JP3169381U - Electronic device cooling device and heat sink module thereof - Google Patents

Electronic device cooling device and heat sink module thereof Download PDF

Info

Publication number
JP3169381U
JP3169381U JP2011002708U JP2011002708U JP3169381U JP 3169381 U JP3169381 U JP 3169381U JP 2011002708 U JP2011002708 U JP 2011002708U JP 2011002708 U JP2011002708 U JP 2011002708U JP 3169381 U JP3169381 U JP 3169381U
Authority
JP
Japan
Prior art keywords
working fluid
cooling
cooling device
heat
heat sink
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011002708U
Other languages
Japanese (ja)
Inventor
俊銘 巫
俊銘 巫
Original Assignee
奇▲こう▼科技股▲ふん▼有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 奇▲こう▼科技股▲ふん▼有限公司 filed Critical 奇▲こう▼科技股▲ふん▼有限公司
Priority to JP2011002708U priority Critical patent/JP3169381U/en
Application granted granted Critical
Publication of JP3169381U publication Critical patent/JP3169381U/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

【課題】電子機器等に使用する冷却装置において、気液循環を促進する構造を設けたヒートシンクモジュールを提供する。【解決手段】冷却用作動流体を充填する中空本体11を設け、上記中空本体内部に対して冷却用作動流体の第1入口端111及び第1出口端112及び導流領域113を配する。さらに、上記冷却用作動流体の第1入口端及び第1出口端は上記導流領域の両端側に位置し、上記導流領域には、上記第1入口端から第1出口端に向けて作動流体をガイドする複数の導流体1131を間隔を置いて配列して、これらの導流体の間に冷却用作動流体の流路1132を形成して冷却装置を構成する。【選択図】図2The present invention provides a heat sink module provided with a structure for promoting gas-liquid circulation in a cooling device used in an electronic device or the like. A hollow main body 11 filled with a cooling working fluid is provided, and a first inlet end 111, a first outlet end 112, and a flow guiding region 113 for the cooling working fluid are arranged inside the hollow main body. Furthermore, the first inlet end and the first outlet end of the cooling working fluid are located on both ends of the flow introduction region, and the flow introduction region operates from the first inlet end toward the first outlet end. A plurality of guiding fluids 1131 for guiding fluid are arranged at intervals, and a cooling working fluid channel 1132 is formed between these guiding fluids to constitute a cooling device. [Selection] Figure 2

Description

本考案は、電子機器用冷却装置及びそのヒートシンクモジュールに関し、特に、冷却装置内に気液循環を促進する構造を設けた電子機器用冷却装置及びそのヒートシンクモジュールに関する。   The present invention relates to a cooling device for an electronic device and a heat sink module thereof, and particularly relates to a cooling device for an electronic device provided with a structure for promoting gas-liquid circulation in the cooling device and the heat sink module thereof.

近年の電子半導体産業の急速な発展、プロセス技術の進歩、並びに市場の需要の趨勢に伴い、電子機器は、徐々に軽薄短小の形態に向かっているが、外形寸法が徐々に小さくなる過程において、機能及び演算能力は、絶えず向上している。情報産業において、容量の大きいノート型パソコン及びデスクトップ型パソコンが実際に動作する時、多くの電子部品が熱を発生するが、そのうち、CPU(Central Processing Unit)が発生する熱量が最大であり、この時、ヒートシンク片とファンを組み合わせて構成されるヒートシンクは、ヒートシンク機能を提供し、即ち、CPUを保護する重要な役割を担い、CPUに正常動作温度を維持させ、所期の機能を発揮させるので、CPUヒートシンクは、現在、情報産業において重要な部品となっている。 With the rapid development of the electronic semiconductor industry in recent years, progress in process technology, and the trend of market demand, electronic devices are gradually moving toward light, thin and small forms. Functions and computing power are constantly improving. In the information industry, when large-capacity notebook computers and desktop computers actually operate, many electronic components generate heat, of which the heat generated by the CPU (Central Processing Unit) is the largest. Sometimes, a heat sink composed of a combination of a heat sink piece and a fan provides a heat sink function, i.e., plays an important role in protecting the CPU, maintains the normal operating temperature of the CPU, and performs the intended function. CPU heat sinks are now an important part in the information industry.

従って、近年より、水冷技術のパソコンへの応用が拡大され始めており、水冷技術は、体積が膨大なヒートシンクを省略するが、それは、実際にシステム内の熱源の熱を作動液体中に収集し、その後、熱交換器により空気と熱交換を行う動作を統一し、管路の長さが自身で変更可能であるので、熱交換器の位置も比較的柔軟性があり、熱交換器(ヒートシンクフィン)の設計が空間上の制限を受けることがないようにしている。但し、水冷技術は、1つのポンプにより作動液体の流動を推進する必要があり、更に、タンクを必要とするので、全体のシステムは、依然としてポンプの信頼性の問題、管路の漏洩の問題等を有する。 Therefore, in recent years, the application of water cooling technology to personal computers has begun to expand, and the water cooling technology omits a heat sink with a large volume, but it actually collects the heat of the heat source in the system in the working liquid, After that, the operation of exchanging heat with air by the heat exchanger is unified, and the length of the pipe can be changed by itself, so the position of the heat exchanger is also relatively flexible, and the heat exchanger (heat sink fin ) Design is not subject to space restrictions. However, since the water cooling technology needs to drive the flow of the working liquid by one pump and further requires a tank, the entire system still has problems of pump reliability, pipe leakage, etc. Have

従来技術は、現在、依然として、ヒートパイプを用いて熱の移動を行い、その後、ヒートシンクフィンを用いて放熱することにより、熱交換の動作を行うか、ヒートパイプ及びヒートシンク部材内で毛細管作用によりヒートシンク効率を増加し、このほか、CPUの消費電力を低減することしかできない。 In the prior art, heat is still transferred by using a heat pipe, and then heat exchange is performed by radiating heat using a heat sink fin. Besides increasing efficiency, the power consumption of the CPU can only be reduced.

図1を参照する。それは、従来のループ式ヒートシンクモジュールの断面図であり、図に示すように、前記ヒートシンクモジュール8は、吸熱部材81及び冷却部材82及び管路部材83から構成され、前記該冷却部材82は、複数のヒートシンクフィン821から構成され、該吸熱部材81は、冷却用作動流体の出口811及び入口812を有し、その内部に作動流体84を充填し、前記吸熱部材81は、該管路部材83及び前記冷却部材82の接続を介して熱伝導ループを形成する。 Please refer to FIG. It is a cross-sectional view of a conventional loop heat sink module. As shown in the figure, the heat sink module 8 is composed of a heat absorbing member 81, a cooling member 82, and a pipe line member 83, and the cooling member 82 includes a plurality of cooling members 82. The heat absorbing member 81 has an outlet 811 and an inlet 812 for cooling working fluid and is filled with the working fluid 84. The heat absorbing member 81 includes the pipe member 83 and A heat conduction loop is formed through the connection of the cooling member 82.

前記管路部材83は、更に第1部分831及び第2部分832及び第3部分833を有し、該第1部分831は、該吸熱部材81及び該冷却部材82の間に設けられ、該第2部分832は、該冷却部材82内に貫通設置して巻き付けられ、該第3部分833は、該冷却部材82及び該吸熱部材81の入口812間に設けられ、これら該管路部材83内の第1、第2、第3部分831,832,833は、連続して一体に接続する。 The pipe member 83 further includes a first portion 831, a second portion 832, and a third portion 833, and the first portion 831 is provided between the heat absorbing member 81 and the cooling member 82, and The second portion 832 is wound through and installed in the cooling member 82, and the third portion 833 is provided between the cooling member 82 and the inlet 812 of the heat absorbing member 81. The first, second, and third portions 831, 832, and 833 are continuously and integrally connected.

熱伝導を行う時、先ず、該吸熱部材81を少なくとも1つの発熱部材9と接触させ、該発熱部材9が発生する熱量を吸収し、該吸熱部材81内の作動流体84を液体から蒸発させて気体に変換させ、該管路部材83の第1部分831を経て冷却部材82に流動して冷却を行い、前記気体状の作動流体84が該冷却部材82内部の管路部材83の第2部分832に進入後、該冷却部材82に対して該第2部分832から熱を伝達して、輻射方式で外部に放熱し、同時に管路部材83の第2部分832内の気体作動流体84を冷却凝結して、液体に変換する。続いて、該第2部分832から第3部分833を経て液体の作動流体84を継続して該吸熱部材81へ回流するよう導引し、循環を継続する。   When conducting heat, first, the heat absorbing member 81 is brought into contact with at least one heat generating member 9 to absorb the amount of heat generated by the heat generating member 9, and the working fluid 84 in the heat absorbing member 81 is evaporated from the liquid. The gas is converted into gas, flows through the first portion 831 of the pipe member 83 and flows to the cooling member 82 for cooling, and the gaseous working fluid 84 is supplied to the second portion of the pipe member 83 inside the cooling member 82. After entering 832, heat is transmitted from the second portion 832 to the cooling member 82 to dissipate heat to the outside by radiation, and at the same time, the gas working fluid 84 in the second portion 832 of the pipe member 83 is cooled. It condenses and transforms into a liquid. Subsequently, the liquid working fluid 84 is guided from the second portion 832 through the third portion 833 to be continuously circulated to the heat absorbing member 81, and the circulation is continued.

前記作動流体84は、該第2部分832において、気体から液体に変換され、該第2部分832内の液体作動流体84は、単に重力作用によって該吸熱部材81内に緩やかに回流するので、該管路部材83の第2部分832の不連続箇所や屈曲箇所には、デッドスペースが形成され、該作動流体84の回流の効率を向上することがない。従って、従来技術は、以下の欠陥を有する:
1.熱伝導効果が良好でない;
2.熱伝導無効領域を有する;
3.コストが高い。
The working fluid 84 is converted from gas to liquid in the second portion 832, and the liquid working fluid 84 in the second portion 832 gently circulates in the heat absorbing member 81 simply by gravity, A dead space is formed at a discontinuous portion or a bent portion of the second portion 832 of the pipe member 83, and the efficiency of circulation of the working fluid 84 is not improved. Therefore, the prior art has the following defects:
1. Poor thermal conductivity effect;
2. Having a heat transfer ineffective area;
3. Cost is high.

特開2011−18500号公報JP 2011-18500 A 特開2009−49010号公報JP 2009-49010 A

上記の問題を解決する為、本考案の主要な目的は、気液循環効果を向上した冷却装置を提供することにある。 In order to solve the above problems, a main object of the present invention is to provide a cooling device with improved gas-liquid circulation effect.

本考案のもう1つの目的は、気液循環を向上可能で、熱対流のデッドスペースの発生を減少するヒートシンクモジュールを提供することである。 Another object of the present invention is to provide a heat sink module that can improve gas-liquid circulation and reduce the occurrence of dead space of thermal convection.

上記の目的を達成する為、本考案が提供する冷却装置及びそのヒートシンクモジュールは、前記冷却装置が、少なくとも1つの第1入口端及び少なくとも1つの第1出口端及び導流領域を有する中空本体を備え、該第1入口端及び該第1出口端は、それぞれ該導流領域の両側に対応設置され、前記導流領域は、複数の導流体を有し、該導流体の一端が該第1入口端に対応し、その他端が第1出口端に対応し、該導流体は、間隔を置いて配列され、該導流体間に少なくとも1つの流路を有する。 In order to achieve the above object, the cooling device and the heat sink module thereof provided by the present invention include a hollow body having at least one first inlet end, at least one first outlet end, and a conduction region. And the first inlet end and the first outlet end are respectively disposed corresponding to both sides of the flow guiding region, and the flow guiding region has a plurality of fluid guiding fluids, and one end of the fluid guiding fluid is the first fluid conveying channel. Corresponding to the inlet end, the other end corresponds to the first outlet end, and the guide fluid is spaced apart and has at least one flow path between the guide fluids.

上記の目的を達成する為、本考案が提供するヒートシンクモジュールは、冷却装置と、少なくとも1つの吸熱部材と、を具え、前記冷却部材は、中空本体を有し、該中空本体は、少なくとも1つの第1入口端及び少なくとも1つの第1出口端及び導流領域を有し、該第1入口端及び該第1出口端は、それぞれ該導流領域の両側に対応設置され、前記導流領域は、複数の導流体を有し、該導流体の一端が該第1入口端に対応し、その他端が第1出口端に対応し、該導流体は、間隔を置いて配列され、該導流体間に少なくとも1つの流路を有し、該吸熱部材は、蒸発部を有し、該蒸発部両側は、それぞれ第2入口及び第2出口を有し、該第2入口は、第1熱伝導部材を介し、前記第1出口端と接続し、該第2出口は、第2熱伝導部材を介し、前記第1入口端と接続する。 To achieve the above object, a heat sink module provided by the present invention comprises a cooling device and at least one heat absorbing member, and the cooling member has a hollow body, and the hollow body has at least one hollow body. A first inlet end and at least one first outlet end and a diverting region, wherein the first inlet end and the first outlet end are respectively installed on both sides of the diverting region; And having one end of the guide fluid corresponding to the first inlet end and the other end corresponding to the first outlet end, the guide fluid being arranged at intervals, And at least one flow path between the heat absorption member and the heat absorption member. The heat absorption member has an evaporation portion, and both sides of the evaporation portion have a second inlet and a second outlet, respectively. The first outlet end is connected via a member, and the second outlet is connected via the second heat conducting member, Connected to the primary inlet end.

本考案の導流領域の設置は、冷却装置及びヒートシンクモジュールの気液循環を向上するだけでなく、更に熱伝導における作動流体の滞留するデッドスペースの発生を回避することができる。 The installation of the flow guiding region of the present invention not only improves the gas-liquid circulation of the cooling device and the heat sink module, but also can avoid the generation of dead space in which the working fluid stays in heat conduction.

従って、本考案は、以下の利点を有する:
1.熱伝導のための作動流体の滞留領域がない;
2.気液循環を向上できる;
3.熱伝導効率を大幅に向上する;
4.コストを低減する。
Therefore, the present invention has the following advantages:
1. There is no working fluid retention area for heat conduction;
2. Improve gas-liquid circulation;
3. Greatly improve heat transfer efficiency;
4). Reduce costs.

従来技術のヒートシンクモジュールの第1実施例の断面図である。1 is a cross-sectional view of a first embodiment of a heat sink module of the prior art. 本考案の冷却装置の第1実施例の断面図である。It is sectional drawing of 1st Example of the cooling device of this invention. 本考案の冷却装置の第2実施例の断面図である。It is sectional drawing of 2nd Example of the cooling device of this invention. 本考案の冷却装置の第3実施例の断面図である。It is sectional drawing of 3rd Example of the cooling device of this invention. 本考案の冷却装置の第4実施例の断面図である。It is sectional drawing of 4th Example of the cooling device of this invention. 本考案の冷却装置の第5実施例の断面図である。It is sectional drawing of 5th Example of the cooling device of this invention. 本考案のヒートシンクモジュールの第1実施例の断面図である。It is sectional drawing of 1st Example of the heat sink module of this invention. 本考案のヒートシンクモジュールの第1実施例の断面図である。It is sectional drawing of 1st Example of the heat sink module of this invention. 本考案のヒートシンクモジュールの動作説明図である。It is operation | movement explanatory drawing of the heat sink module of this invention.

本考案の上記目的及びその構造及び機能上の特性について、図面に基づく好適実施例を挙げ、以下に説明する。 The above object and the structural and functional characteristics of the present invention will be described below with reference to preferred embodiments based on the drawings.

図2を参照する。それは、本考案の冷却装置の第1実施例の断面図であり、図に示すように、前記冷却装置1は、中空本体11を具える。 Please refer to FIG. It is a cross-sectional view of a first embodiment of the cooling device of the present invention. As shown in the figure, the cooling device 1 includes a hollow body 11.

前記中空本体11は、少なくとも1つの第1入口端111及び少なくとも1つの第1出口端112及び導流領域113を有し、該第1入口端111及び該第1出口端112は、それぞれ該導流領域113の両端側に対応して設置され、前記導流領域113は、複数の導流体1131を有し、該導流体1131は、間隔を置いて配列され、各同流体1131間に少なくとも1つの流路1131を形成し、該導流体1131の一端が該第1入口端111に対応し、その他端が該第1出口端112に対応して配置する。 The hollow body 11 has at least one first inlet end 111, at least one first outlet end 112, and a flow guiding region 113, and the first inlet end 111 and the first outlet end 112 are each guided by the guide. The flow guide region 113 is provided corresponding to both ends of the flow region 113, and the flow guide region 113 has a plurality of fluid guides 1131, and the fluid guide fluids 1131 are arranged at intervals, and at least one is provided between the fluids 1131. One flow path 1131 is formed, and one end of the guiding fluid 1131 corresponds to the first inlet end 111 and the other end corresponds to the first outlet end 112.

前記流路1132は、第1端1132a及び第2端1132bを有する。 The flow path 1132 has a first end 1132a and a second end 1132b.

図3は、本考案の冷却装置の第2実施例の断面図である。図に示すように、本実施例は、前記第1実施例と一部構造が同一であるので、ここでは、再度記載しない。本実施例が前記第1実施例と異なる箇所は、本実施例の前記第1入口端111が更に補助拡散部114を延伸する点であり、該補助拡散部114は、第1拡散端1141及び第2拡散端1142を有し、該第1拡散端1141の幅が第2拡散端1142より小さい。 FIG. 3 is a sectional view of a second embodiment of the cooling device of the present invention. As shown in the figure, this embodiment has the same partial structure as the first embodiment, and is not described again here. The difference of the present embodiment from the first embodiment is that the first inlet end 111 of the present embodiment further extends the auxiliary diffusion portion 114, and the auxiliary diffusion portion 114 includes the first diffusion end 1141 and the first diffusion end 1141. A second diffusion end 1142 is provided, and the width of the first diffusion end 1141 is smaller than the second diffusion end 1142.

図4は、本考案の冷却装置の第3実施例の断面図である。図に示すように、本実施例は、前記第1実施例と一部の構造が同一であるので、ここでは再度記載しない。
本実施例が第1実施例と異なる箇所は、本実施例の前記中空本体11の内壁は、毛細構造11aを有する点であり、前記毛細構造11aは、金属粉末の焼結又はメッシュの何れかで形成され、本実施例は、金属粉末の焼結を例として説明するが、これに限定するものではない。
FIG. 4 is a cross-sectional view of a third embodiment of the cooling device of the present invention. As shown in the figure, this embodiment has the same part of the structure as the first embodiment, and will not be described again here.
This embodiment differs from the first embodiment in that the inner wall of the hollow body 11 of this embodiment has a capillary structure 11a, and the capillary structure 11a is either sintered metal powder or mesh. In this embodiment, sintering of metal powder will be described as an example, but the present invention is not limited to this.

図5は、本考案の冷却装置の第4実施例の断面図である。図に示すように、本実施例は、前記第1実施例と一部の構造が同一であるので、ここでは再度記載しない。
本実施例が第1実施例と異なる箇所は、本実施例の前記中空本体11の内壁が、複数の溝及び複数の凹部11b又は凸部のうち何れかを有する点であり、本実施例は、凹部11bを例とし、説明するが、これに限定するものではない。
FIG. 5 is a cross-sectional view of a fourth embodiment of the cooling device of the present invention. As shown in the figure, this embodiment has the same part of the structure as the first embodiment, and will not be described again here.
The difference between the present embodiment and the first embodiment is that the inner wall of the hollow body 11 of the present embodiment has any one of a plurality of grooves and a plurality of recesses 11b or protrusions. The recess 11b will be described as an example, but the present invention is not limited to this.

図6は、本考案の冷却装置の第5実施例の断面図である。図に示すように、本実施例は、前記第1実施例と一部の構造が同一であるので、ここでは再度記載しない。
本実施例が前記第1実施例と異なる箇所は、本実施例の前記中空本体11の外部は、複数のヒートシンクフィン11cを設けてなる点である。
FIG. 6 is a sectional view of a fifth embodiment of the cooling device of the present invention. As shown in the figure, this embodiment has the same part of the structure as the first embodiment, and will not be described again here.
This embodiment is different from the first embodiment in that a plurality of heat sink fins 11c are provided outside the hollow body 11 of the present embodiment.

前記各実施例の中空本体11内に作動流体2を有し、前記作動流体2は、純水、メタノール、アセトン、R134A 等の冷媒のうちの何れかである。 The working fluid 2 is provided in the hollow main body 11 of each of the embodiments, and the working fluid 2 is any one of refrigerants such as pure water, methanol, acetone, R134A and the like.

図7は、本考案のヒートシンクモジュールの第1実施例の断面図である。図に示すように、前記ヒートシンクモジュール3は、冷却装置1及び少なくとも1つの吸熱部材4、第1熱伝導部材5及び第2熱伝導部材6を具える。 FIG. 7 is a cross-sectional view of the first embodiment of the heat sink module of the present invention. As shown in the figure, the heat sink module 3 includes a cooling device 1, at least one heat absorbing member 4, a first heat conducting member 5, and a second heat conducting member 6.

前記冷却装置1は、前記冷却装置1の第1実施例の構造と同一であり、前記冷却装置1の第1実施例の説明及び図面を参照し、本実施例の説明では、再度記載しない。 The cooling device 1 has the same structure as that of the first embodiment of the cooling device 1, and the description of the first embodiment of the cooling device 1 and the drawings will be referred to, and will not be described again in the description of this embodiment.

前記吸熱部材4は、蒸発部41を有し、該蒸発部41両側は、それぞれ第2入口42及び第2出口43を有し、該第2入口42は、前記第1熱伝導部材5を介し、前記第1出口端112と接続し、該第2出口43は、前記第2熱伝導部材6を介し、前記第1入口端111と接続する。 The heat absorbing member 4 has an evaporation part 41, and both sides of the evaporation part 41 have a second inlet 42 and a second outlet 43, respectively, and the second inlet 42 passes through the first heat conducting member 5. The second outlet 43 is connected to the first outlet end 112 via the second heat conducting member 6.

前記第1熱伝導部材5及び該第2熱伝導ユニット6は、中空の管状態であり、それは、金属又はプラスチック材質の何れかで形成される。本考案中の第1熱伝導部材5は、ヒートパイプとし、その内部に毛細構造51又は溝構造を有する。   The first heat conducting member 5 and the second heat conducting unit 6 are in a hollow tube state, and are formed of either metal or plastic material. The first heat conducting member 5 in the present invention is a heat pipe and has a capillary structure 51 or a groove structure therein.

前記冷却装置1両側は、複数のヒートシンクフィン11cに設ける。 Both sides of the cooling device 1 are provided on a plurality of heat sink fins 11c.

図8は、本考案のヒートシンクモジュールの第2実施例の断面図である。図に示すように、本実施例は、前記ヒートシンクモジュール3の第1実施例と一部の構造が同一であるので、ここでは、再度記載しない。本実施例が前記ヒートシンクモジュール3の第1実施例と異なる箇所は、本実施例の前記冷却装置1の第1入口端111は、更に、補助拡散部114を延伸し、該補助拡散部114は、第1拡散端1141及び第2拡散端1142を有し、該第1拡散端1141の幅は、該第2拡散端1142より小さいことにある。   FIG. 8 is a sectional view of a second embodiment of the heat sink module of the present invention. As shown in the figure, this embodiment has the same structure as that of the first embodiment of the heat sink module 3, and will not be described again here. The difference between the present embodiment and the first embodiment of the heat sink module 3 is that the first inlet end 111 of the cooling device 1 of the present embodiment further extends the auxiliary diffusion section 114, and the auxiliary diffusion section 114 is , A first diffusion end 1141 and a second diffusion end 1142, and the width of the first diffusion end 1141 is smaller than the second diffusion end 1142.

図9は、本考案のヒートシンクモジュールの動作説明図である。図に示すように、前記ヒートシンクモジュール3は、熱伝導動作を行う時、吸熱部材4により少なくとも1つの熱源7と接触し、吸熱部材4内の作動流体2に熱を受けることにより蒸発領域中で液体を気体に変換させ、作動流体21を該第2出口43から排出させ、同時に該第2熱伝導部材6により該冷却装置1の第1入口端111まで伝達し、該冷却装置1内に進入させ、冷却装置1中の導流領域113を介し、気液循環に要する高圧の駆動を確立し、導流領域113内において、適当な減圧構造により、低圧端を発生し、ヒートシンクモジュール3中の気液循環に要する圧力勾配を形成し、最後に液体作動流体22が第1熱伝導部材5から吸熱部材4に戻るように導引され、ヒートシンクモジュール3の熱伝導効率の向上を達成し、従来の冷却部材内の無効領域の問題を改善する。   FIG. 9 is an operation explanatory view of the heat sink module of the present invention. As shown in the figure, when the heat sink module 3 performs a heat conduction operation, the heat sink module 3 is brought into contact with at least one heat source 7 by the heat absorbing member 4 and receives heat from the working fluid 2 in the heat absorbing member 4 in the evaporation region. The liquid is converted into a gas, and the working fluid 21 is discharged from the second outlet 43, and at the same time, is transmitted to the first inlet end 111 of the cooling device 1 by the second heat conducting member 6 and enters the cooling device 1. Then, a high-pressure drive required for gas-liquid circulation is established through the conduction region 113 in the cooling device 1, and a low-pressure end is generated in the conduction region 113 by an appropriate pressure-reducing structure. A pressure gradient required for gas-liquid circulation is formed, and finally the liquid working fluid 22 is guided to return from the first heat conducting member 5 to the heat absorbing member 4, thereby improving the heat conduction efficiency of the heat sink module 3. To improve the problem of invalid area in the cooling member.

1 冷却装置
11 中空本体
11a 毛細構造
11b 凹部
111 第1入口端
112 第1出口端
113 導流領域
1131 導流体
1132 流路
1132a 第1端
1132b 第2端
114 補助拡散部
1141 第1拡散端
1142 第2拡散端
2 作動流体
21 気体作動流体
22 液体作動流体
3 ヒートシンクモジュール
4 吸熱部材
41 蒸発部
42 第2入口
43 第2出口
44 毛細構造
5 第1熱伝導部材
51 毛細構造
6 第2熱伝導部材
7 熱源
DESCRIPTION OF SYMBOLS 1 Cooling device 11 Hollow main body 11a Capillary structure 11b Recessed part 111 1st inlet end 112 1st outlet end 113 Flow introduction area | region 1131 Fluid introduction | transduction 1132 Flow path 1132a 1st end 1132b 2nd end 114 Auxiliary diffusion part 1141 1st diffusion end 1142 1st 2 diffusion end 2 working fluid 21 gaseous working fluid 22 liquid working fluid 3 heat sink module 4 heat absorbing member 41 evaporating part 42 second inlet 43 second outlet 44 capillary structure 5 first heat conducting member 51 capillary structure 6 second heat conducting member 7 Heat source

Claims (13)

冷却用作動流体を充填する中空本体を具え、
上記中空本体内部に対して冷却用作動流体の第1入口端及び第1出口端及び導流領域を設け、
上記冷却用作動流体の第1入口端及び第1出口端は上記導流領域の両端側に位置し、
上記導流領域には、上記第1入口端から第1出口端に向けて作動流体をガイドする複数の導流体を間隔を置いて配列して、これらの導流体の間に冷却用作動流体の流路を形成した、冷却装置。
A hollow body filled with a cooling working fluid,
A first inlet end and a first outlet end of the cooling working fluid and a flow guiding region are provided inside the hollow body,
The first inlet end and the first outlet end of the cooling working fluid are located at both ends of the flow guiding region,
A plurality of guide fluids that guide the working fluid from the first inlet end toward the first outlet end are arranged at intervals in the guide region, and a cooling working fluid is interposed between the guide fluids. A cooling device in which a flow path is formed.
前記流路が冷却用作動流体が流入する第1端及び流出する第2端を有する請求項1に記載の冷却装置。 The cooling device according to claim 1, wherein the flow path has a first end through which a working fluid for cooling flows in and a second end through which the working fluid flows out. 前記第1入口端は、更に冷却用作動流体が流入する補助拡散部を延長して形成し、該補助拡散部は、冷却用作動流体が流入する流路の狭い第1拡散端から導流領域に向けて流路が拡大した第2拡散端を設けた請求項1に記載の冷却装置。 The first inlet end is further formed by extending an auxiliary diffusion part into which the cooling working fluid flows, and the auxiliary diffusion part is introduced from the first diffusion end having a narrow flow path into which the cooling working fluid flows. The cooling device according to claim 1, further comprising a second diffusion end whose flow path is enlarged toward the surface. 前記中空本体の内壁に毛細構造を有する請求項1に記載の冷却装置。 The cooling device according to claim 1 which has a capillary structure in an inner wall of said hollow main part. 前記毛細構造は、金属粉末の焼結及びメッシュのうちの何れかである請求項4に記載の冷却装置。 The cooling device according to claim 4, wherein the capillary structure is one of sintered metal powder and mesh. 前記中空本体の内壁は、複数の溝及び複数の凹部又は複数の凸部のうち何れかを有する請求項1に記載の冷却装置。 The cooling device according to claim 1, wherein the inner wall of the hollow body has any one of a plurality of grooves and a plurality of concave portions or a plurality of convex portions. 前記中空本体内に作動流体を充填し、前記作動流体は、純水、メタノール、アセトン、R134A 等の冷媒のうちの何れかである請求項1に記載の冷却装置。 The cooling device according to claim 1, wherein the hollow main body is filled with a working fluid, and the working fluid is any one of refrigerants such as pure water, methanol, acetone, and R134A. 冷却用作動流体を充填する中空本体を具え、
上記中空本体内部に対して冷却用作動流体の第1入口端及び第1出口端及び導流領域を設け、
上記冷却用作動流体の第1入口端及び第1出口端は上記導流領域の両端側に位置し、
上記導流領域には、上記第1入口端から第1出口端に向けて作動流体をガイドする複数の導流体を間隔を置いて配列して、これらの導流体の間に冷却用作動流体の流路を形成した、冷却装置と、
冷却用作動流体を充填する蒸発部を有し、該蒸発部はその両端に冷却用作動流体の流入する第2入口と冷却用作動流体が流出する第2出口とを設け、該第2入口と上記冷却装置の第1出口端とを冷却用作動流体を流通させる第1熱伝導部材を介して接続し、上記第2出口と上記冷却装置の第1入口とを冷却用作動流体を流通させる第2熱伝導部材を介して接続した少なくとも1つの吸熱部材と、
から構成されるヒートシンクモジュール。
A hollow body filled with a cooling working fluid,
A first inlet end and a first outlet end of the cooling working fluid and a flow guiding region are provided inside the hollow body,
The first inlet end and the first outlet end of the cooling working fluid are located at both ends of the flow guiding region,
A plurality of guide fluids that guide the working fluid from the first inlet end toward the first outlet end are arranged at intervals in the guide region, and a cooling working fluid is interposed between the guide fluids. A cooling device that forms a flow path;
An evaporating section filled with a cooling working fluid, and the evaporating section is provided with a second inlet through which cooling working fluid flows and a second outlet through which cooling working fluid flows out at both ends; A first outlet end of the cooling device is connected via a first heat conducting member for circulating a cooling working fluid, and a cooling working fluid is circulated between the second outlet and the first inlet of the cooling device. At least one heat absorbing member connected via two heat conducting members;
Heat sink module composed of
前記流路が冷却用作動流体が流入する第1端及び流出する第2端を有する請求項8に記載のヒートシンクモジュール。   The heat sink module according to claim 8, wherein the flow path has a first end through which a cooling working fluid flows and a second end through which the cooling working fluid flows. 前記第1入口端は、更に冷却用作動流体が流入する補助拡散部を延長して形成し、該補助拡散部は、冷却用作動流体が流入する流路の狭い第1拡散端から導流領域に向けて流路が拡大した第2拡散端を設けた請求項8に記載のヒートシンクモジュール。 The first inlet end is further formed by extending an auxiliary diffusion part into which the cooling working fluid flows, and the auxiliary diffusion part is introduced from the first diffusion end having a narrow flow path into which the cooling working fluid flows. The heat sink module according to claim 8, further comprising a second diffusion end whose flow path is enlarged toward the surface. 前記中空体内に作動流体を充填し、前記作動流体は、純水、メタノール、アセトン、R134A 等の冷媒のうちの何れかである請求項8に記載のヒートシンクモジュール。 The heat sink module according to claim 8, wherein the hollow body is filled with a working fluid, and the working fluid is one of refrigerants such as pure water, methanol, acetone, and R134A. 前記吸熱部材内に作動流体を充填し、前記作動流体は、純水、メタノール、アセトン、R134A 等の冷媒のうちの何れかである請求項8に記載のヒートシンクモジュール。 The heat sink module according to claim 8, wherein the heat absorbing member is filled with a working fluid, and the working fluid is one of refrigerants such as pure water, methanol, acetone, and R134A. 前記第1熱伝導部材がヒートパイプであり、その内部に毛細構造を有する請求項8に記載のヒートシンクモジュール。
The heat sink module according to claim 8, wherein the first heat conducting member is a heat pipe and has a capillary structure therein.
JP2011002708U 2011-05-17 2011-05-17 Electronic device cooling device and heat sink module thereof Expired - Fee Related JP3169381U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011002708U JP3169381U (en) 2011-05-17 2011-05-17 Electronic device cooling device and heat sink module thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011002708U JP3169381U (en) 2011-05-17 2011-05-17 Electronic device cooling device and heat sink module thereof

Publications (1)

Publication Number Publication Date
JP3169381U true JP3169381U (en) 2011-07-28

Family

ID=54880252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011002708U Expired - Fee Related JP3169381U (en) 2011-05-17 2011-05-17 Electronic device cooling device and heat sink module thereof

Country Status (1)

Country Link
JP (1) JP3169381U (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013018667A1 (en) * 2011-08-01 2013-02-07 日本電気株式会社 Cooling device and electronic device using same
WO2015115028A1 (en) * 2014-01-28 2015-08-06 パナソニックIpマネジメント株式会社 Cooling device and data center provided with same
CN109974136A (en) * 2019-04-19 2019-07-05 青岛海尔智能技术研发有限公司 A kind of radiator, air-conditioner outdoor unit and air conditioner
WO2020235449A1 (en) * 2019-05-21 2020-11-26 株式会社巴川製紙所 Temperature control unit
CN114269138A (en) * 2022-03-02 2022-04-01 荣耀终端有限公司 Heat dissipation assembly and electronic equipment

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013018667A1 (en) * 2011-08-01 2013-02-07 日本電気株式会社 Cooling device and electronic device using same
WO2015115028A1 (en) * 2014-01-28 2015-08-06 パナソニックIpマネジメント株式会社 Cooling device and data center provided with same
CN109974136A (en) * 2019-04-19 2019-07-05 青岛海尔智能技术研发有限公司 A kind of radiator, air-conditioner outdoor unit and air conditioner
WO2020235449A1 (en) * 2019-05-21 2020-11-26 株式会社巴川製紙所 Temperature control unit
US11985795B2 (en) 2019-05-21 2024-05-14 Tomoegawa Corporation Temperature control unit
CN114269138A (en) * 2022-03-02 2022-04-01 荣耀终端有限公司 Heat dissipation assembly and electronic equipment

Similar Documents

Publication Publication Date Title
JP6267079B2 (en) Boiling cooler
JP3169627U (en) Cooling device heat dissipation structure
JP5151362B2 (en) COOLING DEVICE AND ELECTRONIC DEVICE HAVING THE SAME
TWI438388B (en) Liquid cooling device
WO2011122332A1 (en) Phase change cooler and electronic equipment provided with same
US9441888B2 (en) Loop type pressure-gradient-driven low-pressure thermosiphon device
TWI436019B (en) The structure of the heat siphon plate is improved
JP3169381U (en) Electronic device cooling device and heat sink module thereof
US8479805B2 (en) Heat-dissipating assembly
TWI423015B (en) Pressure gradient driven thin plate type low pressure heat siphon plate
US8985195B2 (en) Condensing device and thermal module using same
TWI719675B (en) Liquid-gas separation type heat-exchange device
JP2006287017A (en) Cooling jacket
WO2015146110A1 (en) Phase-change cooler and phase-change cooling method
JP2013055355A (en) Cooling device and electronic apparatus including the same
TWI691830B (en) Heat dissipation module
CN216385225U (en) Loop heat pipe
US20080308257A1 (en) Heat dissipating assembly
JP3165057U (en) Heat dissipation device driven by pressure gradient accompanying evaporation and condensation of refrigerant
TWI687642B (en) Cycling heat dissipation module
JP2007081375A (en) Cooling device
TWI658776B (en) Heat dissipation system of electronic device
TW202139821A (en) Gravity-type high-efficiency heat-exchange device
JP3164132U (en) Pressure gradient driven plate heat pipe
JP3163998U (en) Heat sink heat dissipation structure

Legal Events

Date Code Title Description
R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140706

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees