JP3170984B2 - End plate electrodes for stacked batteries - Google Patents
End plate electrodes for stacked batteriesInfo
- Publication number
- JP3170984B2 JP3170984B2 JP31760493A JP31760493A JP3170984B2 JP 3170984 B2 JP3170984 B2 JP 3170984B2 JP 31760493 A JP31760493 A JP 31760493A JP 31760493 A JP31760493 A JP 31760493A JP 3170984 B2 JP3170984 B2 JP 3170984B2
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- end plate
- polyethylene
- graphite
- silica
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Inert Electrodes (AREA)
- Hybrid Cells (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、夜間余剰電力を蓄積
し、昼間の電力使用量のピーク時に電力を放出し、発電
所の発電力を一定にするための電力貯蔵用新型2次電池
(亜鉛−臭素電池)に係り、積層電池の端板電極に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a new type of secondary battery for power storage for accumulating surplus power at night, discharging power at the peak of daytime power consumption, and keeping power generation of a power plant constant. (Zinc-bromine battery) and to an end plate electrode of a laminated battery.
【0002】[0002]
【従来の技術】亜鉛−臭素電池は鉛電池と異なり電解液
循環方式が採用されている。すなわち電池本体と、電解
液貯蔵槽と、これらの間に電解液を循環させる配管系と
から成り、積層された電池の単セルを、セパレータによ
り仕切って正極室と負極室を形成し、正極室には正極液
貯蔵槽から正極電解液をポンプによって循環し、負極室
には負極液貯蔵槽から負極電解液をポンプによって循環
している。2. Description of the Related Art Unlike lead batteries, zinc-bromine batteries employ an electrolyte circulation system. That is, a battery main body, an electrolyte storage tank, and a piping system for circulating an electrolyte between them, a single cell of a stacked battery is partitioned by a separator to form a positive electrode chamber and a negative electrode chamber, and the positive electrode chamber is formed. The positive electrode electrolyte is circulated from the positive electrode solution storage tank by a pump, and the negative electrode electrolyte is circulated from the negative electrode solution storage tank by the pump to the negative electrode chamber.
【0003】前記セルは端部に端板電極と呼ばれる電流
取り出し用電極と、その間に設けられる1枚の表、裏で
正、負極を兼ねるバイポーラ型電極とからなる。電極の
周囲はセル内の液が外部に漏れないようにするために、
締め付け用のポリエチレンフレームが成形されている。[0003] The above-mentioned cell is composed of a current extracting electrode called an end plate electrode at one end, and a bipolar electrode serving as a positive electrode and a negative electrode on the front and rear sides provided between the electrodes. To prevent the liquid in the cell from leaking to the outside around the electrode,
A polyethylene frame for fastening is molded.
【0004】図2は電池ユニットの構成を示したもので
ある。図2において1はFRP端板、2はPVC端板、
3は端板電極、4はスペーサー、5は枠付セパレータ、
6は枠付中間電極、7は正極マニホールド、8は負極マ
ニホールド、9は集電ブスバー、10は端子取付位置、
11は締め付けボルト、12は皿バネ、13は集電用金
属メッシュ、14はチャンネルである。また電池システ
ムおよび端板電極の構成は図3のように示される。FIG. 2 shows the structure of a battery unit. In FIG. 2, 1 is an FRP end plate, 2 is a PVC end plate,
3 is an end plate electrode, 4 is a spacer, 5 is a framed separator,
6 is an intermediate electrode with a frame, 7 is a positive electrode manifold, 8 is a negative electrode manifold, 9 is a current collecting bus bar, 10 is a terminal mounting position,
11 is a tightening bolt, 12 is a disc spring, 13 is a metal mesh for current collection, and 14 is a channel. The configuration of the battery system and the end plate electrode is shown in FIG.
【0005】前記電流取り出し用の端板電極3は、2枚
のカーボンプラスチック平板の間に集電用金属メッシュ
を挟み、それを外側へ出して集電ブスバーによってセル
本体から導出し、ケーブルの接続を行っている。端板電
極3の裏側はPVC端板2に接するが、絶縁のためにポ
リエチレン系材料(タフパー)をプレス成形でラミネー
トしている。製造条件は150℃、55Kg/cm2で
あり、電極材料はBr2の腐食性が高い為にポリエチレ
ンとカーボン、グラファイトを混合させたカーボンプラ
スチック(CP)を使用している。The current extraction end plate electrode 3 sandwiches a current collecting metal mesh between two carbon plastic flat plates, extends the metal mesh to the outside, leads out of the cell body by a current collecting bus bar, and connects a cable. It is carried out. The back side of the end plate electrode 3 is in contact with the PVC end plate 2, but a polyethylene-based material (tuffer) is laminated by press molding for insulation. The manufacturing conditions are 150 ° C. and 55 Kg / cm 2 , and the electrode material uses carbon plastic (CP) in which polyethylene, carbon, and graphite are mixed because Br 2 is highly corrosive.
【0006】[0006]
【発明が解決しようとする課題】亜鉛−臭素電池におい
ては、エネルギー密度を高める為に図3に示すように電
池ユニットを電解液タンクの上部に設置しなければなら
ない。このときポンプ停止時においては、図示のように
配管内の電解液の比重と落差によりセル内は負圧となり
端部の端板電極は負圧により内部へ吸引される。このと
き端板電極には応力が発生し、クラックの発生により液
漏れが生じることがあった。In a zinc-bromine battery, a battery unit must be installed above the electrolyte tank as shown in FIG. 3 in order to increase the energy density. At this time, when the pump is stopped, the cell has a negative pressure due to the specific gravity and the head of the electrolytic solution in the pipe as shown in the figure, and the end plate electrode at the end is sucked into the inside by the negative pressure. At this time, stress was generated in the end plate electrode, and liquid leakage sometimes occurred due to generation of cracks.
【0007】これを解決するために図4のような端板電
極が考案されている。すなわちカーボンプラスチック電
極21とグラスファイバー入りのポリエチレンを材料と
する枠体22とを分割して個別に形成し、枠体22の中
央部の溶着部23にてカーボンプラスチック電極21を
溶着するように構成したものである。図中24は端子、
25は金属メッシュを示している。この図4の構造によ
り負圧発生時の受圧面積は溶着部の内側だけとなって減
少し、荷重も小さくなる。又最も応力の発生する締め付
け界面部に溶着部が存在しない為安全率が大きくとれ
る。In order to solve this problem, an end plate electrode as shown in FIG. 4 has been devised. That is, the carbon plastic electrode 21 and the frame 22 made of polyethylene containing glass fiber are divided and separately formed, and the carbon plastic electrode 21 is welded at the welding portion 23 at the center of the frame 22. It was done. In the figure, 24 is a terminal,
25 indicates a metal mesh. With the structure shown in FIG. 4, the pressure receiving area when a negative pressure is generated is reduced only inside the welded portion, and the load is reduced. Also, since there is no welded portion at the fastening interface where the most stress occurs, the safety factor can be increased.
【0008】しかし枠部と電極部が分割されている為、
電解液が侵入し電極のサイド、裏側で反応が生じる可能
性がある。そこで従来は裏面にポリエチレンシートをラ
ミネートしていた。しかしながらサイド部の絶縁は難し
く、又ポリエチレンラミネートは電極との溶着が難しい
ため歩溜まり低下の原因となっていた。However, since the frame portion and the electrode portion are divided,
There is a possibility that the electrolyte may enter and a reaction may occur on the side and the back side of the electrode. Therefore, conventionally, a polyethylene sheet was laminated on the back surface. However, it is difficult to insulate the side portions, and it is difficult to weld the polyethylene laminate to the electrodes, which causes a decrease in yield.
【0009】本発明は上記の点に鑑みてなされたもので
その目的は、電極に反りが生じることがなく且つ電解液
が侵入しても反応が起こらず、安全性の高い積層電池の
端板電極を提供することにある。SUMMARY OF THE INVENTION The present invention has been made in view of the above points, and has as its object to provide a highly safe end plate of a laminated battery in which no warpage occurs in the electrodes and no reaction occurs even if an electrolytic solution enters. It is to provide an electrode.
【0010】[0010]
【課題を解決するための手段】本発明は、中間電極およ
びセパレータから成る単セルを複数個積層したスタック
の積層方向両端に設けられる積層電池の端板電極におい
て、(1)電流取り出し用の金属メッシュの両面を、ポ
リエチレン、カーボンブラックおよびグラファイトを所
定の重量比で配合して成る表側平板と、ポリエチレン、
シリカおよびグラファイトを所定の重量比で配合して成
る裏側平板とで挟み、それらを熱圧着して成形された電
極と、該電極の裏面と、一方の面に溶着部を設けた枠体
とを溶着して一体化したことを特徴とし、(2)前記表
側、裏側平板の組成の各配合比は、ポリエチレンが40
〜60Wt%、カーボン又はシリカが5〜15Wt%、
グラファイトが25〜55Wt%の範囲内であることを
特徴とし、(3)前記積層電池は亜鉛−臭素電池である
ことを特徴としている。SUMMARY OF THE INVENTION The present invention relates to an end plate electrode of a stacked battery provided at both ends in the stacking direction of a stack in which a plurality of single cells each including an intermediate electrode and a separator are stacked. Both sides of the mesh, a front flat plate composed of polyethylene, carbon black and graphite in a predetermined weight ratio, and polyethylene,
An electrode formed by sandwiching a back plate formed by mixing silica and graphite at a predetermined weight ratio and thermocompression-bonding them, a back surface of the electrode, and a frame body provided with a welded portion on one surface. (2) The composition ratio of the front side plate and the back side flat plate is 40% for polyethylene.
~ 60Wt%, carbon or silica is 5 ~ 15Wt%,
(3) The laminated battery is a zinc-bromine battery, wherein graphite is in the range of 25 to 55 Wt%.
【0011】[0011]
【作用】電極の裏側平板にはシリカが添加されているの
で抵抗が高くなり、しかも反りを低減させるポリエチレ
ン、グラファイトは従来と同様に配合されているので、
表側、裏側平板の線膨脹係数が同じになり、反りは発生
しない。前記裏側平板には導電性を与えるカーボンブラ
ックが添加されていないので、電解液が裏面に侵入して
も反応は発生しない。[Function] Since silica is added to the back plate of the electrode, the resistance is increased, and the polyethylene and graphite for reducing the warpage are blended in the same manner as in the past.
The front and back flat plates have the same coefficient of linear expansion, and no warpage occurs. Since no carbon black imparting conductivity is added to the back flat plate, no reaction occurs even if the electrolyte enters the back surface.
【0012】また臭素吸収量の少ないシリカを添加して
いるので、枠体との溶着部および金属メッシュの耐臭素
性が向上する。Further, since silica having a small amount of bromine is added, the bromine resistance of the welded portion to the frame and the metal mesh is improved.
【0013】[0013]
【実施例】以下図面を参照しながら本発明の一実施例を
説明する。端板電極においては電極のメッシュより下側
(裏側)は集電とは関係なく、絶縁体でもかまわない。
しかし集電用のメッシュの上下で組成を変えると反りが
発生してしまう。そこで反りの発生が起こらず抵抗の高
い組成が必要である。An embodiment of the present invention will be described below with reference to the drawings. In the end plate electrode, the lower side (back side) of the electrode mesh may be an insulator regardless of current collection.
However, if the composition is changed above and below the current collecting mesh, warpage occurs. Therefore, a composition having high resistance without warpage is required.
【0014】電極側の組成はポリエチレン50Wt%、
カーボンブラック15Wt%、グラファイト35Wt%
となっている。この中で反りを低減させるのはグラファ
イトであり、カーボンブラックは導電性を与えるだけで
ある。従って、このカーボンブラックの代わりに抵抗を
下げない無機フィラーを添加すればよい。すなわちガラ
スファイバー、フレークかシリカである。The composition on the electrode side is polyethylene 50 Wt%,
15 Wt% carbon black, 35 Wt% graphite
It has become. Among these, graphite reduces warpage, and carbon black only provides conductivity. Therefore, an inorganic filler that does not lower the resistance may be added instead of the carbon black. That is, glass fiber, flake or silica.
【0015】前記ガラスファイバー、フレークは異方性
をもっており、押し出しによるシート作成時、縦、横の
線膨脹係数に差が出る為、正方形電極では反りが発生す
る。そこで本発明では金属メッシュを挟む平板のうち表
側(上側)の平板にはカーボンブラックを添加し、裏側
(下側)の平板にはシリカを添加し、それらを熱圧着し
て図1(b)に示すように電極31を形成し、枠体22
の一方の面と溶着せしめて端板電極を構成した。The glass fibers and flakes have anisotropy. When a sheet is formed by extrusion, a difference occurs in the coefficient of linear expansion between the vertical and horizontal directions. Therefore, in the present invention, carbon black is added to the front (upper) flat plate among the flat plates sandwiching the metal mesh, and silica is added to the back (lower) flat plate, and they are thermocompression-bonded. An electrode 31 is formed as shown in FIG.
Was welded to one surface of the substrate to form an end plate electrode.
【0016】ここで本発明の電極について各評価を行っ
た。 (実施例1)四端子法による抵抗測定と線膨脹係数の測
定を行った。その結果を表1に示す。Here, each evaluation was performed for the electrode of the present invention. (Example 1) A resistance measurement and a linear expansion coefficient were measured by a four-terminal method. Table 1 shows the results.
【0017】[0017]
【表1】 [Table 1]
【0018】表1からわかるようにシリカを添加したも
のは抵抗が1000倍大きくなり、線膨脹係数はほぼ同
じであった。As can be seen from Table 1, the one with silica added had a resistance 1000 times greater and the coefficient of linear expansion was almost the same.
【0019】(実施例2)カーボン入り平板とシリカ入
り平板の間にメッシュ25を挟み、150℃でプレス成
形した。その時の反り量と通電時の反応状況を確認し
た。反り量は、1日おきに1ケ月放置させたがカーボン
入りとの差はなかった。次にカーボン入り平板とシリカ
入り平板を用いたもの(本発明のもの)と、上下ともカ
ーボン入り平板を用いたもの(従来のもの)について各
々単セルを組み、通常の20mA/cm2で4hの充電
を行い、解体調査を行った。上下ともカーボン入りのも
の(従来のもの)は図1(a)に示すようにわずかなが
らサイド、裏面に電着が認められた。カーボン入りとシ
リカ入りのもの(本発明のもの)は、図1(b)に示す
ようにメッシュ上部のカーボン入りサイドにわずかに認
められたがシリカ入りサイド、裏面に電着は認められな
かった。Example 2 A mesh 25 was sandwiched between a carbon-containing flat plate and a silica-containing flat plate and press-formed at 150 ° C. The amount of warpage at that time and the reaction status during energization were confirmed. The amount of warpage was left every other day for one month, but there was no difference from carbon. Next, a single cell was assembled for each of the flat plate containing carbon and the flat plate containing silica (the present invention) and the flat plate containing both the upper and lower plates (conventional), and was set to a normal 20 mA / cm 2 for 4 hours. Was charged and a dismantling survey was conducted. As shown in FIG. 1 (a), electrodeposits were slightly observed on the side and the back of the carbon-containing material (conventional product) in both upper and lower sides. As shown in FIG. 1 (b), those containing carbon and silica (the present invention) were slightly observed on the carbon-containing side above the mesh, but no electrodeposition was observed on the silica-containing side and the backside. .
【0020】尚実施例で使用するポリエチレンは高密度
ポリエチレンであり、カーボンブラックはケッチェンブ
ラックECであり、グラファイトはKNC−S(光和キ
ッシュ黒鉛)であり、シリカはニプシールLP(日本シ
リカ)である。また電極の組成の各配合比はポリエチレ
ンが40〜60Wt%、カーボン又はシリカが5〜15
Wt%、グラファイトが25〜55Wt%である。The polyethylene used in the examples is high-density polyethylene, carbon black is Ketjen Black EC, graphite is KNC-S (Kowa Kish Graphite), and silica is Nipsil LP (Nippon Silica). is there. The composition ratio of the electrodes is such that polyethylene is 40 to 60 Wt% and carbon or silica is 5 to 15
Wt% and graphite are 25 to 55 Wt%.
【0021】[0021]
【発明の効果】以上のように本発明によれば、電流取り
出し用の金属メッシュの両面を、ポリエチレン、カーボ
ンブラックおよびグラファイトを所定の重量比で配合し
て成る表側平板と、ポリエチレン、シリカおよびグラフ
ァイトを所定の重量比で配合して成る裏側平板とで挟
み、それらを熱圧着して成形された電極と、該電極の裏
面と、一方の面に溶着部を設けた枠体とを溶着して一体
化したので、次のような優れた効果が得られる。As described above, according to the present invention, both sides of a metal mesh for taking out current are provided with a front flat plate comprising polyethylene, carbon black and graphite in a predetermined weight ratio, and a polyethylene, silica and graphite. Are sandwiched between back side flat plates formed by mixing them at a predetermined weight ratio, and an electrode formed by thermocompression bonding them, a back surface of the electrode, and a frame body provided with a welded portion on one surface are welded. Because of the integration, the following excellent effects can be obtained.
【0022】(1)本発明の電極の裏側平板には導電性
を与えるカーボンブラックが添加されていないので、従
来のように電極の裏面にポリエチレンをラミネートしな
くても、電解液の侵入による電極裏面での反応は生じな
い。(1) Since carbon black for imparting electrical conductivity is not added to the flat plate on the back side of the electrode of the present invention, the electrode can be formed by the penetration of the electrolytic solution without laminating polyethylene on the back surface of the electrode as in the conventional case. No reaction occurs on the back side.
【0023】(2)メッシュの上部はカーボン入りであ
るが、裏面はカーボンの代わりにシリカを添加している
ので、高抵抗となり、且つグラファイト、ポリエチレン
の量の変化がない事で線膨脹係数が同じとなり、反りの
発生が押えられる。このため端板電極の信頼性が向上す
る。(2) Although the upper portion of the mesh is carbon-containing, the silica has been added to the back surface of the mesh, instead of carbon, so that the mesh has a high resistance and the linear expansion coefficient is low because there is no change in the amount of graphite and polyethylene. As a result, the occurrence of warpage is suppressed. For this reason, the reliability of the end plate electrode is improved.
【0024】(3)シリカはカーボンに比べて安価で臭
素吸収量も少ない事から、メッシュおよび溶着部の耐臭
素性が向上する。(3) Since silica is inexpensive and has a small amount of bromine absorption as compared with carbon, the bromine resistance of the mesh and the welded portion is improved.
【図1】亜鉛−臭素電池における充電終了後の端板電極
の亜鉛電着の様子を示し、(a)は従来の電極の断面
図、(b)は本発明の電極の断面図。1A and 1B show the state of zinc electrodeposition of an end plate electrode after charging is completed in a zinc-bromine battery, wherein FIG. 1A is a cross-sectional view of a conventional electrode, and FIG. 1B is a cross-sectional view of an electrode of the present invention.
【図2】亜鉛−臭素電池のユニット構成図。FIG. 2 is a unit configuration diagram of a zinc-bromine battery.
【図3】亜鉛−臭素電池のシステム構成図。FIG. 3 is a system configuration diagram of a zinc-bromine battery.
【図4】端板電極の一例を示す断面図。FIG. 4 is a sectional view showing an example of an end plate electrode.
21,31…電極 22…枠体 23…溶着部 25…金属メッシュ 21, 31 ... electrode 22 ... frame 23 ... welded part 25 ... metal mesh
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平3−43956(JP,A) 特開 昭61−284059(JP,A) 特開 平2−68870(JP,A) 特開 平4−22070(JP,A) 特開 平4−259754(JP,A) 特開 平5−89886(JP,A) 特開 平5−166548(JP,A) 特開 昭59−215667(JP,A) 特開 昭59−139574(JP,A) 実開 平2−41366(JP,U) 実開 昭62−15769(JP,U) (58)調査した分野(Int.Cl.7,DB名) H01M 4/86 - 4/98 H01M 12/08 ──────────────────────────────────────────────────続 き Continuation of front page (56) References JP-A-3-43956 (JP, A) JP-A-61-284059 (JP, A) JP-A-2-68870 (JP, A) JP-A-4- 22070 (JP, A) JP-A-4-259754 (JP, A) JP-A-5-89886 (JP, A) JP-A-5-166548 (JP, A) JP-A-59-215667 (JP, A) JP-A-59-139574 (JP, A) JP-A-2-41366 (JP, U) JP-A-62-15769 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 4/86-4/98 H01M 12/08
Claims (3)
ルを複数個積層したスタックの積層方向両端に設けられ
る積層電池の端板電極において、電流取り出し用の金属
メッシュの両面を、ポリエチレン、カーボンブラックお
よびグラファイトを所定の重量比で配合して成る表側平
板と、ポリエチレン、シリカおよびグラファイトを所定
の重量比で配合して成る裏側平板とで挟み、それらを熱
圧着して成形された電極と、該電極の裏面と、一方の面
に溶着部を設けた枠体とを溶着して一体化したことを特
徴とする積層電池の端板電極。An end plate electrode of a stacked battery provided at both ends in a stacking direction of a stack of a plurality of unit cells each comprising an intermediate electrode and a separator, wherein both sides of a metal mesh for extracting current are made of polyethylene, carbon black and graphite. An electrode formed by sandwiching a front flat plate formed by mixing a predetermined weight ratio with a back flat plate formed by mixing polyethylene, silica and graphite at a predetermined weight ratio, and thermocompression-bonding them. An end plate electrode for a laminated battery, wherein a back surface and a frame body provided with a welded portion on one surface are welded and integrated.
は、ポリエチレンが40〜60Wt%、カーボン又はシ
リカが5〜15Wt%、グラファイトが25〜55Wt
%の範囲内であることを特徴とする請求項1に記載の積
層電池の端板電極。2. The composition ratio of the composition of the front side plate and the back side flat plate is as follows: 40 to 60 wt% of polyethylene, 5 to 15 wt% of carbon or silica, and 25 to 55 wt% of graphite.
%. The end plate electrode of the laminated battery according to claim 1, wherein
とを特徴とする請求項1又は2に記載の積層電池の端板
電極。3. The end plate electrode according to claim 1, wherein the stacked battery is a zinc-bromine battery.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31760493A JP3170984B2 (en) | 1993-12-17 | 1993-12-17 | End plate electrodes for stacked batteries |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31760493A JP3170984B2 (en) | 1993-12-17 | 1993-12-17 | End plate electrodes for stacked batteries |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07169468A JPH07169468A (en) | 1995-07-04 |
JP3170984B2 true JP3170984B2 (en) | 2001-05-28 |
Family
ID=18090060
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP31760493A Expired - Fee Related JP3170984B2 (en) | 1993-12-17 | 1993-12-17 | End plate electrodes for stacked batteries |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3170984B2 (en) |
-
1993
- 1993-12-17 JP JP31760493A patent/JP3170984B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH07169468A (en) | 1995-07-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3923388B1 (en) | Electrode sheets, electrochemical device and device | |
US6582482B2 (en) | Tin-clad substrates for use as current collectors, batteries comprised thereof and methods for preparing same | |
CN1237647C (en) | Sealed lead-acid cells and batteries | |
CN108336283B (en) | Ultra-large-capacity single battery and preparation method thereof | |
CN101719562A (en) | Electrical core of high-voltage battery | |
WO2002101862A1 (en) | Cell frame for redox-flow cell and redox-flow cell | |
CN104183863A (en) | Soft-packing lithium ion battery module | |
CN201655905U (en) | High-power flexible package lithium ion battery pack | |
CN111640582B (en) | High-voltage electrochemical capacitor, preparation method and energy storage module thereof | |
CN102779970B (en) | Pole ear output connector for multi-layer positive-negative pole of high ratio power poly-lithium battery | |
CN219716896U (en) | Collector external lug composite assembly | |
JP3170984B2 (en) | End plate electrodes for stacked batteries | |
CN204118197U (en) | A kind of soft bag lithium ionic cell module | |
JPH0714617A (en) | Current collecting electrode of zinc-bromine battery | |
JP2616197B2 (en) | Lead storage battery and method of manufacturing the same | |
JP3141599B2 (en) | Current collecting electrode of zinc-bromine battery and method of manufacturing the same | |
JP3170930B2 (en) | Current collecting electrode of zinc-bromine battery and method of manufacturing the same | |
CN206250304U (en) | Ternary high-energy-density electrokinetic cell and power battery module | |
CN112436107B (en) | Battery based on metal electrode | |
CN217822876U (en) | Current collector, pole piece, electrode assembly, single battery and battery | |
CN221126182U (en) | Novel lithium battery electrode nickel strap | |
CN217655910U (en) | Battery cell, battery cell pole group, power battery and vehicle thereof | |
CN220628028U (en) | Soft package lithium ion battery shell structure | |
JP3225664B2 (en) | Current-collecting electrodes for zinc-bromine batteries | |
CN219067006U (en) | Battery, battery pack and electric equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |