JP3163347B2 - Vacuum apparatus and thin film forming method using the same - Google Patents

Vacuum apparatus and thin film forming method using the same

Info

Publication number
JP3163347B2
JP3163347B2 JP20868592A JP20868592A JP3163347B2 JP 3163347 B2 JP3163347 B2 JP 3163347B2 JP 20868592 A JP20868592 A JP 20868592A JP 20868592 A JP20868592 A JP 20868592A JP 3163347 B2 JP3163347 B2 JP 3163347B2
Authority
JP
Japan
Prior art keywords
reaction chamber
vacuum
pressure
exhaust hole
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP20868592A
Other languages
Japanese (ja)
Other versions
JPH06342761A (en
Inventor
芳賀  徹
芳久 藤崎
敏光 宮田
潔 大内
健治 奥村
宣典 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Water Inc
Original Assignee
Air Water Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Water Inc filed Critical Air Water Inc
Priority to JP20868592A priority Critical patent/JP3163347B2/en
Publication of JPH06342761A publication Critical patent/JPH06342761A/en
Application granted granted Critical
Publication of JP3163347B2 publication Critical patent/JP3163347B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Drying Of Semiconductors (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、真空装置およびそれを
用いた薄膜形成方法に係り、特に反応室の圧力が大きく
変動する場合においても反応室内のガス成分またはガス
量あるいは圧力を連続的に見積もることのできる真空装
置、および該真空装置を用いて薄膜の形成速度や薄膜の
構成成分の比率を精密に、かつ再現性よく制御すること
が可能な薄膜形成方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vacuum apparatus and a method of forming a thin film using the same, and more particularly, to a method for continuously controlling a gas component or a gas amount or pressure in a reaction chamber even when the pressure in the reaction chamber fluctuates greatly. The present invention relates to a vacuum device that can be estimated, and a thin film forming method capable of controlling the formation speed of a thin film and the ratio of constituent components of the thin film precisely and with good reproducibility using the vacuum device.

【0002】[0002]

【従来の技術】従来技術においては、真空排気装置を設
けた反応室に直接、質量分析計を取付け、ガス成分およ
びガス量を測定していたために、反応室内の圧力(真空
度)が大きく変化する場合には、反応室内のガス成分や
ガス量を連続的に測定することは事実上不可能であった
(例えば、Journal of Crystal Growth 77(1986)p.
194-199〔North-Holland,Amsterdam〕)。
2. Description of the Related Art In the prior art, a mass spectrometer was directly attached to a reaction chamber provided with an evacuation device to measure gas components and gas amounts, so that the pressure (degree of vacuum) in the reaction chamber greatly changed. In such a case, it was practically impossible to continuously measure gas components and gas amounts in the reaction chamber (for example, see Journal of Crystal Growth 77 (1986) p.
194-199 [North-Holland, Amsterdam]).

【0003】[0003]

【発明が解決しようとする課題】上述したごとく、従来
の反応室内のガス成分またはガス量の測定は、真空容器
である反応室に直接的に質量分析計を取付けて検出して
いたために、反応室の圧力が大きく変化する場合には、
反応室内のガス成分またはガス量を連続的測定すること
ができなかった。
As described above, the conventional measurement of the gas component or gas amount in the reaction chamber is performed by directly attaching a mass spectrometer to the reaction chamber, which is a vacuum vessel, so that the reaction is measured. If the chamber pressure changes significantly,
The gas component or gas amount in the reaction chamber could not be continuously measured.

【0004】本発明の目的は、上記従来技術における問
題点を解消し、反応室の圧力が大きく変化する場合にお
いても、反応室内のガス成分またはガス量を連続的に見
積もることのできる真空装置、および該真空装置を用い
て薄膜の形成速度や薄膜の構成成分の比率を精密に、か
つ再現性よく制御することが可能な薄膜形成方法を提供
することにある。
An object of the present invention is to solve the above-mentioned problems in the prior art, and to provide a vacuum apparatus capable of continuously estimating a gas component or a gas amount in a reaction chamber even when the pressure in the reaction chamber changes greatly. It is another object of the present invention to provide a thin film forming method capable of controlling the forming speed of the thin film and the ratio of the constituent components of the thin film precisely and with good reproducibility by using the vacuum apparatus.

【0005】[0005]

【課題を解決するための手段】上記本発明の目的を達成
するために、反応室内のガス成分およびガス量を測定し
ようとする反応室を、真空排気装置に接続された真空容
器内に設置する。上記反応室には基板支持部、基板加熱
部、原料導入部およびコンダクタンス(真空排気抵抗)
可変の排気孔を設ける。上記反応室と真空容器とは、反
応室の排気孔によって連通されている。そして、反応室
の排気孔のコンダクタンスを適度に調節することによ
り、真空容器内の所定の部位もしくは真空容器と真空排
気装置の接続部の所定の部位の圧力が、反応室への原料
供給時においても常に10~3Pa以下となるように構成
する。上記の部位に質量分析計もしくは圧力計を設置
し、この質量分析計もしくは圧力計の設置部と反応室と
の圧力差の関係と、質量分析計で測定した分析データも
しくは圧力計の値から反応室内のガス成分またはガス量
もしくは圧力(真空度)を見積もる手段を設けるもので
ある。
In order to achieve the above object of the present invention, a reaction chamber for measuring a gas component and a gas amount in the reaction chamber is installed in a vacuum vessel connected to a vacuum exhaust device. . The above-mentioned reaction chamber has a substrate support section, a substrate heating section, a raw material introduction section, and a conductance (evacuation resistance).
Provide a variable exhaust hole. The reaction chamber and the vacuum vessel are communicated by an exhaust hole of the reaction chamber. Then, by appropriately adjusting the conductance of the exhaust hole of the reaction chamber, the pressure of a predetermined portion in the vacuum vessel or a predetermined portion of the connection portion between the vacuum vessel and the vacuum exhaust device increases when the raw material is supplied to the reaction chamber. Is always set to 10 to 3 Pa or less. A mass spectrometer or pressure gauge is installed at the above site, and the reaction is determined based on the relationship between the pressure difference between the mass spectrometer or pressure gauge installation part and the reaction chamber, and the analysis data measured by the mass spectrometer or the pressure gauge value. A means for estimating a gas component or a gas amount or a pressure (degree of vacuum) in the room is provided.

【0006】本発明は、少なくとも基板支持部、基板加
熱部および原料導入部を有し、かつ反応室の真空排気量
を自在に調節可能とした排気孔を有する反応室を、真空
排気装置に接続した真空容器内に設置して、上記反応室
の排気孔が真空容器内で連通する構成となし、上記反応
室の排気孔の真空排気量を調整して、真空容器内もしく
は真空容器と真空排気装置の接続部近傍の少なくとも1
部分の圧力が、反応室への原料供給時においても常に1
0~3Pa以下となる部分を構成し、該部分に質量分析計
を設置して、反応室内のガス成分またはガス量を、質量
分析計設置部と反応室との圧力差の関係および上記質量
分析計で測定した分析データから見積る手段を少なくと
も備えた真空装置である。また本発明は、少なくとも基
板支持部、基板加熱部および原料導入部を有し、かつ反
応室の真空排気量を自在に調節可能とした排気孔を有す
る反応室を、真空排気装置に接続した真空容器内に設置
して、上記反応室の排気孔が真空容器内で連通する構成
となし、上記反応室の排気孔の真空排気量を調整して、
真空容器内もしくは真空容器と真空排気装置の接続部近
傍の少なくとも1部分の圧力が、反応室への原料供給時
においても 常に10~3Pa以下となる部分を構成し、
該部分に真空計を設置して、反応室内の圧力を、真空計
設置部と反応室との圧力差の関係から見積る手段を少な
くとも備えた真空装置である。上記本発明の真空容器内
もしくは真空容器と真空排気装置の接続部近傍の少なく
とも1部分の圧力が、反応室への原料供給時においても
常に10~3Pa以下となる部分には、質量分析計と、電
離真空計などの真空計の両方を設けてもよい。
According to the present invention, a reaction chamber having at least a substrate support part, a substrate heating part and a raw material introduction part and having an exhaust hole capable of freely adjusting the amount of evacuation of the reaction chamber is connected to a vacuum evacuation apparatus. The inside of the vacuum chamber or the vacuum container is evacuated by adjusting the amount of evacuation of the exhaust hole of the reaction chamber by setting the exhaust hole of the reaction chamber to communicate with the inside of the vacuum chamber. At least one near the connection of the device
Pressure is always 1 even when the raw material is supplied to the reaction chamber.
A part where the pressure becomes 0 to 3 Pa or less is formed, a mass spectrometer is installed in the part, and the gas component or gas amount in the reaction chamber is measured by the relation between the pressure difference between the mass spectrometer installation part and the reaction chamber and the mass It is a vacuum apparatus provided with at least means for estimating from analysis data measured by an analyzer. In addition, the present invention provides a vacuum chamber in which a reaction chamber having at least a substrate support section, a substrate heating section, and a raw material introduction section, and having an exhaust hole capable of freely adjusting the amount of evacuation of the reaction chamber is connected to a vacuum exhaust device. Installed in a vessel, the exhaust hole of the reaction chamber is configured to communicate with the inside of the vacuum vessel, by adjusting the amount of vacuum exhaust of the exhaust hole of the reaction chamber,
The pressure in at least one part of the vacuum vessel or in the vicinity of the connection between the vacuum vessel and the vacuum evacuation device is always 10 to 3 Pa or less even when the raw material is supplied to the reaction chamber,
A vacuum apparatus provided with at least means for installing a vacuum gauge in the portion and estimating the pressure in the reaction chamber from the relationship between the pressure difference between the vacuum gauge installation section and the reaction chamber. At least one part of the pressure in the vacuum vessel of the present invention or in the vicinity of the connection part between the vacuum vessel and the vacuum evacuation device is always 10 to 3 Pa or less even when the raw material is supplied to the reaction chamber. And a vacuum gauge such as an ionization vacuum gauge.

【0007】そして、本発明の真空装置において、反応
室の真空排気量を自在に調節可能とする排気孔は、該排
気孔の開口断面の大きさを自在に調節できる構造とする
ことが好ましい。また、真空容器と真空排気装置の接続
部近傍にガスの吸着防止用のヒータを設けることによ
り、より正確なガス成分、ガス量あるいは圧力を見積も
ることができる。
[0007] In the vacuum apparatus of the present invention, it is preferable that the exhaust hole that allows the amount of evacuation of the reaction chamber to be freely adjusted has a structure that allows the size of the cross section of the exhaust hole to be adjusted freely. In addition, by providing a heater for preventing gas adsorption near the connection between the vacuum vessel and the vacuum exhaust device, it is possible to more accurately estimate the gas component, gas amount, or pressure.

【0008】さらに、本発明は上記の真空装置を用い
て、種々の半導体薄膜等を形成する方法に関するもので
あって、反応室内に所定の基板を支持し、薄膜構成元素
を含む原料ガスを導入して、上記基板上に薄膜を形成す
る方法において、反応室内の真空排気量を自在に調節可
能とした排気孔を有する反応室を、真空排気装置に接続
した真空容器内に設置して、上記反応室の排気孔が真空
容器内で連通する構成となし、上記反応室の排気孔の真
空排気量を調整して、上記真空容器内もしくは真空容器
と真空排気装置の接続部近傍の少なくとも1部分の圧力
が、反応室への原料供給時においても常に10~3Pa以
下となる部分を構成し、該部分に質量分析計または圧力
計を設置して、質量分析計設置部と反応室との圧力差の
関係と、質量分析計で測定した分析データから、上記反
応室内のガス成分、ガス量または圧力を見積り、上記ガ
ス成分、ガス量または圧力が常に所望する値となるよう
に調整し、薄膜の形成速度または薄膜の構成成分の比率
を制御する工程を少なくとも含む薄膜形成方法であっ
て、上記の薄膜の形成速度、薄膜の構成成分の比率を精
密に、かつ再現性よく制御することができ、高品質の半
導体薄膜等を作製することができるものである。
Further, the present invention relates to a method for forming various semiconductor thin films and the like using the above-mentioned vacuum apparatus, which supports a predetermined substrate in a reaction chamber and introduces a raw material gas containing a thin film constituent element. Then, in the method of forming a thin film on the substrate, the reaction chamber having an exhaust hole capable of freely adjusting the amount of evacuation of the reaction chamber, is installed in a vacuum vessel connected to a vacuum exhaust device, The exhaust hole of the reaction chamber communicates with the inside of the vacuum chamber, and the amount of evacuation of the exhaust hole of the reaction chamber is adjusted to at least one portion in the vacuum vessel or near the connection between the vacuum vessel and the vacuum evacuation device. Pressure is always 10 to 3 Pa or less even when the raw material is supplied to the reaction chamber, and a mass spectrometer or a pressure gauge is installed in this portion, and the mass spectrometer installation section and the reaction chamber are connected. Relationship between pressure difference and mass spectrometer From the analysis data measured in the above, the gas component, gas amount or pressure in the reaction chamber is estimated, and the gas component, gas amount or pressure is always adjusted to a desired value, and the formation rate of the thin film or the component of the thin film A thin film forming method comprising at least a step of controlling the ratio of the thin film, the formation speed of the thin film, the ratio of the constituent components of the thin film can be controlled precisely and with good reproducibility, and a high-quality semiconductor thin film or the like can be formed. It can be produced.

【0009】[0009]

【作用】本発明の真空装置における真空容器中の真空度
が大きく変化する場合は、真空容器内に取付けた質量分
析計で反応室内部のガス成分またはガス量を連続的に測
定することは不可能である。そこで、ガス成分またはガ
ス量を測定しようとする反応室を、真空排気装置に接続
された真空容器中に設置する。反応室には、基板支持
部、基板加熱部、原料導入部およびコンダクタンス可変
の排気孔を設けているので、反応室と真空容器はこの排
気孔により連通されている。反応室の排気孔のコンダク
タンスを適度に調節することにより、真空容器あるいは
真空容器と真空排気装置の接続部の少なくとも1部分
に、反応室への原料供給時においても圧力が常に10~3
Pa以下となる部分を構成する。このようにすると、反
応室の内部の圧力が質量分析計の使えない高圧領域に変
化する場合であっても、上記の部分では質量分析計の使
用可能な10~3Pa以下の領域での圧力変化となる。よ
って、圧力が常に10~3Pa以下となる部分に質量分析
計または圧力計を設置すれば、反応室の内部の圧力に関
係なく連続的に質量分析計の使用が可能となり、質量分
析計を設置部の圧力と反応室との圧力差の関係と、質量
分析計で測定したデータまたは圧力計で測定した圧力値
から反応室中のガス成分またはガス量もしくは圧力(真
空度)を見積もることが可能となる。
When the degree of vacuum in the vacuum vessel of the vacuum apparatus of the present invention changes greatly, it is not possible to continuously measure the gas components or the gas amount inside the reaction chamber with a mass spectrometer mounted in the vacuum vessel. It is possible. Therefore, a reaction chamber in which a gas component or a gas amount is to be measured is installed in a vacuum vessel connected to a vacuum exhaust device. Since the reaction chamber is provided with a substrate support section, a substrate heating section, a raw material introduction section, and an exhaust hole with variable conductance, the reaction chamber and the vacuum vessel are communicated by the exhaust hole. By appropriately adjusting the conductance of the exhaust hole in the reaction chamber, the pressure is always kept at 10 to 3 even when the raw material is supplied to the reaction chamber, at least in a part of the vacuum vessel or a connection portion between the vacuum vessel and the vacuum exhaust device.
A portion that is equal to or less than Pa is configured. In this way, even when the pressure inside the reaction chamber changes to a high-pressure region where the mass spectrometer cannot be used, the pressure in the region where the mass spectrometer can be used is 10 to 3 Pa or less in the above portion. It will change. Therefore, if a mass spectrometer or pressure gauge is installed in a portion where the pressure is always 10 to 3 Pa or less, the mass spectrometer can be used continuously regardless of the pressure inside the reaction chamber, and the mass spectrometer can be used. It is possible to estimate the gas component or gas amount or pressure (degree of vacuum) in the reaction chamber from the relationship between the pressure in the installation section and the pressure difference between the reaction chamber and the data measured by the mass spectrometer or the pressure value measured by the pressure gauge. It becomes possible.

【0010】[0010]

【実施例】以下に本発明の実施例をあげ、図面を用いて
さらに詳細に説明する。 〈実施例1〉図1に、本実施例における真空装置の構成
の一例を示す。この真空装置は、半導体の結晶成長に用
いられるものであり、導入する原料12の量により、反
応室1における圧力が10~8Paから1Paの間で変化
する。この反応室1の排気孔5の断面積を調節してコン
ダクタンス(真空排気抵抗)を適度に調整して、反応室
1と質量分析計9の設置場所との間のコンダクタンスC
が、C=10~43/sとなるように設定する。真空排
気装置3の排気速度は、150l/s=0.15m3
sであった。また、真空容器2と真空排気装置3との接
続部分4におけるガス吸着を防ぐために、この部分にヒ
ータ13を設け加熱した。このような条件下では、質量
分析計9の設置場所での圧力は常に10~3Pa以下とな
った。この時の反応室1中の圧力と質量分析計9の設置
位置における圧力の関係を図3に示す。図に示すごと
く、常に質量分析計の使用が可能な範囲となり、質量分
析計のデータから反応室中のガス成分またはガス量を見
積もることができた。本実施例では半導体の結晶成長装
置について述べたが、反応室中の圧力が10~8Paから
1Paの範囲で変化するエッチング装置あるいはCVD
装置などの他の真空装置においても、本実施例と同様に
反応室中のガス成分またはガス量を見積もることができ
ることは言うまでもない。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to the accompanying drawings. <Embodiment 1> FIG. 1 shows an example of the configuration of a vacuum apparatus in this embodiment. This vacuum apparatus is used for crystal growth of a semiconductor, and the pressure in the reaction chamber 1 varies between 10 to 8 Pa to 1 Pa depending on the amount of the raw material 12 to be introduced. The conductance (vacuum exhaust resistance) is adjusted appropriately by adjusting the cross-sectional area of the exhaust hole 5 of the reaction chamber 1, and the conductance C between the reaction chamber 1 and the installation location of the mass spectrometer 9 is adjusted.
Is set so that C = 10 to 4 m 3 / s. The pumping speed of the vacuum pumping device 3 is 150 l / s = 0.15 m 3 /
s. Further, in order to prevent gas adsorption at the connection portion 4 between the vacuum vessel 2 and the vacuum evacuation device 3, a heater 13 was provided in this portion and heated. Under such conditions, the pressure at the installation location of the mass spectrometer 9 was always 10 to 3 Pa or less. FIG. 3 shows the relationship between the pressure in the reaction chamber 1 and the pressure at the installation position of the mass spectrometer 9 at this time. As shown in the figure, the range in which the mass spectrometer can be used was always obtained, and the gas component or gas amount in the reaction chamber could be estimated from the data of the mass spectrometer. In this embodiment, a semiconductor crystal growth apparatus has been described. However, an etching apparatus or a CVD apparatus in which the pressure in the reaction chamber changes within a range of 10 to 8 Pa to 1 Pa.
It is needless to say that the gas component or the gas amount in the reaction chamber can be estimated also in another vacuum apparatus such as an apparatus as in this embodiment.

【0011】〈実施例2〉図2に、本実施例における真
空装置の構成の一例を示す。この真空装置は、半導体の
結晶成長に用いられるものであり、供給する原料12の
量によって反応室1における圧力が10~8Paから1P
aの間で変化する。この反応室1の排気孔5の断面積を
調節してコンダクタンスを適度に調整して、反応室1
と、質量分析計16の設置場所との間のコンダクタンス
Cが、C=10~43/sとなるように設定した。真空
排気装置15の真空排気速度は、150l/s=0.1
5m3/sであった。また、真空容器2と真空排気装置
15の接続部分14にはガス吸着を防ぐために、この接
続部分14をヒータ17により加熱した。このような条
件下では、質量分析計の設置場所における圧力は常に1
0~3Pa以下となった。この時の反応室1中の圧力と、
質量分析計16の設置位置における相互の圧力の関係を
図3に示す。したがって、常に質量分析計16が使用可
能な状態となり、この質量分析計16のデータから反応
室中のガス成分またはガス量を見積もることができた。
本実施例では半導体の結晶成長装置について説明した
が、反応室中の圧力が10~8Paから1Paの範囲で変
化するエッチング装置、あるいはCVD装置などの他の
真空装置においても、本実施例と同様に反応室中のガス
成分またはそれらの量を見積もることが可能である。
<Embodiment 2> FIG. 2 shows an example of the configuration of a vacuum apparatus in this embodiment. This vacuum apparatus is used for crystal growth of a semiconductor. The pressure in the reaction chamber 1 is increased from 10 to 8 Pa to 1 P depending on the amount of the raw material 12 to be supplied.
a. The conductance is appropriately adjusted by adjusting the cross-sectional area of the exhaust hole 5 of the reaction chamber 1 so that the reaction chamber 1
And the conductance C between the mass spectrometer 16 and the installation location of the mass spectrometer 16 are set so that C = 10 to 4 m 3 / s. The evacuation speed of the evacuation device 15 is 150 l / s = 0.1
It was 5 m 3 / s. The connection portion 14 between the vacuum vessel 2 and the vacuum exhaust device 15 was heated by a heater 17 in order to prevent gas adsorption. Under these conditions, the pressure at the installation site of the mass spectrometer is always 1
0 to 3 Pa or less. At this time, the pressure in the reaction chamber 1
FIG. 3 shows the relationship between the mutual pressures at the installation position of the mass spectrometer 16. Therefore, the mass spectrometer 16 can always be used, and the gas component or gas amount in the reaction chamber can be estimated from the data of the mass spectrometer 16.
In the present embodiment, a semiconductor crystal growth apparatus has been described. However, the present embodiment is also applicable to other vacuum apparatuses such as an etching apparatus in which the pressure in a reaction chamber changes in a range of 10 to 8 Pa to 1 Pa, or a CVD apparatus. Similarly, it is possible to estimate the gas components or their amounts in the reaction chamber.

【0012】〈実施例3〉図1に示す半導体の結晶成長
装置を用いて、本実施例について説明する。反応室1に
供給する原料の量により、反応室1における圧力は10
~8Paから1Paの間で変化する。この反応室1の排気
孔5の断面の大きさを調節してコンダクタンスを適度に
調整し、反応室1と、電離真空計10の設置場所との間
のコンダクタンスCが、C=10~43/sとなるよう
に設定した。真空排気装置3の排気速度は、150l/
s=0.15m3/sであった。また、接続部分4への
ガスの吸着を防ぐために、ヒータ13により加熱した。
このような条件下では、電離真空計10の設置場所の圧
力は常に10~3Pa以下となった。したがって、常に電
離真空計10が使用可能となり、この電離真空計10の
データから反応室1中の圧力を見積もることができた。
反応室1中の圧力をP1、電離真空計10の設置場所で
の圧力をP2とすると、この条件のもとでは、P1=P2
×1.5×103の関係があった。本実施例では、半導
体の結晶成長装置について説明したが、 反応室中の圧
力が10~8Paから1Paの範囲で変化するエッチング
装置、あるいはCVD装置などの他の真空装置において
も、本実施例と同様にして反応室中の圧力を見積もるこ
とができる。
<Embodiment 3> This embodiment will be described with reference to the semiconductor crystal growth apparatus shown in FIG. Depending on the amount of the raw material supplied to the reaction chamber 1, the pressure in the reaction chamber 1 is 10
It varies between 8 Pa and 1 Pa. The conductance is appropriately adjusted by adjusting the size of the cross section of the exhaust hole 5 of the reaction chamber 1 so that the conductance C between the reaction chamber 1 and the installation location of the ionization gauge 10 is C = 10 to 4 m. 3 / s was set. The pumping speed of the vacuum pumping device 3 is 150 l /
s = 0.15 m 3 / s. Heating was performed by the heater 13 in order to prevent gas from adsorbing to the connection portion 4.
Under these conditions, the pressure at the installation location of the ionization gauge 10 was always 10 to 3 Pa or less. Therefore, the ionization gauge 10 can always be used, and the pressure in the reaction chamber 1 can be estimated from the data of the ionization gauge 10.
Assuming that the pressure in the reaction chamber 1 is P 1 and the pressure at the installation location of the ionization gauge 10 is P 2 , under these conditions, P 1 = P 2
× 1.5 × 10 3 . In the present embodiment, a semiconductor crystal growth apparatus has been described. However, the present embodiment is also applicable to other vacuum apparatuses such as an etching apparatus in which the pressure in a reaction chamber changes within a range of 10 to 8 Pa to 1 Pa, or a CVD apparatus. Similarly, the pressure in the reaction chamber can be estimated.

【0013】〈実施例4〉図4に、本実施例で用いた半
導体結晶成長装置の構成の一例を示す。反応室1に供給
する薄膜形成用の原料の量により、反応室1における圧
力は10~8Paから1Paの間で変化する。この反応室
1の排気孔5の断面積を調節してコンダクタンスを適度
に調整して、反応室1と、質量分析計9および電離真空
計10の設置場所との間のコンダクタンスCが、C=1
0~43/sとなるように設定した。真空排気装置3の
真空排気速度は、 150l/s=0.15m3/sで
あった。また、接続部分4へのガスの吸着を防ぐため
に、ヒータ13により加熱した。このような条件下で
は、質量分析計9、電離真空計10の設置場所での圧力
は常に10~3Pa以下となった。したがって、常に質量
分析計9、電離真空計10が使用可能であった。そし
て、上記質量分析計9および電離真空計10のデータか
ら反応室1中のガス成分およびガス量、反応室1中の圧
力を見積もることができた。いま、反応室1中の圧力を
をP1、電離真空計10の設置場所での圧力をP2とする
と、上記の条件下では、P1=P2×1.5×103とな
った。この関係を第3図に示す。
<Embodiment 4> FIG. 4 shows an example of the configuration of a semiconductor crystal growth apparatus used in this embodiment. The pressure in the reaction chamber 1 varies from 10 to 8 Pa to 1 Pa depending on the amount of the raw material for forming a thin film supplied to the reaction chamber 1. The conductance is appropriately adjusted by adjusting the cross-sectional area of the exhaust hole 5 of the reaction chamber 1 so that the conductance C between the reaction chamber 1 and the installation location of the mass spectrometer 9 and the ionization vacuum gauge 10 is C = 1
It was set so as to be 0 to 4 m 3 / s. The evacuation speed of the evacuation device 3 was 150 l / s = 0.15 m 3 / s. Heating was performed by the heater 13 in order to prevent gas from adsorbing to the connection portion 4. Under such conditions, the pressure at the installation location of the mass spectrometer 9 and the ionization gauge 10 was always 10 to 3 Pa or less. Therefore, the mass spectrometer 9 and the ionization vacuum gauge 10 could always be used. Then, from the data of the mass spectrometer 9 and the ionization vacuum gauge 10, the gas components and the gas amount in the reaction chamber 1 and the pressure in the reaction chamber 1 could be estimated. Now, assuming that the pressure in the reaction chamber 1 is P 1 and the pressure at the installation location of the ionization gauge 10 is P 2 , P 1 = P 2 × 1.5 × 10 3 under the above conditions. . This relationship is shown in FIG.

【0014】上記の半導体結晶成長装置を用いて、下記
に示す方法で、ノンドープおよびSiドープのGaAs
半導体結晶のエピタキシャル成長を行なった。最初に、
半絶縁性のGaAs基板上に、ノンドープのGaAsを
成長する。まず、Ga原料18であるトリメチルガリウ
ム(Ga(CH33…TMGa)を、5秒間反応室1に
供給する。この間、電離真空計10で見積もった反応室
1中の圧力が1×10~3PaとなるようにGa原料18
の供給量を調節する。次に、Ga原料18の供給を停止
し、5秒間真空排気する。次に、As原料19であるア
ルシン(AsH3)を5秒間反応室1に供給する。この
間、電離真空計10で見積もった反応室1中の圧力が1
×10~1PaとなるようにAs原料19の供給量を調節
する。次に、AsH3の供給を停止し、5秒間排気す
る。上記の操作を1サイクルとする。 このような条件
で薄膜の成長を行うと、1サイクルでGaAsの1分子
層を再現性良く成長させることができた。 これを、1
00回繰返してGaAs100分子層の成長を行った。
上記GaAs100分子層の上に、Siをドーピングし
たGaAsの成長を行う。まず、TMGaとSi原料2
0であるモノシランガス(SiH4/H2;SiH4濃度
1ppm)とを同時に5秒間反応室1に供給する。この
間、電離真空計10で見積もった反応室1中の圧力が1
×10~3Pa、TMGaとモノシランガスの比率が10
0:1となるように原料の供給量を調節する。次に、こ
れらの原料供給を停止し、5秒間排気する。次に、As
原料であるアルシン(AsH3)を5秒間反応室1に供
給する。この間、電離真空計10で見積もった反応室1
中の圧力が1×10~1Paとなるように原料の供給量を
調節する。次に、AsH3の供給を停止し、5秒間排気
する。これらの操作を1サイクルとする。このような条
件で薄膜の成長を行うと、1サイクルでGaAsの1分
子層を成長させることができた。これを、100回繰返
すことによりSi濃度 1×10~17cm~3のGaAs
100分子層を再現性良く得ることができた。また、T
MGaとモノシランガスの比率を変えれば、任意の濃度
でSiをドーピングすることが可能であった。本実施例
においては、ノンドープおよびSiドープのGaAsの
成長ついて説明したが、原料を適宜変えることにより、
Si、Se、S、C、Zn等をドーピングしたGa、A
l、In、As、P、Sbを含む半導体のエピタキシャ
ル層も本実施例と同様に成長させることができる。ま
た、薄膜成長中の反応室1内のガス成分およびそれらの
量を知ることにより、原料ガスの反応過程を解析するこ
とも可能であった。
Using the above-described semiconductor crystal growth apparatus, undoped and Si-doped GaAs
Semiconductor crystals were epitaxially grown. At first,
Non-doped GaAs is grown on a semi-insulating GaAs substrate. First, trimethyl gallium (Ga (CH 3 ) 3 ... TMGa) which is a Ga raw material 18 is supplied to the reaction chamber 1 for 5 seconds. During this time, the Ga raw material 18 was adjusted so that the pressure in the reaction chamber 1 estimated by the ionization vacuum gauge 10 was 1 × 10 to 3 Pa.
Adjust the supply of water. Next, the supply of the Ga raw material 18 is stopped, and vacuum evacuation is performed for 5 seconds. Next, arsine (AsH 3 ) as the As raw material 19 is supplied to the reaction chamber 1 for 5 seconds. During this time, the pressure in the reaction chamber 1 estimated by the ionization vacuum gauge 10 is 1
The supply amount of the As raw material 19 is adjusted so as to be × 10 to 1 Pa. Next, supply of AsH 3 is stopped, and the gas is exhausted for 5 seconds. The above operation is defined as one cycle. When the thin film was grown under such conditions, one molecular layer of GaAs could be grown with good reproducibility in one cycle. This is 1
The GaAs 100 molecular layer was grown 00 times.
GaAs doped with Si is grown on the GaAs 100 molecular layer. First, TMGa and Si raw material 2
Monosilane gas (SiH 4 / H 2 ; SiH 4 concentration: 1 ppm) which is 0 is simultaneously supplied to the reaction chamber 1 for 5 seconds. During this time, the pressure in the reaction chamber 1 estimated by the ionization vacuum gauge 10 is 1
× 10 to 3 Pa, the ratio of TMGa to monosilane gas is 10
The supply amount of the raw material is adjusted so as to be 0: 1. Next, the supply of these raw materials is stopped, and exhaust is performed for 5 seconds. Next, As
Arsine (AsH 3 ) as a raw material is supplied to the reaction chamber 1 for 5 seconds. During this time, the reaction chamber 1 estimated by the ionization vacuum gauge 10 was used.
The supply amount of the raw material is adjusted so that the inside pressure becomes 1 × 10 to 1 Pa. Next, supply of AsH 3 is stopped, and the gas is exhausted for 5 seconds. These operations constitute one cycle. When a thin film was grown under such conditions, one molecular layer of GaAs could be grown in one cycle. This is repeated 100 times to obtain a GaAs having an Si concentration of 1 × 10 to 17 cm 3 .
100 molecular layers could be obtained with good reproducibility. Also, T
By changing the ratio of MGa and monosilane gas, it was possible to dope Si at an arbitrary concentration. In this embodiment, the growth of non-doped and Si-doped GaAs has been described.
Ga, A doped with Si, Se, S, C, Zn, etc.
An epitaxial layer of a semiconductor containing 1, In, As, P, and Sb can be grown in the same manner as in this embodiment. Further, by knowing the gas components in the reaction chamber 1 and the amounts thereof during the growth of the thin film, it was also possible to analyze the reaction process of the source gas.

【0015】〈実施例5〉図4に示す半導体結晶成長装
置を用い、実施例4と同様の方法で、 ノンドープおよ
びSiドープのAlGaAs(Al組成25原子%)混
晶半導体のエピタキシャル成長を行った。最初に、半絶
縁性のGaAs基板上に、ノンドープのAlGaAsを
成長する。Al原料21であるジメチルアルミニウムハ
イドライド(Al(CH32H…DMAlH)と、Ga
原料18であるトリメチルガリウム(Ga(CH33
TMGa)と、As原料19であるアルシン(As
3)を同時に反応室に供給する。この間、電離真空計
10で見積もった反応室1中の圧力が1×10~3Pa、
質量分析計9で測定した反応室1中のDMAlHとTM
Gaの比率が1:3となるように、それぞれの原料の供
給量を調節した。このような方法で成長を行うと、Al
GaAsがAl組成25%で再現性良く成長させること
ができた。また、DMAlHとTMGaの比率を変えれ
ば、任意の組成のAlGaAsが得られる。この成長を
10分間行い、1000Åの膜厚にAlGaAsの成長
を行った。この上に、SiをドーピングしたAlGaA
s(Al組成25%)の成長を行う。DMAlHと、T
MGaと、アルシンと、Si原料20であるモノシラン
ガス(SiH4/H2;SiH4濃度1ppm)を同時に
反応室1に供給する。この間、電離真空計10で見積も
った反応室1中の圧力が1×10~3Pa、質量分析計9
で測定した反応室1中のDMAlHとTMGaの比率が
1:3、DMAlHとモノシランガスの比率が100:
1となるように、それぞれの原料の供給量を調節する。
このような条件で薄膜の成長を行い、Al組成25%、
Si濃度1×10~17cm~3のAlGaAs層を再現性
良く得ることができた。また、DMAlHとモノシラン
ガスの比率を変えれば、任意の濃度でSiをドーピング
することが可能であった。この成長を10分間行い、1
000Åの膜厚のAlGaAs層の成長を行った。本実
施例においては、ノンドープおよびSiドープのAlG
aAs(Al組成25%)の成長ついて説明したが、原
料を適宜変えることにより、Si、Se、S、C、Zn
等をドーピングしたGa、Al、In、As、P、Sb
を含む混晶も本実施例と同様に成長することがで可能で
ある。また、結晶成長中の反応室内のガス成分およびそ
れらの量を知ることにより、原料ガスの反応過程を解析
することができた。
Example 5 Using a semiconductor crystal growth apparatus shown in FIG. 4, a non-doped and Si-doped AlGaAs (Al composition 25 atomic%) mixed crystal semiconductor was epitaxially grown in the same manner as in Example 4. First, non-doped AlGaAs is grown on a semi-insulating GaAs substrate. Dimethylaluminum hydride (Al (CH 3 ) 2 H...
The raw material 18, trimethylgallium (Ga (CH 3 ) 3 .
TMGa) and Arsine (As
H 3 ) is simultaneously supplied to the reaction chamber. During this time, the pressure in the reaction chamber 1 estimated by the ionization vacuum gauge 10 is 1 × 10 to 3 Pa,
DMAlH and TM in reaction chamber 1 measured by mass spectrometer 9
The supply amounts of the respective raw materials were adjusted so that the ratio of Ga became 1: 3. When grown by such a method, Al
GaAs could be grown with good reproducibility at an Al composition of 25%. Also, by changing the ratio between DMAlH and TMGa, AlGaAs having an arbitrary composition can be obtained. This growth was performed for 10 minutes, and AlGaAs was grown to a thickness of 1000 °. On top of this, AlGaAs doped with Si
s (Al composition 25%) is grown. DMAlH and T
MGa, arsine, and a monosilane gas (SiH 4 / H 2 ; SiH 4 concentration: 1 ppm) as the Si raw material 20 are simultaneously supplied to the reaction chamber 1. During this time, the pressure in the reaction chamber 1 estimated by the ionization vacuum gauge 10 is 1 × 10 to 3 Pa, and the mass spectrometer 9
The ratio of DMAlH to TMGa in the reaction chamber 1 in the reaction chamber 1 measured at 1: 3, and the ratio of DMAlH to monosilane gas was 100:
The supply amount of each raw material is adjusted so as to be 1.
A thin film is grown under such conditions, and the Al composition is 25%,
An AlGaAs layer having a Si concentration of 1 × 10 to 17 cm 3 was obtained with good reproducibility. Also, by changing the ratio between DMAlH and monosilane gas, it was possible to dope Si at an arbitrary concentration. This growth is performed for 10 minutes.
An AlGaAs layer having a thickness of 2,000 mm was grown. In this embodiment, the non-doped and Si-doped AlG
Although the growth of aAs (Al composition: 25%) has been described, Si, Se, S, C, Zn
Ga, Al, In, As, P, Sb doped with
Can be grown in the same manner as in this embodiment. Further, by knowing the gas components in the reaction chamber during the crystal growth and their amounts, the reaction process of the source gas could be analyzed.

【0016】〈実施例6〉図4に示した半導体結晶成長
装置を用い、 実施例4と同様にして、ノンドープおよ
びSiドープのAlGaAs(Al組成25%)混晶半
導体のエピタキシャル成長を行った。最初に半絶縁性の
GaAs基板上に、ノンドープのAlGaAsを成長す
る。まず、Al原料21であるジメチルアルミニウムハ
イドライド(Al(CH32H…DMAlH)とGa原
料18であるトリメチルガリウム(Ga(CH33…T
MGa)を同時に5秒間反応室1に供給する。この間、
電離真空計10で見積もった反応室1中の圧力が1×1
0~3Pa、質量分析計9で測定した反応室1中のDMA
lHとTMGaの比率が1:3となるように、それぞれ
の原料の供給量を調節する。次に、これらの原料の供給
を停止し、5秒間真空排気する。次に、As原料19で
あるアルシン(AsH3)を、5秒間反応室1に供給す
る。この間、電離真空計10で見積もった反応室1中の
圧力が1×10~1Paとなるように原料の供給量を調節
する。次に、AsH3の供給を停止し、5秒間排気す
る。上記一連の操作を1サイクルとする。このような方
法を用いると、1サイクルでAlGaAs(Al組成2
5%)の1分子層を再現性良く成長させることができ
た。また、DMAlHとTMGaの比率を変えれば、任
意の組成のAlGaAsの1分子層が得られる。上記の
サイクルを100回繰返し、AlGaAs100分子層
の成長を行った。次に、上記のAlGaAs100分子
層の上に、SiをドーピングしたAlGaAs(Al組
成25%)の成長を行った。まず、DMAlHと、TM
Gaと、Si原料20であるモノシランガス(SiH4
/H2;SiH4濃度1ppm)を同時に、5秒間反応室
1に供給する。この間、電離真空計10で見積もった反
応室1中の圧力が1×10~3Pa、質量分析計9で測定
した反応室1中のDMAlHとTMGaの比率が1:
3、DMAlHとモノシランガスの比率が100:1と
なるように、それぞれの原料の供給量を調節する。次
に、これらの原料の供給を停止し、5秒間排気する。
次に、As原料19であるアルシン(AsH3)を、5
秒間反応室1に供給する。この間、電離真空計10で見
積もった反応室1中の圧力が1×10~1Paとなるよう
に、原料の供給量を調節する。次に、AsH3の供給を
停止し、5秒間排気する。上記の一連の操作を1サイク
ルとする。上記の条件で薄膜の成長を行なうと、1サイ
クルでAlGaAs(Al組成25%)の1分子層を再
現性良く成長させることができた。そして、上記のサイ
クルを100回繰返すことにより、Si濃度1×10~
17cm~3のAlGaAs100分子層が再現性良く得ら
れた。また、DMAlHとモノシランガスの比率を変え
れば、任意の濃度でSiをドーピングすることができ
る。本実施例では、ノンドープおよびSiドープのAl
GaAs(Al組成25%)の成長ついて説明したが、
原料を変えることによりSi、Se、S、C、Zn等を
ドーピングしたGa、Al、In、As、P、Sbを含
む混晶も同様に成長することができる。また、薄膜成長
中の反応室内のガス成分またはガス量を知ることによ
り、原料ガスの反応過程を解析することが可能でった。
Embodiment 6 Using the semiconductor crystal growth apparatus shown in FIG. 4, a non-doped and Si-doped AlGaAs (Al composition 25%) mixed crystal semiconductor was epitaxially grown in the same manner as in Embodiment 4. First, non-doped AlGaAs is grown on a semi-insulating GaAs substrate. First, dimethylaluminum hydride (Al (CH 3 ) 2 H... DMAlH) as an Al raw material 21 and trimethyl gallium (Ga (CH 3 ) 3 .
MGa) is simultaneously supplied to the reaction chamber 1 for 5 seconds. During this time,
The pressure in the reaction chamber 1 estimated by the ionization vacuum gauge 10 is 1 × 1
0 ~ 3 Pa, DMA in the reaction chamber 1 as measured by the mass spectrometer 9
The supply amounts of the respective raw materials are adjusted so that the ratio of 1H to TMGa becomes 1: 3. Next, the supply of these raw materials is stopped, and evacuation is performed for 5 seconds. Next, arsine (AsH 3 ) as the As raw material 19 is supplied to the reaction chamber 1 for 5 seconds. During this time, the supply amount of the raw materials is adjusted so that the pressure in the reaction chamber 1 estimated by the ionization vacuum gauge 10 becomes 1 × 10 to 1 Pa. Next, supply of AsH 3 is stopped, and the gas is exhausted for 5 seconds. The above series of operations is defined as one cycle. When such a method is used, AlGaAs (Al composition 2
5%) could be grown with good reproducibility. If the ratio between DMAlH and TMGa is changed, a monolayer of AlGaAs having an arbitrary composition can be obtained. The above cycle was repeated 100 times to grow an AlGaAs 100 molecular layer. Next, SiGaAs-doped AlGaAs (Al composition 25%) was grown on the AlGaAs 100 molecular layer. First, DMAlH and TM
Ga and monosilane gas (SiH 4
/ H 2 ; SiH 4 concentration 1 ppm) is simultaneously supplied to the reaction chamber 1 for 5 seconds. During this time, the pressure in the reaction chamber 1 estimated by the ionization vacuum gauge 10 was 1 × 10 to 3 Pa, and the ratio of DMAlH to TMGa in the reaction chamber 1 measured by the mass spectrometer 9 was 1: 1.
3. The supply amounts of the respective raw materials are adjusted such that the ratio of DMAlH to monosilane gas becomes 100: 1. Next, the supply of these materials is stopped, and the air is exhausted for 5 seconds.
Next, arsine (AsH 3 ), which is the As raw material 19, was added to 5
Supply to the reaction chamber 1 for seconds. During this time, the supply amount of the raw materials is adjusted so that the pressure in the reaction chamber 1 estimated by the ionization vacuum gauge 10 becomes 1 × 10 to 1 Pa. Next, supply of AsH 3 is stopped, and the gas is exhausted for 5 seconds. The above series of operations is defined as one cycle. When the thin film was grown under the above conditions, a monolayer of AlGaAs (Al composition 25%) could be grown with good reproducibility in one cycle. By repeating the above cycle 100 times, the Si concentration is 1 × 10 to
An AlGaAs 100 molecular layer of 17 cm ~ 3 was obtained with good reproducibility. If the ratio of DMAlH to monosilane gas is changed, Si can be doped at an arbitrary concentration. In this embodiment, the non-doped and Si-doped Al
Although the growth of GaAs (Al composition 25%) has been described,
By changing the raw material, a mixed crystal containing Ga, Al, In, As, P, and Sb doped with Si, Se, S, C, Zn, or the like can be similarly grown. In addition, it was possible to analyze the reaction process of the source gas by knowing the gas components or the gas amount in the reaction chamber during the growth of the thin film.

【0017】[0017]

【発明の効果】以上詳細に説明したごとく、本発明の真
空装置によれば、反応室の圧力が大きく変化する場合に
おいても、反応室内のガス成分またはガス量を容易に、
かつ連続的に見積もることができる。したがって、本発
明の真空装置を用いて、種々の薄膜を形成する場合に、
反応室中のガス成分、ガス量または圧力を、薄膜形成中
に常にモニタすることができるので、これらを所望の値
となるように制御することによって、薄膜形成速度また
は薄膜の構成成分の比率などを精密に、かつ再現性良く
制御することができ、極めて良質の半導体等の薄膜を作
製することができる。
As described in detail above, according to the vacuum apparatus of the present invention, even when the pressure in the reaction chamber changes greatly, the gas component or gas amount in the reaction chamber can be easily changed.
And it can be estimated continuously. Therefore, when forming various thin films using the vacuum apparatus of the present invention,
Since the gas component, gas amount, or pressure in the reaction chamber can be constantly monitored during the formation of the thin film, by controlling these to a desired value, the thin film formation speed or the ratio of the constituent components of the thin film, etc. Can be controlled precisely and with good reproducibility, and a very good quality thin film of a semiconductor or the like can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1で例示した真空装置の構造を
示す模式図。
FIG. 1 is a schematic diagram showing the structure of a vacuum device exemplified in Embodiment 1 of the present invention.

【図2】本発明の実施例2で例示した真空装置の構造を
示す模式図。
FIG. 2 is a schematic diagram showing the structure of a vacuum device exemplified in Embodiment 2 of the present invention.

【図3】本発明の実施例で例示した反応室中の圧力と質
量分析計の設置場所における圧力との関係を示すグラ
フ。
FIG. 3 is a graph showing a relationship between a pressure in a reaction chamber and a pressure at an installation location of a mass spectrometer as exemplified in the embodiment of the present invention.

【図4】本発明の実施例4で例示した半導体結晶成長装
置の構造を示す模式図。
FIG. 4 is a schematic view showing a structure of a semiconductor crystal growth apparatus exemplified in Embodiment 4 of the present invention.

【符号の説明】[Explanation of symbols]

1・・・反応室 2・・・真空容器 3・・・真空排気装置 4・・・接続部分 5・・・排気孔 6・・・基板支持部 7・・・基板加熱部 8・・・原料導入部 9・・・質量分析計 10・・・電離真空計 11・・・基板 12・・・原料 13・・・ヒータ 14・・・接続部分 15・・・真空排気装置 16・・・質量分析計 17・・・ヒータ 18・・・Ga原料 19・・・As原料 20・・・Si原料 21・・・Al原料 DESCRIPTION OF SYMBOLS 1 ... Reaction chamber 2 ... Vacuum container 3 ... Vacuum exhaust device 4 ... Connection part 5 ... Exhaust hole 6 ... Substrate support part 7 ... Substrate heating part 8 ... Raw material Introducing section 9: Mass spectrometer 10: Ionization vacuum gauge 11: Substrate 12: Raw material 13: Heater 14: Connection part 15: Vacuum exhaust device 16: Mass spectrometry Total 17: heater 18: Ga raw material 19: As raw material 20: Si raw material 21: Al raw material

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大内 潔 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所 中央研究所内 (72)発明者 奥村 健治 大阪府堺市築港新町2丁目6番40 大同 酸素株式会社 堺工場内 (72)発明者 大森 宣典 大阪府堺市築港新町2丁目6番40 大同 酸素株式会社 堺工場内 (58)調査した分野(Int.Cl.7,DB名) H01L 21/205 C30B 23/02 C30B 25/16 H01L 21/203 H01L 21/3065 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Kiyoshi Ouchi 1-280 Higashi Koikekubo, Kokubunji-shi, Tokyo Inside the Central Research Laboratory, Hitachi, Ltd. Oki Corporation Sakai Plant (72) Inventor Noriyuki Omori 2-6-40 Chikushinmachi, Sakai-shi, Osaka Daido Oxygen Company Sakai Plant (58) Field surveyed (Int. Cl. 7 , DB name) H01L 21 / 205 C30B 23/02 C30B 25/16 H01L 21/203 H01L 21/3065

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】少なくとも基板支持部、基板加熱部および
原料導入部を有し、かつ反応室の真空排気量を自在に調
節可能とした排気孔を有する反応室を、真空排気装置に
接続した真空容器内に設置して、上記反応室の排気孔が
真空容器内で連通する構成となし、上記反応室の排気孔
の真空排気量を調整して、真空容器内もしくは真空容器
と真空排気装置の接続部近傍の少なくとも1部分の圧力
が、反応室への原料供給時においても常に10~3Pa以
下となる部分を構成し、該部分に質量分析計を設置し
て、反応室内のガス成分またはガス量を、質量分析計設
置部と反応室との圧力差の関係および上記質量分析計で
測定した分析データから見積る手段を少なくとも備えた
ことを特徴とする真空装置。
A vacuum chamber having at least a substrate support section, a substrate heating section and a raw material introduction section, and a reaction chamber having an exhaust hole capable of freely adjusting the amount of evacuation of the reaction chamber. It is installed in a vessel, and the exhaust hole of the reaction chamber communicates with the inside of the vacuum vessel, and the amount of evacuation of the exhaust hole of the reaction chamber is adjusted. At least one part of the pressure in the vicinity of the connection part constitutes a part where the pressure is always 10 to 3 Pa or less even when the raw material is supplied to the reaction chamber. A vacuum apparatus comprising at least means for estimating a gas amount from a relationship between a pressure difference between a mass spectrometer installation section and a reaction chamber and analysis data measured by the mass spectrometer.
【請求項2】少なくとも基板支持部、基板加熱部および
原料導入部を有し、かつ反応室の真空排気量を自在に調
節可能とした排気孔を有する反応室を、真空排気装置に
接続した真空容器内に設置して、上記反応室の排気孔が
真空容器内で連通する構成となし、上記反応室の排気孔
の真空排気量を調整して、真空容器内もしくは真空容器
と真空排気装置の接続部近傍の少なくとも1部分の圧力
が、反応室への原料供給時においても常に10~3Pa以
下となる部分を構成し、該部分に真空計を設置して、反
応室内の圧力を、真空計設置部と反応室との圧力差の関
係から見積る手段を少なくとも備えたことを特徴とする
真空装置。
2. A vacuum chamber having at least a substrate support section, a substrate heating section, and a raw material introduction section, and a reaction chamber having an exhaust hole capable of freely adjusting the amount of evacuation of the reaction chamber. It is installed in a vessel, and the exhaust hole of the reaction chamber communicates with the inside of the vacuum vessel, and the amount of evacuation of the exhaust hole of the reaction chamber is adjusted. At least one part of the vicinity of the connection part constitutes a part where the pressure is always 10 to 3 Pa or less even when the raw material is supplied to the reaction chamber, and a vacuum gauge is installed in this part to reduce the pressure in the reaction chamber to a vacuum. A vacuum apparatus comprising at least means for estimating from a relationship between a pressure difference between a gauge installation section and a reaction chamber.
【請求項3】請求項1または請求項2において、反応室
への原料供給時においても常に10~3Pa以下となる部
分に、質量分析計および真空計を設けたことを特徴とす
る真空装置。
3. The vacuum apparatus according to claim 1, wherein a mass spectrometer and a vacuum gauge are provided in a portion where the pressure is always 10 to 3 Pa or less even when the raw material is supplied to the reaction chamber. .
【請求項4】請求項1または請求項2において、反応室
の真空排気量を自在に調節可能とする排気孔は、該排気
孔の開口の大きさを自在に調節する機構を有することを
特徴とする真空装置。
4. The exhaust hole according to claim 1, wherein the exhaust hole capable of freely adjusting the amount of evacuation of the reaction chamber has a mechanism for freely adjusting the size of the opening of the exhaust hole. And vacuum equipment.
【請求項5】請求項1または請求項2において、真空容
器と真空排気装置の接続部近傍に、ガスの吸着防止用の
ヒータを設けたことを特徴とする真空装置。
5. The vacuum apparatus according to claim 1, wherein a heater for preventing gas adsorption is provided near a connection portion between the vacuum vessel and the vacuum exhaust device.
【請求項6】反応室内に所定の基板を支持し、薄膜構成
元素を含む原料ガスを導入して、上記基板上に薄膜を形
成する方法において、反応室内の真空排気量を自在に調
節可能とした排気孔を有する反応室を、真空排気装置に
接続した真空容器内に設置して、上記反応室の排気孔が
真空容器内で連通する構成となし、上記反応室の排気孔
の真空排気量を調整して、上記真空容器内もしくは真空
容器と真空排気装置の接続部近傍の少なくとも1部分の
圧力が、反応室への原料供給時においても常に10~3
a以下となる部分を構成し、該部分に質量分析計または
圧力計を設置して、質量分析計設置部と反応室との圧力
差の関係と、質量分析計で測定した分析データから、上
記反応室内のガス成分、ガス量または圧力を見積り、上
記ガス成分、ガス量または圧力が常に所望する値となる
ように調整し、薄膜の形成速度または薄膜の構成成分の
比率を制御する工程を少なくとも含むことを特徴とする
薄膜形成方法。
6. A method of forming a thin film on a substrate by supporting a predetermined substrate in a reaction chamber and introducing a raw material gas containing a thin-film constituent element, wherein the amount of evacuation in the reaction chamber can be adjusted freely. A reaction chamber having an exhaust hole is provided in a vacuum vessel connected to a vacuum exhaust device, and the exhaust hole of the reaction chamber communicates within the vacuum vessel. Is adjusted so that the pressure in at least one portion of the vacuum container or in the vicinity of the connection portion between the vacuum container and the vacuum evacuation device is 10 to 3 P
a portion or less, a mass spectrometer or a pressure gauge is installed in the portion, the relationship between the pressure difference between the mass spectrometer installation section and the reaction chamber, and the analysis data measured by the mass spectrometer, Estimating the gas component, gas amount or pressure in the reaction chamber, adjusting the gas component, gas amount or pressure to always have a desired value, and controlling at least the step of controlling the formation rate of the thin film or the ratio of the constituent components of the thin film. A method of forming a thin film, comprising:
JP20868592A 1992-08-05 1992-08-05 Vacuum apparatus and thin film forming method using the same Expired - Lifetime JP3163347B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20868592A JP3163347B2 (en) 1992-08-05 1992-08-05 Vacuum apparatus and thin film forming method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20868592A JP3163347B2 (en) 1992-08-05 1992-08-05 Vacuum apparatus and thin film forming method using the same

Publications (2)

Publication Number Publication Date
JPH06342761A JPH06342761A (en) 1994-12-13
JP3163347B2 true JP3163347B2 (en) 2001-05-08

Family

ID=16560379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20868592A Expired - Lifetime JP3163347B2 (en) 1992-08-05 1992-08-05 Vacuum apparatus and thin film forming method using the same

Country Status (1)

Country Link
JP (1) JP3163347B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3077591B2 (en) * 1996-06-20 2000-08-14 日本電気株式会社 CVD apparatus and CVD film forming method
JP4387573B2 (en) 1999-10-26 2009-12-16 東京エレクトロン株式会社 Process exhaust gas monitoring apparatus and method, semiconductor manufacturing apparatus, and semiconductor manufacturing apparatus management system and method
JP4798007B2 (en) * 2007-01-24 2011-10-19 三菱電機株式会社 Gas analysis method
CZ304858B6 (en) * 2007-07-02 2014-12-10 Ăšstav fyziky plazmatu AV ÄŚR, v.v.i. Method of controlled cooling of hollow metallic core for plasma application of ceramic material and apparatus for making the same

Also Published As

Publication number Publication date
JPH06342761A (en) 1994-12-13

Similar Documents

Publication Publication Date Title
EP0545238B1 (en) Method of epitaxially growing a semiconductor crystal
US4806321A (en) Use of infrared radiation and an ellipsoidal reflection mirror
Roberts et al. Factors influencing doping control and abrupt metallurgical transitions during atmospheric pressure MOVPE growth of AlGaAs and GaAs
US4859627A (en) Group VI doping of III-V semiconductors during ALE
US5246536A (en) Method for growing single crystal thin films of element semiconductor
JPH0639357B2 (en) Method for growing element semiconductor single crystal thin film
US5593497A (en) Method for forming a deposited film
US5041186A (en) Method for manufacturing compound semiconductor single crystals using a hydrogen monitor gas
Nishizawa et al. Deposition mechanism of GaAs epitaxy
US5241987A (en) Process gas supplying apparatus
JP2006324532A (en) Method and device for thin-film deposition
JP3163347B2 (en) Vacuum apparatus and thin film forming method using the same
US3348984A (en) Method of growing doped crystalline layers of semiconductor material upon crystalline semiconductor bodies
JP3219184B2 (en) Organometallic supply and organometallic vapor phase epitaxy
JPS61229319A (en) Thin film forming method
JP2001081569A (en) Vapor phase growth system
US4479845A (en) Vapor growth with monitoring
Kawaguchi et al. Sn doping for InP and InGaAs grown by metalorganic molecular beam epitaxy using tetraethyltin
JP2577550B2 (en) Impurity doping of III-V compound semiconductor single crystal thin films
Schmitz et al. Large area growth of extremely uniform AlGaAs/GaAs quantum well structures for laser applications by effective LP-MOVPE
JP2701339B2 (en) Vapor phase growth equipment
JP2019129298A (en) Film formation device and manufacturing method of semiconductor device
JPH0428680B2 (en)
JP4232279B2 (en) Vapor growth equipment
EP1197995B1 (en) Method for fabricating a group III nitride film

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20001219

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080302

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090302

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090302

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100302

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100302

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 12