JP3168634B2 - Method of creating 3D model of neural activity site - Google Patents

Method of creating 3D model of neural activity site

Info

Publication number
JP3168634B2
JP3168634B2 JP28079891A JP28079891A JP3168634B2 JP 3168634 B2 JP3168634 B2 JP 3168634B2 JP 28079891 A JP28079891 A JP 28079891A JP 28079891 A JP28079891 A JP 28079891A JP 3168634 B2 JP3168634 B2 JP 3168634B2
Authority
JP
Japan
Prior art keywords
brain
dimensional model
activity site
area
sensory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28079891A
Other languages
Japanese (ja)
Other versions
JPH0591987A (en
Inventor
健治 芝田
茂樹 梶原
美弘 奥山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP28079891A priority Critical patent/JP3168634B2/en
Publication of JPH0591987A publication Critical patent/JPH0591987A/en
Application granted granted Critical
Publication of JP3168634B2 publication Critical patent/JP3168634B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)
  • Measuring Magnetic Variables (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、例えば、生体活動電
流源の位置,大きさ,方向を推定する際に、推定領域の
対象となる神経活動部位の3次元モデルを作成する方法
に関する。なお、この3次元モデルは脳機能の研究分野
や、各種の診断時などにおいても利用される。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for creating a three-dimensional model of a nerve activity part to be an estimation area when estimating the position, size, and direction of a biological activity current source, for example. Note that this three-dimensional model is also used in the field of research on brain function and at the time of various diagnoses.

【0002】[0002]

【従来の技術】生体に対して光や音のような外界の刺激
を与えると、感覚神経に信号(活動電流)が発生する。
この生体活動電流によって形成される磁界を、SQUI
D(Superconducting Quantum Interference Dvice:超
電導量子干渉計)を用いたセンサで計測し、その計測デ
ータから生体活動電流源の位置,大きさ,方向を推定す
る。推定された生体活動電流源(以下、単に電流源と略
す)は、X線CT装置やMRI装置などで撮像された体
内断層像上に表示され、患部等の物理的位置の特定など
に使用される。
2. Description of the Related Art When an external stimulus such as light or sound is applied to a living body, a signal (active current) is generated in a sensory nerve.
The magnetic field formed by this biological activity current is referred to as SQUI
The measurement is performed with a sensor using D (Superconducting Quantum Interference Dvice), and the position, size, and direction of the biological activity current source are estimated from the measurement data. The estimated life activity current source (hereinafter simply abbreviated as a current source) is displayed on a tomographic image inside the body taken by an X-ray CT apparatus, an MRI apparatus, or the like, and is used to specify a physical position of an affected part or the like. You.

【0003】電流源の位置,大きさ,方向を推定する一
般的な方法は、生体の脳内の任意の位置に、任意の大き
さ,任意の方向の電流源を多数仮定し、これらの電流源
によって形成される磁界分布データを数値計算によって
求めておく。そして、これらの計算された磁界分布デー
タとSQUIDセンサで実際に計測した生体の磁界分布
データとの二乗誤差を求め、二乗誤差が最小となる磁界
分布データに対応した生体活動電流源を求める。
A general method for estimating the position, magnitude, and direction of a current source is to assume a large number of current sources of an arbitrary size and an arbitrary direction at an arbitrary position in the brain of a living body, Magnetic field distribution data formed by the source is obtained by numerical calculation. Then, a square error between the calculated magnetic field distribution data and the magnetic field distribution data of the living body actually measured by the SQUID sensor is obtained, and a biological activity current source corresponding to the magnetic field distribution data with the minimum square error is obtained.

【0004】このとき、脳の全領域に対して多数の電流
源を仮定してしまうと、磁界分布データの計算量が膨大
なものになり、推定時間もかなり費やされてしまう。そ
こで、脳内のある領域を指定し、その領域内で電流源の
推定を行う場合が多い。領域の指定に際しては、まず、
脳の3次元モデルを作成してモニタディスプレイに表示
し、SQUIDセンサが設置された頭部表面に相当する
脳内の領域を3次元モデルに対して指定するという方法
が採られる。
[0004] At this time, if a large number of current sources are assumed for all regions of the brain, the calculation amount of the magnetic field distribution data becomes enormous and the estimation time is considerably consumed. Therefore, it is often the case that a certain region in the brain is designated and the current source is estimated in that region. When specifying the area, first
A method is adopted in which a three-dimensional model of the brain is created and displayed on a monitor display, and an area in the brain corresponding to the surface of the head on which the SQUID sensor is installed is specified for the three-dimensional model.

【0005】[0005]

【発明が解決しようとする課題】しかし、SQUIDセ
ンサの設置場所は殆どの場合において任意であり、SQ
UIDセンサが設置された頭部表面に相当する脳内の領
域に、必ずしも生体活動電流源があるとは限らない。推
定の際に実測された磁界分布データは、生体にある刺激
を与えたときに脳の感覚野(感覚をおこす神経細胞が集
まっている領域で神経活動部位に相当する)に発生した
電流源によって形成されたものであり、感覚野は、光,
音,匂いという外界の刺激に応じてそれぞれ異なった場
所にある。
However, the installation location of the SQUID sensor is almost arbitrary in most cases.
The region of the brain corresponding to the surface of the head where the UID sensor is installed does not always have the bioactive current source. The magnetic field distribution data measured at the time of estimation is based on the current source generated in the sensory area of the brain (the area where nerve cells that cause sensations are gathered and corresponds to the nerve activity site) when a certain stimulus is given to the living body The sensory cortex is formed by light,
They are in different places depending on the external stimuli of sound and smell.

【0006】したがって、SQUIDセンサの設置場所
と刺激に応じた感覚野の場所とが、大きく掛け離れてい
る場合には誤った電流源を推定するという問題があっ
た。また、各刺激に応じた感覚野を推定のための領域に
指定するにしても、脳の3次元モデルに対しては正確に
感覚野を指定することはできず、推定のための領域を感
覚野の領域に特定化することは実際上できていない。一
般に、医者が各刺激に応じた感覚野を判断する場合に
は、 "脳のしわ" 等を基準にしているからで、3次元モ
デルでは "脳のしわ" のような体内情報を正確に表すこ
とができないからである。
Therefore, when the location of the SQUID sensor and the location of the sensory cortex corresponding to the stimulus are largely separated from each other, there is a problem that an erroneous current source is estimated. Even if the sensory area corresponding to each stimulus is specified as an area for estimation, the sensory area cannot be accurately specified for a three-dimensional brain model. It has not been practically specified in the area of the field. In general, when a doctor determines a sensory area corresponding to each stimulus, it is based on "brain wrinkles" and the like. Therefore, a three-dimensional model accurately represents in-vivo information such as "brain wrinkles". Because they cannot do it.

【0007】この発明は、このような事情に鑑みてなさ
れたものであって、正確な神経活動部位の3次元モデル
を作成することができる方法を提供することを目的とし
ている。
The present invention has been made in view of such circumstances, and has as its object to provide a method capable of creating an accurate three-dimensional model of a nerve activity site.

【0008】[0008]

【課題を解決するための手段】この発明は、上記目的を
達成するために次のような方法をとる。すなわち、この
発明は、MR撮像法の中の脳せき髄液撮像法を用いて得
られた複数の2次元画像に対して予め神経活動部位の領
域を指定しておき、指定した領域の座標データを補間し
て神経活動部位の3次元モデルを作成し、MRI3次元
画像上に前記3次元モデルを作成することを特徴とす
る。
The present invention employs the following method to achieve the above object. That is, according to the present invention, a region of a nerve activity site is specified in advance for a plurality of two-dimensional images obtained by using the cerebrospinal fluid imaging method in the MR imaging method, and coordinate data of the specified region is stored. It is characterized in that a three-dimensional model of a nerve activity site is created by interpolation, and the three-dimensional model is created on an MRI three-dimensional image.

【0009】[0009]

【作用】この発明の方法によれば、予めMR撮像法の中
の脳せき髄液撮像法を用いて得られた複数の2次元画像
に対して神経活動部位の指定を行う。脳せき髄液撮像方
法で得られた2次元画像には "脳のしわ" 等の体内情報
が明確に表れるので、正確な神経活動部位の指定ができ
る。そして、この神経活動部位の領域の3次元モデルを
作成し、これをMRI3次元画像上に作るので、神経活
動部位の3次元位置が正確に把握でき、例えば、生体活
動電流源の推定領域の特定化などに用いることができ
る。
According to the method of the present invention, a neural activity site is specified for a plurality of two-dimensional images obtained in advance by using the cerebrospinal fluid imaging method in the MR imaging method. Since two-dimensional images obtained by the cerebrospinal fluid imaging method clearly show in-vivo information such as "brain wrinkles", it is possible to accurately specify a nerve activity site. Then, a three-dimensional model of the region of the nerve activity site is created and created on an MRI three-dimensional image, so that the three-dimensional position of the nerve activity site can be accurately grasped. It can be used for conversion.

【0010】[0010]

【実施例】以下、この発明の一実施例を図面に基づいて
説明する。 〔1〕まず、図1のように、被検体Mの頭部に対してx
−y平面に沿ったスライス面をz方向に複数選択し、M
RI装置(図示せず)を用いて各スライス面の断層像を
撮像する。撮像方法としては、脳脊髄液を抽出するパル
スシーケンスを用いて行うのが好ましい。これによっ
て、大脳皮質の "しわ”の部分が浮き彫りにされたスラ
イス像が得られることが知られており、各刺激に対応し
た感覚野の場所判断が正確に行える。
An embodiment of the present invention will be described below with reference to the drawings. [1] First, as shown in FIG.
-Select a plurality of slice planes along the y plane in the z direction,
A tomographic image of each slice plane is captured using an RI device (not shown). The imaging method is preferably performed using a pulse sequence for extracting cerebrospinal fluid. As a result, it is known that a slice image in which the "wrinkles" of the cerebral cortex is embossed is obtained, and the location of the sensory cortex corresponding to each stimulus can be accurately determined.

【0011】〔2〕図2に示すような各スライス像1を
モニタディスプレイに表示し、各スライス像に対して神
経活動部位の指定を行う。すなわち、生体活動電流源の
推定にあたって、被検体Mの実測データを得る際に、被
検体Mに与えた刺激に対応する感覚野を指定する。感覚
野の場所についてはすでに医学的に知られている。例え
ば、図3(a) に示した大脳の右半球外側面に対して、後
頭葉にある符号Aが視覚をおこす神経細胞が集まってい
る視覚野、側頭葉にある符号Bが聴覚をおこす神経細胞
が集まっている聴覚野である。また、脳の断層像に対し
て各感覚野の領域を図示した人脳図普(Brain Atlas)と
いうのが医学書等で提示されている(図3(b) 参照) 。
[2] Each slice image 1 as shown in FIG. 2 is displayed on a monitor display, and a nerve activity site is designated for each slice image. In other words, when estimating the biological activity current source, the sensory area corresponding to the stimulus given to the subject M is specified when obtaining the actual measurement data of the subject M. The location of the sensory cortex is already medically known. For example, on the outer surface of the right hemisphere of the cerebrum shown in FIG. The auditory cortex where nerve cells gather. In addition, a human brain diagram (Brain Atlas) showing regions of each sensory area with respect to a tomographic image of the brain is presented in a medical book or the like (see FIG. 3 (b)).

【0012】これらの情報を用いて聴覚野Bの指定を行
う場合、例えば、前記選出したスライス面のうちから、
図3(a) に示した脳のz方向における聴覚野Bの位置に
対応するスライス面を求める。図示のように聴覚野Bは
脳のz方向に沿って広がりをもっているから複数のスラ
イス面が求められる。求めた各スライス面における各ス
ライス像1をモニタディスプレイに表示し、図3(b)の
人脳図普を参照して聴覚野Bのx−y平面上の領域をマ
ーキングする(図4参照)。マーキングの方法としては
聴覚野Bの領域をカーソルでトレースして閉領域の線分
を作成する。
When the auditory cortex B is designated using these pieces of information, for example, from among the selected slice planes,
A slice plane corresponding to the position of the auditory cortex B in the z direction of the brain shown in FIG. As shown in the figure, since the auditory cortex B extends along the z direction of the brain, a plurality of slice planes are required. The obtained slice images 1 on the respective slice planes are displayed on the monitor display, and the region on the xy plane of the auditory cortex B is marked with reference to the human brain diagram of FIG. 3B (see FIG. 4). . As a marking method, a region of the auditory cortex B is traced with a cursor to create a line segment of a closed region.

【0013】〔3〕撮像された各スライス像1の対応す
る各座標点を近傍演算によって補間し、脳部の3次元モ
デルを作成する。このとき、前記指定した感覚野の領域
線分についても同様の補間処理を施して3次元モデル化
する。すると、脳部の3次元モデルの中に、指定した感
覚野の領域が同様な3次元モデルとして現れる。生体活
動電流源の推定を行う場合は、その感覚野の3次元モデ
ルの位置座標を推定のための領域として指定し、さら
に、感覚野の3次元モデルの中の任意の位置を電流源の
仮定の出発点として指定する。
[3] Interpolate the corresponding coordinate points of each sliced image 1 by neighborhood calculation to create a three-dimensional model of the brain. At this time, a similar interpolation process is performed on the region line segment of the designated sensory cortex to form a three-dimensional model. Then, the designated sensory area appears in the three-dimensional model of the brain as a similar three-dimensional model. When estimating a biological activity current source, the position coordinates of the three-dimensional model of the sensory cortex are designated as an area for estimation, and an arbitrary position in the three-dimensional model of the sensory cortex is assumed as a current source. Specify as a starting point for.

【0014】なお、上記の感覚野の指定において、被検
体Mの頭部のx−y平面のスライス像1(トランバース
像)と、被検体Mのx−z平面のスライス像(サジタル
像)を撮像し、これらの画像上に感覚野の領域指定を行
うことにより、感覚野の領域の3次元モデルの3次元座
標を得るようにしてもよい。
In the above-mentioned designation of the sensory cortex, a slice image 1 (transverse image) of the head of the subject M in the xy plane and a slice image (sagittal image) of the subject M in the xz plane May be obtained, and a three-dimensional coordinate of a three-dimensional model of the area of the sensory cortex may be obtained by specifying the area of the sensory cortex on these images.

【0015】なお、上記の実施例では、神経活動部位
(感覚野)の3次元モデルを生体活動電流源の推定領域
の指定に用いた例を示したが、これ以外にも、例えば、
脳機能の研究や各種の診断時にも用いることができる。
In the above-described embodiment, an example is shown in which a three-dimensional model of a nerve activity site (sensory cortex) is used to designate an estimated area of a biological activity current source.
It can also be used for research on brain function and various diagnoses.

【0016】[0016]

【発明の効果】以上の説明から明らかなように、この発
明の神経活動部位の3次元モデル作成方法は、 "脳のし
わ" などの被検体の体内情報が正確に現れるMR撮像法
の中の脳せき髄液撮像法で得られた2次元画像に対して
神経活動部位の領域を指定してからこれを3次元モデル
化するので、正確な神経活動部位の3次元モデルを得る
ことができる。したがって、この3次元モデルの内部領
域を生体活動電流源の推定に用いると、推定領域を正確
に特定化でき、体内の任意の位置に電流源を多数仮定し
て生体活動電流源の推定を行うよりも、はるかに計算量
の少ない、時間のかからない推定が可能になる。
As is apparent from the above description, the method for creating a three-dimensional model of a nerve activity site according to the present invention is based on the MR imaging method in which in-vivo information of a subject such as "brain wrinkles" appears accurately. Since the region of the nerve activity site is designated in the two-dimensional image obtained by the cerebrospinal fluid imaging method and then three-dimensionally modeled, an accurate three-dimensional model of the nerve activity site can be obtained. Therefore, when the internal region of the three-dimensional model is used for estimating a biological activity current source, the estimation region can be accurately specified, and the biological activity current source is estimated assuming a large number of current sources at arbitrary positions in the body. It allows for much less computational and time-saving estimation.

【図面の簡単な説明】[Brief description of the drawings]

【図1】被検体の頭部に対する複数のスライス面を示し
た図である。
FIG. 1 is a diagram showing a plurality of slice planes with respect to a head of a subject.

【図2】そのスライス面で撮像されたスライス像の一例
を示した図である。
FIG. 2 is a diagram showing an example of a slice image captured on the slice plane.

【図3】大脳の感覚野を示した図である。FIG. 3 is a diagram showing sensory areas of the cerebrum.

【図4】各スライス像に対して指定される感覚野を示し
た図である。
FIG. 4 is a diagram showing a sensory area designated for each slice image.

【符号の説明】[Explanation of symbols]

1・・・スライス像 A・・・視覚野 B・・・聴覚野 M・・・被検体 1: Slice image A: Visual cortex B: Auditory cortex M: Subject

フロントページの続き (56)参考文献 特開 平3−272738(JP,A) 特開 平2−36846(JP,A) 特開 平1−288247(JP,A) 宝金清博他,「Volime Ren dering法によるMR脳三次元画像 の開発」,Brain and Ner ve 脳と神経,(1991),第43巻第7 号,第665−670頁 (58)調査した分野(Int.Cl.7,DB名) A61B 5/055 JICSTファイル(JOIS)Continuation of the front page (56) References JP-A-3-272738 (JP, A) JP-A-2-36846 (JP, A) JP-A-1-288247 (JP, A) Kiyohiro Hokin et al., “Volime Development of MR Brain 3D Image by Rendering Method ", Brain and Nerv Brain and Nerve, (1991), Vol. 43, No. 7, pp. 665-670 (58) Fields investigated (Int. Cl. 7 , DB name) A61B 5/055 JICST file (JOIS)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 MR撮像法の中の脳せき髄液撮像法を用
いて得られた複数の2次元画像に対して予め神経活動部
位の領域を指定しておき、指定した領域の座標データを
補間して神経活動部位の3次元モデルを作成し、MRI
3次元画像上に前記3次元モデルを作成することを特徴
とする神経活動部位の3次元モデル作成方法。
An area of a nerve activity site is specified in advance for a plurality of two-dimensional images obtained by using a cerebrospinal fluid imaging method in an MR imaging method, and coordinate data of the specified area is interpolated. To create a three-dimensional model of the nerve activity site,
A method for creating a three-dimensional model of a nerve activity site, comprising creating the three-dimensional model on a three-dimensional image.
JP28079891A 1991-09-30 1991-09-30 Method of creating 3D model of neural activity site Expired - Fee Related JP3168634B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28079891A JP3168634B2 (en) 1991-09-30 1991-09-30 Method of creating 3D model of neural activity site

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28079891A JP3168634B2 (en) 1991-09-30 1991-09-30 Method of creating 3D model of neural activity site

Publications (2)

Publication Number Publication Date
JPH0591987A JPH0591987A (en) 1993-04-16
JP3168634B2 true JP3168634B2 (en) 2001-05-21

Family

ID=17630121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28079891A Expired - Fee Related JP3168634B2 (en) 1991-09-30 1991-09-30 Method of creating 3D model of neural activity site

Country Status (1)

Country Link
JP (1) JP3168634B2 (en)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
宝金清博他,「Volime Rendering法によるMR脳三次元画像の開発」,Brain and Nerve 脳と神経,(1991),第43巻第7号,第665−670頁

Also Published As

Publication number Publication date
JPH0591987A (en) 1993-04-16

Similar Documents

Publication Publication Date Title
US11957470B2 (en) Method and system for evaluation of functional cardiac electrophysiology
Gevins et al. High resolution EEG: 124-channel recording, spatial deblurring and MRI integration methods
US7680528B2 (en) Method for the graphical representation of a medical instrument inserted at least partially into an object under examination
Antonakakis et al. The effect of stimulation type, head modeling, and combined EEG and MEG on the source reconstruction of the somatosensory P20/N20 component
JP2012179352A (en) System and method for constructing current dipole
JP6074965B2 (en) Noise removal from MCG measurement values
JP2000139866A (en) Electric impedance tomographic apparatus
JP2002028143A (en) Cardiac magnetic field diagnostic apparatus of atrial flutter and atrial fibrillation, and method for identifying electrical re-entry circuit of atrial flutter and atrial fibrillation
Wierenga MEG, EEG and the integration with magnetic resonance images
JP3168634B2 (en) Method of creating 3D model of neural activity site
JP7426657B2 (en) Biological information display device, biological information display method, and display program
JP2690678B2 (en) Approximate model display device
Ustinin et al. Functional Tomography of Complex Systems Using Spectral Analysis of Multichannel Measurement Data
JP7385217B2 (en) Biocurrent estimation method, biocurrent estimation device, and biomagnetic measurement system
US20230284951A1 (en) Biomagnetic field measurement system, method for controlling biomagnetic field measurement system, and recording medium storing control program for biomagnetic field measurement system
JP3191862B2 (en) A dipole tracking device in the brain by fixing the dipole estimation position of the background brain potential
Erné et al. Magnetocardiography under clinical conditions
Srebro et al. Functional brain imaging: dipole localization and Laplacian methods
Ertürk et al. Three-dimensional visualization with large data sets: a simulation of spreading cortical depression in human brain
JPH01256932A (en) Display device for equivalent current dipole in human body
Muller et al. Open magnetic and electric graphic analysis
Konki et al. Fetal Imaging with Dynamic Electrical Impedance Tomography Technique
Eskola Utilization of MRI information in EEG studies
JPH07124133A (en) Magnetic measuring instrument
Czanner et al. Correlation of the Talairach atlas based on the proportional grid system

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees