 U JP2012000143 U JP 2012000143U JP 2012000143 U JP2012000143 U JP 2012000143U JP 3174573 U JP3174573 U JP 3174573U
Authority
JP
Japan
Prior art keywords
plate
beam splitter
semi
holder
fourier transform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012000143U
Other languages
Japanese (ja)
Inventor
修平 奥山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2012000143U priority Critical patent/JP3174573U/en
Application granted granted Critical
Publication of JP3174573U publication Critical patent/JP3174573U/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Spectrometry And Color Measurement (AREA)

Abstract

【課題】ビームスプリッタを構成する半透板と補償板の間に発生する干渉を低減または除去するために行う半透板と補償板の相対的な角度位置の変更作業を容易にするフーリエ変換型赤外分光装置を提供する。
【解決手段】ビームスプリッタ1をビームスプリッタホルダに設置した状態で、半透板3と補償板2をそれぞれ配設した半透板ホルダ5と補償板ホルダ4の固定および解放作業が可能な位置に押え金を配置することにより、押え金の固定ねじを緩めて半透板ホルダ5と補償板ホルダ4の間が解放され、半透板ホルダ5に対して補償板ホルダ4を回転自在とする。
【選択図】図1
A Fourier transform infrared for facilitating a change operation of a relative angular position of a semi-transmission plate and a compensation plate to reduce or eliminate interference generated between the semi-transmission plate and a compensation plate constituting a beam splitter. A spectroscopic device is provided.
In a state in which the beam splitter is installed on the beam splitter holder, the semi-transparent plate holder and the compensating plate holder are disposed at positions where the semi-transparent plate and the compensation plate can be fixed and released. By disposing the presser foot, the fixing screw of the presser foot is loosened to release the space between the semi-permeable plate holder 5 and the compensation plate holder 4, and the compensation plate holder 4 can be rotated with respect to the semi-permeable plate holder 5.
[Selection] Figure 1

Description

本考案は、フーリエ変換型赤外分光装置に係り、特にフーリエ変換型赤外分光装置を構成するビームスプリッタに関する。   The present invention relates to a Fourier transform infrared spectrometer, and more particularly to a beam splitter that constitutes a Fourier transform infrared spectrometer.

試料に含まれる成分を定量分析する分析装置の一つとして、フーリエ変換赤外分光(FTIR)法に則ったフーリエ変換型赤外分光装置がある。   As one of analyzers that quantitatively analyze components contained in a sample, there is a Fourier transform infrared spectrometer according to the Fourier transform infrared spectroscopy (FTIR) method.

図5は、従来のフーリエ変換型赤外分光装置の構成の概要を示したものである。図5に示すフーリエ変換型赤外分光装置40は、試料に照射する赤外光を出射する光源61と、光源61からの赤外光を平行光に変換するための光学系71と、光学系71を経た赤外光を変調する干渉機構72と、干渉機構72を経た赤外光が通過する光学系73と、光学系73を経た赤外光を検出する検出器69と、から構成される。   FIG. 5 shows an outline of the configuration of a conventional Fourier transform infrared spectrometer. A Fourier transform infrared spectroscopic device 40 shown in FIG. 5 includes a light source 61 that emits infrared light that irradiates a sample, an optical system 71 that converts infrared light from the light source 61 into parallel light, and an optical system. An interference mechanism 72 that modulates infrared light that has passed through 71, an optical system 73 through which infrared light that has passed through the interference mechanism 72 passes, and a detector 69 that detects infrared light that has passed through the optical system 73. .

光学系71は凹面鏡62と放物面鏡63および入口スリット64から構成される。他方干渉機構72は、ビームスプリッタ21と固定鏡66および移動鏡65から、さらに光学系73は放物面鏡67および凹面鏡68から構成される。また、試料70は、放物面鏡67と凹面鏡68の間に設置され、赤外光が透過される。   The optical system 71 includes a concave mirror 62, a parabolic mirror 63, and an entrance slit 64. The other interference mechanism 72 includes a beam splitter 21, a fixed mirror 66, and a moving mirror 65, and the optical system 73 includes a parabolic mirror 67 and a concave mirror 68. Further, the sample 70 is installed between the parabolic mirror 67 and the concave mirror 68 and transmits infrared light.

ビームスプリッタ21は、入射する赤外光束に対しある角度をもって設置されており、入射光束の半分を反射させて固定鏡66へ導き、残り半分を透過させて赤外光軸方向へ移動可能な移動鏡65へ導く。両方の鏡からの反射光は再びビームスプリッタ21で合成され、試料70を透過後、検出器69で検出され、その結果得られた干渉パターンをデータ処理部(図示せず)においてフーリエ変換することにより、スペクトルが得られる。   The beam splitter 21 is installed at a certain angle with respect to the incident infrared light beam, and reflects half of the incident light beam, guides it to the fixed mirror 66, and transmits the other half to move in the direction of the infrared optical axis. Guide to mirror 65. The reflected light from both mirrors is again synthesized by the beam splitter 21, transmitted through the sample 70, detected by the detector 69, and the resulting interference pattern is Fourier transformed in a data processing unit (not shown). Thus, a spectrum is obtained.

図6に、従来のフーリエ変換型赤外分光装置に用いられるビームスプリッタの構成の概要を示す。(a)に正面図、(b)に右側面図(C−C断面図)、(c)に上面図(D−D断面図)、(d)に押え板、(e)にガイド板を示す。ビームスプリッタ21は、赤外透過材料の片面に半透過材料の蒸着面をもつ半透板23と、半透板23と同一素材、同一形状の補償板22を、それぞれ半透板ホルダ25と補償板ホルダ24に配設し、両者を対にして組み合わせたものである。   FIG. 6 shows an outline of the configuration of a beam splitter used in a conventional Fourier transform infrared spectrometer. (A) Front view, (b) Right side view (CC sectional view), (c) Top view (DD sectional view), (d) Presser plate, (e) Guide plate. Show. The beam splitter 21 compensates a semi-transparent plate 23 having a semi-transparent material deposition surface on one side of an infrared transmissive material, a compensation plate 22 having the same material and shape as the semi-transparent plate 23, and a semi-transparent plate holder 25, respectively. It arrange | positions in the plate holder 24 and combined both.

まず、半透板ホルダ25と補償板ホルダ24を皿ねじ36で固定したあと、それぞれ両ホルダに半透板23と補償板22を挿入し、両面より、ガイド部28aにガイド孔28bを有するガイド板28を設置し、次にガイド孔28bにボール29aおよび29bを挿入し、さらに押え板27をセットしてねじ31および31aで締結する。この締結により、ガイド板28の表面より外部に突出したボール29aおよび29bの頭を押え板27のばね部27aによって押さえつけることにより、半透板23と補償板22はそれぞれ半透板ホルダ25と補償板ホルダ24に固定され、ビームスプリッタ21の組み立てが完了する。   First, after fixing the semi-transparent plate holder 25 and the compensation plate holder 24 with the countersunk screws 36, the semi-transparent plate 23 and the compensation plate 22 are inserted into both holders, respectively, and a guide having a guide hole 28b in the guide portion 28a from both sides. The plate 28 is installed, then the balls 29a and 29b are inserted into the guide holes 28b, and the presser plate 27 is set and fastened with screws 31 and 31a. By this fastening, the heads of the balls 29a and 29b protruding outward from the surface of the guide plate 28 are pressed by the spring portions 27a of the presser plate 27, so that the semi-transparent plate 23 and the compensation plate 22 are compensated with the semi-transparent plate holder 25, respectively. It is fixed to the plate holder 24, and the assembly of the beam splitter 21 is completed.

また、面精度に起因する半透板と補償板間の干渉の低減または除去のために、半透板23と補償板22の相対的な角度位置関係の変更が行われる。なお、特許文献1には、光路中に存在する空気中の水蒸気や炭酸ガスによるスペクトル・ノイズを軽減又は除去する方法が開示されている。   Further, in order to reduce or eliminate interference between the semi-transmissive plate and the compensation plate due to surface accuracy, the relative angular positional relationship between the semi-transmissive plate 23 and the compensation plate 22 is changed. Patent Document 1 discloses a method for reducing or removing spectrum noise caused by water vapor or carbon dioxide in the air existing in the optical path.

ビームスプリッタ21は、フーリエ変換型赤外分光装置40に設置されたビームスプリッタホルダ55にセットされる。ビームスプリッタホルダ55は、フレーム56、ガイド57および58、ガイド下59より構成される。   The beam splitter 21 is set in a beam splitter holder 55 installed in the Fourier transform infrared spectroscopic device 40. The beam splitter holder 55 includes a frame 56, guides 57 and 58, and a lower guide 59.

特開2007−108151号公報JP 2007-108151 A

上記構成における半透板と補償板は、厚さの等しい2枚の平行平板に光束が入射した場合、面精度に起因する半透板と補償板間の干渉(ブリュースター干渉)が発生し、スペクトルに干渉縞が出現する。その結果、スペクトルにノイズが発生し、S/N比や分析結果の精度を低下させる。従来、半透板と補償板間での干渉を防ぐために、例えば、補償板を回転させ、両者の面の干渉状態を変更させる方法が採用されていた。   When the light beam is incident on two parallel flat plates having the same thickness, the semi-transparent plate and the compensation plate in the above configuration cause interference (Brewster interference) between the semi-transparent plate and the compensation plate due to surface accuracy. Interference fringes appear in the spectrum. As a result, noise is generated in the spectrum, and the S / N ratio and the accuracy of the analysis result are lowered. Conventionally, in order to prevent interference between the semi-transmissive plate and the compensation plate, for example, a method of rotating the compensation plate and changing the interference state of both surfaces has been adopted.

まず、ビームスプリッタ21をビームスプリッタホルダ55から取り出した後、ねじ31を緩めて、押え板27、ガイド板28およびボール29aを取り外す。そのあと、補償板22を補償板ホルダ24から取り出し、取付角度を変更して再組み立てを行う。ビームスプリッタ21を再度ビームスプリッタホルダ55に取付け、装置を稼働して得たスペクトルにより干渉状態をチェックする。もし、干渉状態の改善が不十分な場合は、前述の作業を繰り返す必要がある。したがって、スペクトルを確認するまで結果が不明なため、非常に手間を要する。   First, after removing the beam splitter 21 from the beam splitter holder 55, the screw 31 is loosened, and the presser plate 27, the guide plate 28, and the ball 29a are removed. Thereafter, the compensation plate 22 is taken out from the compensation plate holder 24, and the assembly angle is changed and reassembly is performed. The beam splitter 21 is attached to the beam splitter holder 55 again, and the interference state is checked based on the spectrum obtained by operating the apparatus. If the improvement of the interference state is insufficient, it is necessary to repeat the above operation. Therefore, since the result is unknown until the spectrum is confirmed, it is very troublesome.

前記課題を解決するために、本考案は、試料に照射する赤外光を出射する光源と、前記光源からの赤外光を平行光に変換する光学系と、前記光学系を経た赤外光を変調するビームスプリッタと、前記ビームスプリッタを介して反射および透過した赤外光を反射する固定鏡および移動鏡と、前記ビームスプリッタを経た赤外光を計測する検出装置と、から構成されるフーリエ変換型赤外分光装置において、前記フーリエ変換型赤外分光装置に前記ビームスプリッタを設置した状態で、前記ビームスプリッタを構成する半透板と補償板の固定および解放作業が可能な位置に配置した固定具を備え、前記固定具の解放により半透板と補償板の間が解放されることにより、半透板に対する補償板の相対的な角度位置が変更できるとともに変更後の角度位置が確定できる構造を有するものである。   In order to solve the above problems, the present invention provides a light source that emits infrared light that irradiates a sample, an optical system that converts infrared light from the light source into parallel light, and infrared light that has passed through the optical system. A Fourier splitter comprising: a beam splitter that modulates light; a fixed mirror and a movable mirror that reflect infrared light reflected and transmitted through the beam splitter; and a detection device that measures infrared light that has passed through the beam splitter. In the conversion infrared spectroscopic device, with the beam splitter installed in the Fourier transform infrared spectroscopic device, the semitransparent plate and the compensation plate constituting the beam splitter are arranged at a position where the work can be fixed and released. A fixing tool is provided, and by releasing the fixing tool, the relative angular position of the compensating plate with respect to the semi-permeable plate can be changed and the angle after the change can be changed And it has a structure that location can be determined.

本考案により、ビームスプリッタをフーリエ変換型赤外分光装置から取り外すことなく、半透板と補償板の相対的な角度位置関係の変更が可能となり、さらに、スペクトルを見ながら角度位置関係の変更が最適であるかのチェックが可能で、調整が容易になり、調整時間を短縮することができる。   The present invention makes it possible to change the relative angular positional relationship between the translucent plate and the compensator without removing the beam splitter from the Fourier transform infrared spectroscopic device. Further, the angular positional relationship can be changed while viewing the spectrum. It is possible to check whether it is optimal, adjustment becomes easy, and adjustment time can be shortened.

本考案の実施例によるフーリエ変換型赤外分光装置の構成の概要を示す。The outline | summary of a structure of the Fourier-transform type | mold infrared spectroscopy apparatus by the Example of this invention is shown. 本考案の実施例によるフーリエ変換型赤外分光装置に用いられるビームスプリッタの構成の概要を示す。(a)に正面図、(b)に右側面図(A−A断面図)、(c)に上面図(B−B断面図)を示す。The outline of the structure of the beam splitter used for the Fourier-transform-type infrared spectroscopy apparatus by the Example of this invention is shown. (A) is a front view, (b) is a right side view (AA cross-sectional view), and (c) is a top view (BB cross-sectional view). 本考案の実施例における部品図を示す。(a)に押え板、(b)にガイド板を示す。The components figure in the Example of this invention is shown. (A) shows the presser plate and (b) shows the guide plate. 本考案の実施例におけるビームスプリッタの調整状態を示す。The adjustment state of the beam splitter in the Example of this invention is shown. 従来のフーリエ変換型赤外分光装置の構成の概要を示す。An outline of the configuration of a conventional Fourier transform infrared spectrometer is shown. 従来のフーリエ変換型赤外分光装置に用いられるビームスプリッタの構成の概要を示す。(a)に正面図、(b)に右側面図(C−C断面図)、(c)に上面図(D−D断面図)、(d)に押え板、(e)にガイド板を示す。An outline of the configuration of a beam splitter used in a conventional Fourier transform infrared spectrometer is shown. (A) Front view, (b) Right side view (CC sectional view), (c) Top view (DD sectional view), (d) Presser plate, (e) Guide plate. Show.

図1は、本考案の実施例によるフーリエ変換型赤外分光装置の構成の概要を示したものである。図1に示すフーリエ変換型赤外分光装置20は、試料に照射する赤外光を出射する光源41と、光源41からの赤外光を平行光に変換するための光学系51と、光学系51を経た赤外光を変調する干渉機構52と、干渉機構52を経た赤外光が通過する光学系53と、光学系53を経た赤外光を検出する検出器49によって構成される。   FIG. 1 shows an outline of the configuration of a Fourier transform infrared spectrometer according to an embodiment of the present invention. A Fourier transform infrared spectroscopic device 20 shown in FIG. 1 includes a light source 41 that emits infrared light that irradiates a sample, an optical system 51 that converts infrared light from the light source 41 into parallel light, and an optical system. An interference mechanism 52 that modulates infrared light that has passed through 51, an optical system 53 through which infrared light that has passed through the interference mechanism 52 passes, and a detector 49 that detects infrared light that has passed through the optical system 53.

光学系51は凹面鏡42と放物面鏡43および入口スリット44から、干渉機構52は、ビームスプリッタ1と固定鏡46および移動鏡45から、さらに光学系53は放物面鏡47および凹面鏡48から構成される。また、試料50は、放物面鏡47と凹面鏡48の間に設置され、赤外光が透過される。   The optical system 51 is from the concave mirror 42, the parabolic mirror 43 and the entrance slit 44, the interference mechanism 52 is from the beam splitter 1, the fixed mirror 46 and the moving mirror 45, and the optical system 53 is from the parabolic mirror 47 and the concave mirror 48. Composed. Further, the sample 50 is installed between the parabolic mirror 47 and the concave mirror 48 and transmits infrared light.

ビームスプリッタ1は、赤外透過材料の片面に半透過材料の蒸着面をもつ半透板3と、半透板3と同一素材、同一形状の補償板2を、それぞれ半透板ホルダ5と補償板ホルダ4に配設し、両者を対にして組み合わせたものである。ビームスプリッタ1は、入射する赤外光束に対し所定の角度で設置されており、入射光束の半分を反射させて固定鏡46へ、残り半分を透過させて赤外光軸方向へ移動可能な移動鏡45へ導く。両方の鏡からの反射光は再びビームスプリッタ1で合成され、試料50を透過後、検出器49で検出され、その結果得られた干渉パターンをデータ処理部(図示せず)においてフーリエ変換することにより、スペクトルが得られる。   The beam splitter 1 includes a semitransparent plate 3 having a semitransparent material vapor deposition surface on one side of an infrared transmissive material, a compensation plate 2 having the same material and shape as the semitransparent plate 3, and a semitransparent plate holder 5. It is disposed on the plate holder 4 and is a combination of the two. The beam splitter 1 is installed at a predetermined angle with respect to the incident infrared light beam, and moves so that half of the incident light beam is reflected and transmitted to the fixed mirror 46 and the other half is transmitted in the direction of the infrared optical axis. Guide to mirror 45. The reflected light from both mirrors is again synthesized by the beam splitter 1, transmitted through the sample 50, detected by the detector 49, and the resulting interference pattern is Fourier transformed in a data processing unit (not shown). Thus, a spectrum is obtained.

図2に、本考案の実施例によるフーリエ変換型赤外分光装置に用いられるビームスプリッタの構成の概要を示す。(a)に正面図、(b)に右側面図(A−A断面図)、(c)に上面図(B−B断面図)を示す。また、図3に、本考案の実施例における部品図を示す。(a)に押え板、(b)にガイド板を示す。   FIG. 2 shows an outline of the configuration of the beam splitter used in the Fourier transform infrared spectrometer according to the embodiment of the present invention. (A) is a front view, (b) is a right side view (AA cross-sectional view), and (c) is a top view (BB cross-sectional view). FIG. 3 shows a component diagram in the embodiment of the present invention. (A) shows the presser plate and (b) shows the guide plate.

ビームスプリッタ1の組み立て手順を以下に示す。まず、補償板2を補償板ホルダ4に挿入したあと、ガイド部8aにガイド孔8bを有するガイド板8(図3(b)参照)を設置し、次にガイド孔8bにボール9aを挿入し、さらに押え板7をセットしてねじ11で締結する。この締結により、ガイド板8の表面より外部に突出したボール9aの頭を押え板7のばね部7a(図3(a)参照)によって補償板2の当たり部2aに押さえつけることにより、補償板2は補償板ホルダ4に固定される。   The procedure for assembling the beam splitter 1 is shown below. First, after the compensation plate 2 is inserted into the compensation plate holder 4, the guide plate 8 having the guide hole 8b (see FIG. 3B) is installed in the guide portion 8a, and then the ball 9a is inserted into the guide hole 8b. Further, the holding plate 7 is set and fastened with screws 11. By this fastening, the head of the ball 9a protruding outside from the surface of the guide plate 8 is pressed against the contact portion 2a of the compensation plate 2 by the spring portion 7a of the press plate 7 (see FIG. 3A), whereby the compensation plate 2 Is fixed to the compensation plate holder 4.

次に、前記補償板2を固定した補償板ホルダ4を、押え金6によってねじ10を用いて半透板ホルダ5に固定する。半透板3を半透板ホルダ5に挿入したあと、ガイド部8aにガイド孔8bを有するガイド板8cを設置し、次にガイド孔8bにボール9bを挿入し、さらに押え板7cをセットしてねじ11aで締結する。この締結により、ガイド板8cの表面より外部に突出したボール9bの頭を押え板7cのばね部7bによって補償板2の当たり部2aに押さえつけることにより、半透板3は半透板ホルダ5に固定される。以上により、ビームスプリッタ1の組み立ては完了する。   Next, the compensation plate holder 4 to which the compensation plate 2 is fixed is fixed to the semi-transparent plate holder 5 with the presser foot 6 using the screw 10. After the semi-transparent plate 3 is inserted into the semi-transparent plate holder 5, a guide plate 8c having a guide hole 8b is installed in the guide portion 8a, then a ball 9b is inserted into the guide hole 8b, and a presser plate 7c is set. Fasten with the screw 11a. By this fastening, the semitransparent plate 3 is pressed against the semitransparent plate holder 5 by pressing the head of the ball 9b protruding from the surface of the guide plate 8c to the contact portion 2a of the compensation plate 2 by the spring portion 7b of the presser plate 7c. Fixed. Thus, the assembly of the beam splitter 1 is completed.

ビームスプリッタ1は、フーリエ変換型赤外分光装置20に設置されたビームスプリッタホルダ15にセットされる。ビームスプリッタホルダ15は、フレーム16、ガイド17および18、ガイド下19より構成される。   The beam splitter 1 is set in a beam splitter holder 15 installed in a Fourier transform infrared spectrometer 20. The beam splitter holder 15 includes a frame 16, guides 17 and 18, and a lower guide 19.

また、面精度に起因する半透板と補償板間の干渉の低減または除去のために、半透板3と補償板2の相対的な角度位置関係の変更が行われる。図4は、本考案の実施例におけるビームスプリッタ1の調整状態を示す。   Further, in order to reduce or eliminate interference between the semi-transparent plate and the compensation plate due to surface accuracy, the relative angular positional relationship between the semi-transparent plate 3 and the compensation plate 2 is changed. FIG. 4 shows an adjustment state of the beam splitter 1 in the embodiment of the present invention.

調整手順は、図4に示すごとく、ビームスプリッタ1をビームスプリッタホルダ15にセットしたまま、ねじ10を徐々に緩めると、ばね部7bによってボール9bを介して負荷された半透板3が、補償板ホルダ4とともに図左方向に移動し、ばね部7bの撓みは徐々に解放され、ある時点でばねによる負荷力はゼロとなる。さらにねじ10を緩めると、補償板ホルダ4は光軸方向力から完全に解放され、半透板ホルダ5との高精度の嵌め合い関係であるインロー部(図示)を介して回転自在となる。   As shown in FIG. 4, the adjustment procedure is as follows. When the screw 10 is gradually loosened while the beam splitter 1 is set in the beam splitter holder 15, the translucent plate 3 loaded via the ball 9b by the spring portion 7b is compensated. It moves to the left in the figure together with the plate holder 4, and the bending of the spring portion 7b is gradually released, and the load force by the spring becomes zero at a certain point. When the screw 10 is further loosened, the compensator plate holder 4 is completely released from the force in the optical axis direction, and can be rotated via an inlay portion (shown) having a high-precision fitting relationship with the semi-transparent plate holder 5.

フーリエ変換型赤外分光装置20を稼働し、スペクトルより干渉状態をチェックしながら、補償板ホルダ4の角度位置を変更しつつ、干渉状態の改善が最適な角度位置を特定し、補償板ホルダ4を押え金6によってねじ10を用いて半透板ホルダ5に固定して調整は完了する。   The Fourier transform infrared spectroscopic device 20 is operated, while checking the interference state from the spectrum, while changing the angular position of the compensation plate holder 4, the optimum angular position for improving the interference state is specified, and the compensation plate holder 4 Is fixed to the semi-transparent plate holder 5 using the screw 10 with the presser foot 6, and the adjustment is completed.

なお、ねじ10は、周りに配置された他の光学部品との作業時の干渉を避けるために上部に配置されている。さらに、作業性を考慮して、ねじ10は、スパナを使用するボルト、または手回し可能なローレット掛けのねじでもよい。また、熱的変化による各部品の歪みによって発生する位置ズレが測定結果に与える影響を可能な限り少なくするため、構造部品を例えばアルミニウムなどの同一材質で作製することが望ましい。なお、図1から図6において、同一符号で表されているものは、同一物を表し、同じ機能を有するものである。   In addition, the screw 10 is arrange | positioned in the upper part in order to avoid the interference at the time of an operation | work with the other optical components arrange | positioned around. Further, in consideration of workability, the screw 10 may be a bolt using a spanner or a knurled screw that can be turned by hand. Further, in order to minimize the influence of the positional deviation caused by the distortion of each part due to thermal change on the measurement result, it is desirable to make the structural part from the same material such as aluminum. In FIG. 1 to FIG. 6, the same reference numerals represent the same thing and have the same function.

1、21 ビームスプリッタ
2、22 補償板
2a 当たり部
3、23 半透板
4、24 補償板ホルダ
5、25 半透板ホルダ
6 押え金
7、7c、27 押え板
7a、7b、27a ばね部
8、8c、28 ガイド板
8a、28a ガイド部
8b、28b ガイド孔
9a、9b、29a、29b ボール
10 ねじ
11、11a、31、31a ねじ
15、55 ビームスプリッタホルダ
16、56 フレーム
17、18、57、58 ガイド
19、59 ガイド下
20、40 フーリエ変換型赤外分光装置
36 皿ねじ
41、61 光源
42、48、62、68 凹面鏡
43、47、63、67 放物面鏡
44、64 入口スリット
45、65 移動鏡
46、66 固定鏡
49、69 検出器
50、70 試料
51、53、71、73 光学系
52、72 干渉機構
1, 21 Beam splitter 2, 22 Compensation plate 2a Contact portion 3, 23 Semi-transmission plate 4, 24 Compensation plate holder 5, 25 Semi-transmission plate holder 6 Presser plate 7, 7c, 27 Press plate 7a, 7b, 27a Spring unit 8 8c, 28 Guide plate 8a, 28a Guide portion 8b, 28b Guide hole 9a, 9b, 29a, 29b Ball 10 Screw 11, 11a, 31, 31a Screw 15, 55 Beam splitter holder 16, 56 Frame 17, 18, 57, 58 guide 19, 59 under guide 20, 40 Fourier transform infrared spectroscope 36 flat head screw 41, 61 light source 42, 48, 62, 68 concave mirror 43, 47, 63, 67 parabolic mirror 44, 64 entrance slit 45, 65 Moving mirrors 46, 66 Fixed mirrors 49, 69 Detectors 50, 70 Samples 51, 53, 71, 73 Optical systems 52, 72 Interference mechanism

Claims (1)

試料に照射する赤外光を出射する光源と、前記光源からの赤外光を平行光に変換する光学系と、前記光学系を経た赤外光を変調するビームスプリッタと、前記ビームスプリッタを介して反射および透過した赤外光を反射する固定鏡および移動鏡と、前記ビームスプリッタを経た赤外光を計測する検出装置と、から構成されるフーリエ変換型赤外分光装置において、前記フーリエ変換型赤外分光装置に前記ビームスプリッタを設置した状態で、前記ビームスプリッタを構成する半透板と補償板の固定および解放作業が可能な位置に配置した固定具を備え、前記固定具の解放により半透板と補償板の間が解放されることにより、半透板に対する補償板の相対的な角度位置が変更できるとともに変更後の角度位置が確定できる構造を有することを特徴とするフーリエ変換型赤外分光装置。   A light source that emits infrared light that irradiates the sample, an optical system that converts infrared light from the light source into parallel light, a beam splitter that modulates infrared light that has passed through the optical system, and the beam splitter. In the Fourier transform infrared spectroscopic device, the fixed Fourier mirror and the movable mirror that reflect the reflected and transmitted infrared light, and the detection device that measures the infrared light that has passed through the beam splitter, the Fourier transform type In a state where the beam splitter is installed in an infrared spectroscopic device, a fixing tool is disposed at a position where the semi-transparent plate and the compensation plate constituting the beam splitter can be fixed and released. The structure is such that the relative angular position of the compensation plate with respect to the semi-transparent plate can be changed and the changed angular position can be determined by releasing the gap between the transparent plate and the compensation plate. Fourier transform infrared spectrometer to.
JP2012000143U 2012-01-13 2012-01-13 Fourier transform infrared spectrometer Expired - Fee Related JP3174573U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012000143U JP3174573U (en) 2012-01-13 2012-01-13 Fourier transform infrared spectrometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012000143U JP3174573U (en) 2012-01-13 2012-01-13 Fourier transform infrared spectrometer

Publications (1)

Publication Number Publication Date
JP3174573U true JP3174573U (en) 2012-03-29

Family

ID=48001705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012000143U Expired - Fee Related JP3174573U (en) 2012-01-13 2012-01-13 Fourier transform infrared spectrometer

Country Status (1)

Country Link
JP (1) JP3174573U (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11086134B2 (en) 2017-05-01 2021-08-10 Shimadzu Corporation Beam splitter assembly
CN114993973A (en) * 2021-02-17 2022-09-02 株式会社岛津制作所 Fourier transform infrared spectrophotometer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11086134B2 (en) 2017-05-01 2021-08-10 Shimadzu Corporation Beam splitter assembly
CN114993973A (en) * 2021-02-17 2022-09-02 株式会社岛津制作所 Fourier transform infrared spectrophotometer

Similar Documents

Publication Publication Date Title
US9176048B2 (en) Normal incidence broadband spectroscopic polarimeter and optical measurement system
EP0681166B1 (en) Improvements in or relating to optical interferometers
US8125641B2 (en) Method and apparatus for phase-compensated sensitivity-enhanced spectroscopy (PCSES)
JP6196119B2 (en) Shape measuring apparatus and shape measuring method
US7924422B2 (en) Calibration method for optical metrology
US8736850B2 (en) Method and device for measuring surfaces in a highly precise manner
KR20130039005A (en) Three dimensional depth and shape measuring device
US20180113026A1 (en) Fourier transform spectroscope
JP3174573U (en) Fourier transform infrared spectrometer
KR20180071171A (en) Optical characteristic measuring apparatus and optical characteristic measuring method
Rehanek et al. The hard x-ray photon single-shot spectrometer of SwissFEL—initial characterization
US8107073B2 (en) Diffraction order sorting filter for optical metrology
JP2007327923A (en) Spectrometer and adjustment method of spectrometer
KR101251292B1 (en) Three dimensional shape and depth measuring device using polarized light
US6674521B1 (en) Optical method and system for rapidly measuring relative angular alignment of flat surfaces
US20170045397A1 (en) Device for analysing a specimen and corresponding method
JP5370409B2 (en) Absolute reflection measuring device
US9678436B2 (en) Irradiation module for a measuring apparatus
JP2007248255A (en) Light intensity measuring method, light intensity measuring instrument, polarized light analyzer and production control device using it
JP2022536062A (en) Spectral polarimetry device and automatic optical path difference adjustment device
KR20140014466A (en) Apparatus for measuring a thickness using digital light processing and method using the same
KR102257311B1 (en) Apparatus for aligning measuring head of spectroscope
JP6725068B2 (en) Beam splitter assembly
JP2006300533A (en) Near-infrared spectral analyzer
JPH10325755A (en) Spectroscopic analyzer and analytic method

Legal Events

Date Code Title Description
R150 Certificate of patent or registration of utility model

Ref document number: 3174573

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150307

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees