JP3161285B2 - Manufacturing method of large diameter welded steel pipe - Google Patents

Manufacturing method of large diameter welded steel pipe

Info

Publication number
JP3161285B2
JP3161285B2 JP15573495A JP15573495A JP3161285B2 JP 3161285 B2 JP3161285 B2 JP 3161285B2 JP 15573495 A JP15573495 A JP 15573495A JP 15573495 A JP15573495 A JP 15573495A JP 3161285 B2 JP3161285 B2 JP 3161285B2
Authority
JP
Japan
Prior art keywords
heating
steel pipe
steel
temperature
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15573495A
Other languages
Japanese (ja)
Other versions
JPH093545A (en
Inventor
喜昭 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP15573495A priority Critical patent/JP3161285B2/en
Publication of JPH093545A publication Critical patent/JPH093545A/en
Application granted granted Critical
Publication of JP3161285B2 publication Critical patent/JP3161285B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、海底パイプラインなど
に使用される圧潰強度の高いUOE鋼管の製造方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a UOE steel pipe having a high crushing strength used for a submarine pipeline or the like.

【0002】[0002]

【従来の技術】海底ラインパイプ敷設の際にまず注意す
べきことは、鋼管が海水圧により潰れることを避けるこ
とである。したがって、海底ラインパイプの設計にあた
っては、圧潰を生じないように、鋼板強度、外径および
肉厚等を設計しなければならないが、そのような条件は
精度良く把握できていないのが実情である。
2. Description of the Prior Art When laying a submarine line pipe, the first thing to be noted is to prevent the steel pipe from being collapsed by seawater pressure. Therefore, when designing a submarine line pipe, the strength, outer diameter, wall thickness, etc. of the steel sheet must be designed so as not to cause crushing, but such conditions are not accurately understood. .

【0003】厚肉の大径溶接鋼管の代表的な製造方法に
UOE製管法がある。この方法は鋼板をUプレスおよび
Oプレスにより環状に成形した後、シ−ム溶接をし、拡
管(エキスパンション)を施して鋼管を製造する工程か
らなる。最後の拡管は機械的なエキスパンダ−により管
径を拡げる工程であり、外径および形状を整えるために
必要な工程である。これらの塑性変形が、以下に述べる
ように、外圧負荷の際、圧潰を助長する要因となる。
[0003] A typical method of manufacturing a thick-walled large-diameter welded steel pipe is a UOE pipe manufacturing method. This method comprises the steps of forming a steel pipe into an annular shape by a U-press and an O-press, performing seam welding, expanding the steel sheet, and producing a steel pipe. The last expansion is a step of expanding the diameter of the pipe by a mechanical expander, and is a step necessary for adjusting the outer diameter and the shape. As described below, these plastic deformations are factors that promote crushing when an external pressure is applied.

【0004】UOE製管法の塑性変形の方向を述べる
と、UプレスおよびOプレスにより、鋼板の板厚中心よ
り表面側はいずれの場合も引張り変形を与えられる。そ
の後の拡管工程では厚さ方向のすべての位置が引張り変
形をうけ、そのまま出荷される。鋼管は、結局、鋼管の
内壁に近い部分を除いて板厚のほとんどの部分で引張り
塑性変形を受けた状態で出荷され、海底ラインパイプと
して敷設されることになる。海底に敷設されるとき、鋼
管は船上で順次円周溶接されながら海底に降ろされるの
で内部は大気圧、外部は水圧をうける。このため海底で
は鋼管は圧力差による圧縮応力をうける。すなわち、拡
管での引張り変形ののち、敷設のさい、それとは逆の圧
縮応力をうけることになる。
[0004] The direction of plastic deformation in the UOE pipe manufacturing method is described below. In both cases, the U-press and the O-press apply a tensile deformation to the surface side from the center of the thickness of the steel sheet. In the subsequent pipe expansion process, all positions in the thickness direction undergo tensile deformation and are shipped as they are. Eventually, the steel pipe is shipped in a state where it has undergone tensile plastic deformation at most of its thickness except for the part near the inner wall of the steel pipe, and is laid as a submarine line pipe. When laid on the sea floor, the steel pipes are lowered onto the sea floor while being sequentially welded on the ship, so the inside is subjected to atmospheric pressure and the outside is subjected to water pressure. For this reason, steel pipes are subjected to compressive stress due to the pressure difference on the seabed. In other words, after the tube is subjected to a tensile deformation, the tube is subjected to a compressive stress that is opposite to the compressive stress when the tube is laid.

【0005】一般に、引張り変形ののちに、圧縮応力を
うける場合、圧縮応力に対する耐力は低下する。逆の場
合、すなわち、最初に圧縮変形をうけ、ついで引張り応
力をうける場合も同様であり、引張り応力にたいする耐
力が低下する。このように交番応力負荷の際、直前の変
形方向と逆方向の耐力が低下する現象はバウシンガ−効
果として知られている。
In general, when a compressive stress is applied after a tensile deformation, the proof stress against the compressive stress decreases. The reverse is also true, that is, the case where compression deformation is first applied and then tensile stress is applied, and the proof stress against tensile stress is reduced. The phenomenon in which the proof stress in the direction opposite to the immediately preceding deformation direction is reduced when an alternating stress is applied is known as the Bauschinger effect.

【0006】プレス加工および拡管などの塑性変形は、
転位と呼ばれる一種の格子欠陥の運動と増殖をともない
ながら進行する。転位の運動と増殖が容易な鋼は軟らか
く、したがって耐力は低い。一般に、塑性変形が小さく
転位の増殖が始まったばかりの段階では鋼は軟らかい
が、塑性変形の進行につれ鋼は硬くなる。塑性変形が進
み硬くなった状態のとき、鋼の中には、からみ合って動
きにくくなった高密度の転位の配列ができている。
[0006] Plastic deformation such as press working and pipe expansion is as follows.
It proceeds with the movement and proliferation of a kind of lattice defect called dislocation. Steel that is easy to move and propagate dislocations is soft and therefore has low yield strength. Generally, steel is soft at the stage when plastic deformation is small and dislocation multiplication has just started, but the steel becomes harder as plastic deformation progresses. When plastic deformation progresses and hardens, high density dislocations that are entangled and hard to move are formed in the steel.

【0007】バウシンガ−効果は、最初の塑性変形のと
きに、一定の方向にのみ動きにくくかつ増殖しにくくな
った転位の配列がつくられることによって起きる。その
ような転位の配列は、そのまま最初の方向に変形が増大
するかぎり、硬化をさらに持続させる。しかし、それと
逆方向に応力が負荷され、その応力方向へ変形がはじま
るときには、最初につくられた転位の配列の何割かの転
位は、その方向へは、大きな抵抗をうけずに動きかつ増
殖することができるので、逆方向への塑性変形が容易に
起きることになる。これは鋼が低い耐力を示すことを意
味する。そのまま圧縮変形が進行すると、硬化がはじま
り、転位は、その圧縮の方向において(最初の方向と逆
の方向において)、最初の引張りの方向と同様の転位の
配列をつくる。複雑な現象をきわめて簡単化するとこの
ような説明が成り立つ。
[0007] The Bauschinger effect is caused by the formation of an array of dislocations which, during the first plastic deformation, are difficult to move and grow only in a certain direction. Such an arrangement of dislocations will continue to harden as long as the deformation increases in the first direction. However, when a stress is applied in the opposite direction and deformation starts in the direction of the stress, some of the dislocations in the array of dislocations initially formed move and proliferate in that direction without great resistance. Therefore, plastic deformation in the opposite direction easily occurs. This means that the steel has a low yield strength. As the compression deformation proceeds, the hardening starts, and the dislocations form an array of dislocations in the direction of compression (in the direction opposite to the initial direction) similar to the direction of the initial tension. Such an explanation holds when a complicated phenomenon is greatly simplified.

【0008】UOE製管法により製造される鋼管は、圧
縮応力をうけた場合、上記のバウシンガ−効果により鋼
管としての圧潰強度は低い。海底パイプライン敷設にと
もなう曲げなどに起因する圧縮応力は、水圧による圧縮
応力と重畳して局部座屈をおこし、条件によっては、こ
の局部座屈をきっかけにすでに設置した部分を長距離に
わたって座屈が伝播し重大な事故に至ることもある。バ
ウシンガ−効果により耐力が低くなったUOE鋼管はこ
のような局部座屈をおこしやすい。このようなUOE鋼
管の弱点を克服する提案がこれまでにもなされてきた。
例えば、(a)C.K.W.Tam & J.G.A.Croll:An Improveme
nt of the Propagation Buckle Performance of Subsea
Pipelines,Thin-Walled Structures ,4(1986),P.423
によって提案されたスパイラル状リブ付き鋼管がある。
この提案は計算上は多大な効果を持つと予測されてい
る。しかし、リブを取り付ける費用は大きな額にのぼ
り、かつハンドリングも容易でないので実用化の可能性
は小さい。
When a steel pipe manufactured by the UOE pipe manufacturing method is subjected to a compressive stress, the crushing strength of the steel pipe is low due to the Bauschinger effect described above. Compressive stress due to bending, etc. associated with the construction of submarine pipelines overlaps with compressive stress caused by water pressure, causing local buckling.Depending on conditions, this local buckling may cause the already installed part to buckle over a long distance. Can spread and lead to serious accidents. UOE steel pipes whose proof strength has been reduced by the Bauschinger effect are liable to cause such local buckling. There have been proposals to overcome such weaknesses of UOE steel pipes.
For example, (a) CKWTam & JGACroll: An Improveme
nt of the Propagation Buckle Performance of Subsea
Pipelines, Thin-Walled Structures, 4 (1986), P. 423
There is a spiral-ribbed steel pipe proposed by A.
This proposal is expected to have significant computational benefits. However, the cost of attaching the ribs is large and handling is not easy, so that the possibility of practical use is small.

【0009】また、(b)UOE製管工程の拡管工程を
縮管工程に置き換えて寸法及び形状を整えた場合は、圧
潰強度の低下は生じないとの評価が、計算によってなさ
れている(S.Kyriakides, E.Corona & F.J.Fisher :
On the Effect of the U-O-EManufacturing Process o
n the Collapse Pressure of Long Tubes, J. of Engin
eering for Industry,116(1994),P.93 )。この方法は
外圧には確かに効果はあるが、内圧に対してはバウシン
ガ−効果により強度が低くなる懸念があること、および
この方法は縮管用の新たな大型装置を設置する必要があ
るので、経済的見地から現実的でない。
(B) It has been evaluated by calculation that the crushing strength does not decrease when the dimensions and shape are adjusted by replacing the expanding step of the UOE pipe forming step with the contracting step (S). .Kyriakides, E.Corona & FJFisher:
On the Effect of the UO-EManufacturing Process o
n the Collapse Pressure of Long Tubes, J. of Engin
eering for Industry, 116 (1994), p. 93). Although this method is certainly effective for external pressure, there is a concern that the strength will be reduced due to the Bauschinger effect for internal pressure, and this method requires the installation of a new large-scale device for contraction. Not realistic from an economic point of view.

【0010】また、(c)一般的に、加熱状態で加工す
ればバウシンガ−効果が減少するという報告がある(W.
C.Leslie : The physical metallurgy of steel (Mcgra
w-hill intenational book company), p.159)。しか
し、この方法も鋼板を加熱する設備および加熱した鋼板
をプレスするための設備の改造が必要であり経済的に成
り立たない。
(C) In general, there is a report that the Bauschinger effect is reduced when processed in a heated state (W.
C. Leslie: The physical metallurgy of steel (Mcgra
w-hill intenational book company), p.159). However, this method also requires modification of equipment for heating the steel sheet and equipment for pressing the heated steel sheet, and is not economically feasible.

【0011】(d)素材である鋼板の組織をアシキュラ
−フェライト組織にすればUOE製管法によるバウシン
ガ−効果を減少できるとの提案(W.C.Leslie: 同上 ,P.
202)もある。しかし、アシキュラ−フェライトとする
には鋼板に合金元素を多量に含有させる必要があり、そ
れは合金コストを高くするので好ましくない。
(D) Proposal that if the structure of the steel sheet as the material is made to be an acicular-ferrite structure, the Bauschinger effect by the UOE pipe manufacturing method can be reduced (WCLeslie: ibid., P.
202). However, in order to obtain acicular ferrite, it is necessary to contain a large amount of alloying elements in a steel sheet, which is not preferable because it increases the alloy cost.

【0012】[0012]

【発明が解決しようとする課題】このように、従来のU
OE製管法をそのまま用い、コスト上昇を招かずに圧潰
強度の低下を防止した例は存在しない。また、いったん
生じたバウシンガ−効果が、その後の加熱により減少ま
たは解消することを示唆する例は見あたらない。
As described above, the conventional U
There is no example in which the OE pipe manufacturing method is used as it is to prevent a decrease in the crushing strength without increasing the cost. Moreover, there is no example suggesting that the Bauschinger effect once generated is reduced or eliminated by the subsequent heating.

【0013】本発明の目的は、現有のUOE製管装置を
そのまま用いて製造された鋼管の圧潰強度を向上させる
簡便な方法を提供することにある。
An object of the present invention is to provide a simple method for improving the crushing strength of a steel pipe manufactured using the existing UOE pipe manufacturing apparatus as it is.

【0014】[0014]

【課題を解決するための手段】本発明者は、従来のUO
E製管法で製造した鋼管を適切な条件下で加熱すれば素
材本来の特性を害することなく、バウシンガ−効果が減
少または解消して、圧縮時のUOE鋼管の耐力が向上す
るのではないかと推測した。すなわち適切な加熱によ
り、(イ)バウシンガ−効果の源である転位の配列その
ものを変える、または(ロ)転位の配列は大きく変えず
に、そのような配列の転位上に析出物を新たに生じさせ
転位をピン止めする、という2つの作用が期待でき、上
記の効果が得られるものと考えられる。
The present inventor has proposed a conventional UO.
If the steel pipe manufactured by the E pipe manufacturing method is heated under appropriate conditions, the Bauschinger effect may be reduced or eliminated without impairing the original properties of the material, and the proof stress of the UOE steel pipe during compression may be improved. I guessed. That is, by appropriate heating, (a) the arrangement of the dislocation itself, which is the source of the Bauschinger effect, or (b) the arrangement of the dislocation is not largely changed, and a precipitate is newly generated on the dislocation of such an arrangement. The two effects of dislocation pinning can be expected, and it is considered that the above effects can be obtained.

【0015】そこで、実験室溶製し圧延した鋼板に引張
り変形を加えたものから鋼片を切り出し、各鋼片を各温
度に各種時間保持したのち放冷し、圧縮試験により耐力
(0.2%耐力)を評価した。加熱前の引張り変形は
2.5%から2.7%の範囲内に入れた。結果を図1に
示す。図1の結果は、適当な加熱温度および加熱時間を
選べば、引張り変形後の圧縮応力に対する耐力を向上し
うることを示している。
Therefore, a steel slab was cut out from a smelted and rolled steel plate in the laboratory and subjected to tensile deformation, and each steel slab was kept at each temperature for various times, allowed to cool, and subjected to a proof stress (0.2%) by a compression test. % Proof stress) was evaluated. Tensile deformation before heating was in the range of 2.5% to 2.7%. The results are shown in FIG. The results in FIG. 1 show that if an appropriate heating temperature and heating time are selected, the proof stress against the compressive stress after tensile deformation can be improved.

【0016】図中の曲線AおよびBはそれぞれ加熱指標
1300および4300を表す。
The curves A and B in the figure represent the heating indices 1300 and 4300, respectively.

【0017】上記の知見に基づく本発明の要旨は以下の
通りである。
The gist of the present invention based on the above findings is as follows.

【0018】鋼板をUプレスおよびOプレスで管状に加
工し溶接した後、拡管する鋼管の製造方法において、拡
管後の鋼管を150℃以上700℃未満の範囲に、下記
の温度および時間で表される式(加熱指標)の値が、1
300以上4300未満となるように加熱することを特
徴とする耐圧潰性に優れた鋼管の製造方法。
[0018] In the method for producing a steel pipe to be expanded after forming and welding a steel sheet into a tubular shape by a U press and an O press, the expanded steel pipe is expressed in the range of 150 ° C or more and less than 700 ° C at the following temperature and time. The value of the equation (heating index) is 1
A method for producing a steel pipe having excellent crush resistance, wherein the heating is performed so as to be 300 or more and less than 4300.

【0019】加熱指標 =T×(5+ logt) ここで、T(絶対温度K)=273+加熱温度(℃) (加熱温度は150℃以上700℃未満) t :150℃以上の加熱時間(h) log:常用対数Heating index = T × (5 + logt) where T (absolute temperature K) = 273 + heating temperature (° C.) (heating temperature is 150 ° C. or more and less than 700 ° C.) t: heating time of 150 ° C. or more (h) log: Common logarithm

【0020】[0020]

【作用】鋼管を150℃以上に加熱するのは、これ未満
の温度では転位上への析出または転位の再配列に長時間
を要し、能率を重視する実生産において、バウシンガ−
効果を実際上問題なくなるまで減少または解消できない
からである。また700℃未満とするのは、材質劣化が
生じるのを防止するためである。
The purpose of heating a steel pipe to 150 ° C. or more is that, at temperatures lower than this, it takes a long time to precipitate on dislocations or rearrange the dislocations.
This is because the effect cannot be reduced or eliminated until practically no problem occurs. The reason why the temperature is set to less than 700 ° C. is to prevent deterioration of the material.

【0021】加熱指標を1300以上とするのはそれ以
上において、耐力の向上が得られるからであり、430
0未満としたのは、それ以上では焼き戻しが進行しすぎ
て鋼が軟化してしまうからである。加熱指標を導入した
理由は、高温では短時間で、また低温では長時間かけれ
ば、目標とする耐力の向上が得られるので、時間と温度
の効果を一の指標で表現するためである。また、ここ
で、定数として5を採用して、焼戻し指標などで多用さ
れる20を用いなかった理由は、加熱温度の変動の効果
が、短い加熱時間でも、バウシンガ−効果に敏感に影響
するという事実を加熱指標で表すためである。20を用
いた場合、温度変化の効果が長時間加熱しないと加熱時
間の影響として加熱指標の変化に現れにくいのに対し
て、5を採用すると短時間加熱でも温度変化の影響を加
熱指標の変化に表すことができ、実際のバウシンガ−効
果と対応づけることができるからである。
The reason why the heating index is set to 1300 or more is that if the heating index is higher than 1300, the yield strength is improved.
The reason why it is set to less than 0 is that if it is more than 0, the tempering proceeds too much and the steel is softened. The reason why the heating index is introduced is that if the temperature is high for a short time, and if the temperature is low for a long time, the target yield strength can be improved, so that the effect of time and temperature can be expressed by one index. In addition, the reason why the constant 5 is adopted here and the variable 20 frequently used in the tempering index is not used is that the effect of the fluctuation of the heating temperature sensitively affects the Bauschinger effect even with a short heating time. This is because the fact is represented by a heating index. In the case of using 20, the effect of the temperature change is hard to appear in the change of the heating index as the effect of the heating time unless the heating is performed for a long time. This is because it can be correlated with the actual Bauschinger effect.

【0022】UOE鋼管用の素材としては、加速冷却鋼
板が用いられる場合が多い。加速冷却鋼板は厚鋼板を制
御圧延したのち水量をコントロ−ルされた所定の冷却装
置により、一定の加速された冷却速度で冷却された厚鋼
板をいう。フェライト量を抑制して強度向上が図れるの
で、溶接性の改善に有効な製造方法である。それらの加
速冷却鋼板には、通常、強度上昇と制御圧延の効果を利
かすためにニオビウム(Nb)が添加される。加速冷却
鋼板のNbの固溶濃度は加速冷却をうけないものより高
いので、本発明に基づく加熱のさい、炭窒化物の析出量
が多くなる。このとき転位への析出量も多くなるので、
逆方向への低応力での転位の発動をより強くピン止めす
ることができる。したがって、本発明方法を適用するU
OE鋼管用の鋼板は、加速冷却法により製造されたNb
添加鋼板が好ましい。
As a material for the UOE steel pipe, an accelerated cooling steel sheet is often used. The accelerated cooling steel sheet refers to a steel sheet which is cooled at a constant accelerated cooling rate by a predetermined cooling device in which the amount of water is controlled after the steel sheet is controlled and rolled. Since the strength can be improved by suppressing the amount of ferrite, this is an effective production method for improving weldability. Normally, niobium (Nb) is added to these accelerated cooling steel sheets in order to utilize the effects of increasing the strength and controlling rolling. Since the Nb solid solution concentration of the accelerated cooling steel sheet is higher than that of the steel sheet not subjected to accelerated cooling, the amount of carbonitride precipitated increases during heating according to the present invention. At this time, the amount of precipitation to dislocations also increases,
Dislocation activation with low stress in the opposite direction can be more strongly pinned. Therefore, U to which the method of the present invention is applied
The steel plate for OE steel pipe is made of Nb manufactured by the accelerated cooling method.
Addition steel sheets are preferred.

【0023】鋼管の加熱方法には特別な制約はない。と
くに重要な点は、鋼管の全長全管周にわたって必ずしも
均一な温度でなくてもよいことである。前記の温度と時
間の条件を満たせば、等温非等温を問わず、鋼管部位に
ついて均一不均一を問わず、バウシンガ−効果を実質上
問題ない程度にまで減少または解消できる。したがっ
て、1本のガスバ−ナ−で鋼管をスパイラル状に回転さ
せつつ加熱することも可能であり、能率を向上させる目
的で数本または数10本のバ−ナ−を帯状に並べて加熱
することもできる。あるいはリング状に配置したガスバ
−ナ−の中を回転させずに高速で通過させることによっ
ても同様な効果を得ることができる。もちろん能率や設
備費を無視すれば熱処理炉中で均一な全体加熱をするこ
とによっても目的を達せられることはいうまでもない。
There are no particular restrictions on the method of heating the steel pipe. It is particularly important that the temperature is not necessarily uniform over the entire length of the steel pipe. If the above conditions of temperature and time are satisfied, the Bauschinger effect can be reduced or eliminated to the extent that there is substantially no problem irrespective of whether it is isothermal or non-isothermal and whether the steel pipe portion is uniform or non-uniform. Therefore, it is possible to heat a steel pipe while rotating it in a spiral with one gas burner, and to heat several or several tens of burners in a strip shape for the purpose of improving efficiency. Can also. Alternatively, the same effect can be obtained by passing the gas burner arranged in a ring at a high speed without rotating the gas burner. Of course, if efficiency and equipment costs are neglected, it is needless to say that the object can be achieved by performing uniform overall heating in the heat treatment furnace.

【0024】加熱ののち、150℃より低温域への冷却
する条件にはとくに制約はないが、放冷することが好ま
しい。放冷中に鋼材中の固溶窒素が転位の周囲に雰囲気
を形成し、転位を止める効果が得られるからである。
After heating, the condition for cooling to a temperature lower than 150 ° C. is not particularly limited. This is because the solid solution nitrogen in the steel material forms an atmosphere around the dislocation during cooling, and an effect of stopping the dislocation can be obtained.

【0025】等温保持がされないときの加熱指標の計算
は、以下に述べる近似法によりおこなう。
The calculation of the heating index when the isothermal holding is not performed is performed by the following approximation method.

【0026】加熱の経過を、横軸を時間、縦軸を温度と
してプロットしたとき、山形になる場合、昇温時に、1
50℃になった点と最高温度点を直線で結び、その直線
上での中間温度(150℃と最高温度の和を2で除した
値)までは150℃で経過したとし、それ以後最高温度
までは中間温度で経過したとして近似計算をおこなう。
降温時は最高温度と150℃を直線で結び、直線上で中
間温度となる時間までは最高温度で経過し、それ以降1
50℃までは中間温度で経過するとして式に代入する。
要は、加熱指標の時間積分について、2段の階段近似を
おこなう。そのような近似計算の結果、加熱指標が13
00以上4300未満となればよい。山が複数個できる
場合なども同様な2段の階段近似をおこない、加算した
結果、その値が上記の範囲に入ればよい。
The progress of heating is plotted with time on the horizontal axis and temperature on the vertical axis.
The point at which the temperature reaches 50 ° C. and the maximum temperature point are connected by a straight line, and it is assumed that 150 ° C. has elapsed up to an intermediate temperature (a value obtained by dividing the sum of 150 ° C. and the maximum temperature by 2) on the straight line. Approximate calculation is performed assuming that the time has elapsed at the intermediate temperature.
At the time of cooling, the maximum temperature and 150 ° C are connected by a straight line, and the maximum temperature elapses until the intermediate temperature is reached on the straight line.
It is substituted in the equation assuming that the intermediate temperature passes up to 50 ° C.
In short, two steps are approximated for the time integration of the heating index. As a result of such an approximate calculation, the heating index is 13
What is necessary is just to be 00 or more and less than 4300. Even when a plurality of peaks are formed, similar two-step staircase approximation is performed, and as a result of the addition, the value may be within the above range.

【0027】[0027]

【実施例】図2に示す圧潰試験方法により外径508m
mおよび肉厚28.6mmのAPI規格X65材のUO
E鋼管の圧潰強度を評価した。試験用鋼管の1本はUO
E製管法で製管後、管径で最低0.8%、最高1.5%
の間で拡管した。鋼管を回転させつつ長手方向に送りな
がら1本の固定ガスバ−ナ−により加熱するという線状
加熱方法で加熱した。バ−ナ−を過ぎて10秒後の表面
温度は非接触の温度計の表示で、最低部283℃かつ最
高部625℃、また最高部250℃以上の温度にあった
時間は約55分であり、本発明の範囲内での加熱条件を
満たす。他の試験用鋼管の1本は通常のUOE製管法に
より製造されたままのものである。
EXAMPLE An outer diameter of 508 m was obtained by the crush test shown in FIG.
U of API standard X65 material of m and wall thickness 28.6mm
The crushing strength of the E steel pipe was evaluated. One of the test steel tubes is UO
After making pipe by E pipe making method, minimum 0.8%, maximum 1.5% in pipe diameter
Expanded between. The steel pipe was heated by a linear heating method in which it was heated by one fixed gas burner while being fed in the longitudinal direction while rotating. The surface temperature after 10 seconds after the burner is indicated by a non-contact thermometer, and the time during which the temperature was at least 283 ° C at the lowest temperature, 625 ° C at the highest temperature, and at least 250 ° C at the highest temperature was about 55 minutes. Yes, it satisfies the heating conditions within the scope of the present invention. One of the other test steel pipes has been manufactured by a usual UOE pipe manufacturing method.

【0028】図2の圧潰試験において、試験用鋼管1を
大径かつ強度の高い鞘管2の中に配置し鞘管の両端と試
験用鋼管1の外周とを密閉板3で密閉溶接し、試験用鋼
管1が圧潰するまで水圧をかけた。水圧は水量増分によ
って発生する。試験結果を図3に示す。本発明により線
状加熱した鋼管の圧潰圧力(強度)は55MPaである
のに対して、加熱をしていないUOE鋼管では46MP
aである。線状加熱した鋼管は、圧潰までの圧力(強
度)が約20%高い。
In the crush test shown in FIG. 2, the test steel pipe 1 is placed in a large-diameter and high-strength sheath pipe 2, and both ends of the sheath pipe and the outer periphery of the test steel pipe 1 are hermetically welded with a sealing plate 3. Water pressure was applied until the test steel pipe 1 was crushed. Water pressure is generated by increasing water volume. The test results are shown in FIG. The crushing pressure (strength) of the steel pipe linearly heated according to the present invention is 55 MPa, while that of the unheated UOE steel pipe is 46 MPa.
a. The linearly heated steel pipe has about 20% higher pressure (strength) until crushing.

【0029】[0029]

【発明の効果】本発明方法によれば、UOE鋼管を簡便
な装置により所定の温度範囲に加熱することにより、バ
ウシンガ−効果を減少または解消して、耐圧潰性に優れ
たUOE鋼管とすることが可能である。
According to the method of the present invention, the UOE steel pipe is heated to a predetermined temperature range by a simple device to reduce or eliminate the Bauschinger effect and to provide a UOE steel pipe excellent in crush resistance. Is possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、引張り変形を与えた後の圧縮時の耐力
が加熱温度と加熱時間により変化することを示す図面で
ある。縦軸は加熱温度、横軸は保持時間である。図中の
各円内の値は圧縮応力にたいする耐力(MPa)を表
す。
FIG. 1 is a drawing showing that the proof stress at the time of compression after applying tensile deformation changes with heating temperature and heating time. The vertical axis is the heating temperature, and the horizontal axis is the holding time. The value in each circle in the figure represents the proof stress (MPa) against the compressive stress.

【図2】図2は鋼管の圧潰試験方法を示す図面である。FIG. 2 is a drawing showing a method for crushing a steel pipe.

【図3】図3は拡管後に加熱をおこなった鋼管(実施
例)および加熱をおこなわない鋼管(比較例)のそれぞ
れの水量増分と圧力との関係を示す図面である。
FIG. 3 is a drawing showing the relationship between the water amount increment and the pressure for each of a steel pipe heated after pipe expansion (Example) and a steel pipe not heated (Comparative Example).

【符号の説明】[Explanation of symbols]

A:加熱指標1300を表す曲線 B:加熱指標4300を表す曲線 1:試験用鋼管 2:鞘管 3:密閉板 4:水導入管 A: Curve representing heating index 1300 B: Curve representing heating index 4300 1: Steel tube for test 2: Sheath tube 3: Sealing plate 4: Water inlet tube

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C21D 9/00 - 9/44 C21D 9/50 B21C 37/08 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) C21D 9/00-9/44 C21D 9/50 B21C 37/08

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】鋼板をUプレスおよびOプレスで管状に加
工し溶接した後、拡管する鋼管の製造方法において、拡
管後の鋼管を150℃以上700℃未満の範囲に、下記
の温度および時間で表される式(加熱指標)の値が、1
300以上4300未満となるように加熱することを特
徴とする耐圧潰性に優れた鋼管の製造方法。 加熱指標 =T×(5+ logt) ここで、T(絶対温度K)=273+加熱温度(℃) (加熱温度は150℃以上700℃未満) t :150℃以上での加熱時間(h) log :常用対数
1. A method for producing a steel pipe which is formed by processing a steel sheet into a tube by a U-press and an O-press and welding, and then expanding the expanded steel pipe in a range of 150 ° C. or more and less than 700 ° C. at the following temperature and time. The value of the expression (heating index) represented is 1
A method for producing a steel pipe having excellent crush resistance, wherein the heating is performed so as to be 300 or more and less than 4300. Heating index = T × (5 + logt) where T (absolute temperature K) = 273 + heating temperature (° C.) (heating temperature is 150 ° C. or more and less than 700 ° C.) t: heating time at 150 ° C. or more (h) log: Common logarithm
JP15573495A 1995-06-22 1995-06-22 Manufacturing method of large diameter welded steel pipe Expired - Fee Related JP3161285B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15573495A JP3161285B2 (en) 1995-06-22 1995-06-22 Manufacturing method of large diameter welded steel pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15573495A JP3161285B2 (en) 1995-06-22 1995-06-22 Manufacturing method of large diameter welded steel pipe

Publications (2)

Publication Number Publication Date
JPH093545A JPH093545A (en) 1997-01-07
JP3161285B2 true JP3161285B2 (en) 2001-04-25

Family

ID=15612291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15573495A Expired - Fee Related JP3161285B2 (en) 1995-06-22 1995-06-22 Manufacturing method of large diameter welded steel pipe

Country Status (1)

Country Link
JP (1) JP3161285B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7892368B2 (en) 2002-05-24 2011-02-22 Nippon Steel Corporation UOE steel pipe excellent in collapse strength and method of production thereof
JP3968011B2 (en) 2002-05-27 2007-08-29 新日本製鐵株式会社 High strength steel excellent in low temperature toughness and weld heat affected zone toughness, method for producing the same and method for producing high strength steel pipe
CA2556574C (en) 2004-02-19 2011-12-13 Nippon Steel Corporation Steel plate or steel pipe with small occurrence of bauschinger effect and methods of production of same
JP5381234B2 (en) * 2009-03-31 2014-01-08 Jfeスチール株式会社 Manufacturing method of line pipe with high compressive strength
JP5966441B2 (en) * 2012-03-01 2016-08-10 Jfeスチール株式会社 Welded steel pipe excellent in pressure crushing performance and internal pressure fracture resistance and manufacturing method thereof

Also Published As

Publication number Publication date
JPH093545A (en) 1997-01-07

Similar Documents

Publication Publication Date Title
US4018634A (en) Method of producing high strength steel pipe
JP5751012B2 (en) Manufacturing method of high-strength line pipe with excellent crush resistance and sour resistance
JP2012241271A (en) High strength sour-resistant linepipe superior in collapse resistance and method for producing the same
JP5803270B2 (en) High strength sour line pipe excellent in crush resistance and manufacturing method thereof
US3535484A (en) Method of improving physical properties of electric resistance welded steel pipe
KR102263561B1 (en) How to Make Coiled Tubing Strings
JP3161285B2 (en) Manufacturing method of large diameter welded steel pipe
JP4071995B2 (en) UOE steel pipe manufacturing method with excellent crushing strength
KR101569356B1 (en) Method for manufacturing steel sheet for making joc steel pipe and joc steel pipe
JP4903635B2 (en) UOE steel pipe with excellent deformability for line pipe
JP2003340518A (en) Manufacturing method of uoe steel pipe having good crush strength
Mantovano et al. The influence of the UOE-SAWL forming process on the collapse resistance of deepwater linepipe
JP2003340519A (en) Uoe steel pipe excellent in crush strength
JP4720344B2 (en) Steel pipe, pipeline using the steel pipe
JP5966441B2 (en) Welded steel pipe excellent in pressure crushing performance and internal pressure fracture resistance and manufacturing method thereof
CN107142432A (en) A kind of seamless pipe high-yield-ratio control method of Hastelloy C alloys 276
JP2009174658A (en) Steel pipe for oil well use excellent in expandability and its manufacturing method
JP2004131810A (en) Method for manufacturing steel pipe having excellent buckling resistance performance
JPH09111342A (en) Production of low yield ratio steel pipe
JP3175918B2 (en) Method of manufacturing steel pipe for oil well having high collapse strength
JPS6046321A (en) Manufacture of seam welded pipe
Kathayat et al. Collapse Behaviour of As-Fabricated; Thermal aged JCOE line pipe-experimental study by external pressure ring collapse testing and FE Analysis
SU1750902A1 (en) Method of production of large-diameter welded pipes
WO2023276644A1 (en) Square steel tube, method for manufacturing same, and building structure
JPS5952690B2 (en) Manufacturing method for large-diameter heat-treated steel pipes

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080223

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090223

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100223

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100223

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120223

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120223

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 12

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 12

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 12

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140223

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees