JP3160452B2 - Welded steel pipe with excellent carbon dioxide gas corrosion resistance - Google Patents

Welded steel pipe with excellent carbon dioxide gas corrosion resistance

Info

Publication number
JP3160452B2
JP3160452B2 JP31826693A JP31826693A JP3160452B2 JP 3160452 B2 JP3160452 B2 JP 3160452B2 JP 31826693 A JP31826693 A JP 31826693A JP 31826693 A JP31826693 A JP 31826693A JP 3160452 B2 JP3160452 B2 JP 3160452B2
Authority
JP
Japan
Prior art keywords
content
weld metal
steel pipe
corrosion
carbon dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31826693A
Other languages
Japanese (ja)
Other versions
JPH07171684A (en
Inventor
宗義 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP31826693A priority Critical patent/JP3160452B2/en
Publication of JPH07171684A publication Critical patent/JPH07171684A/en
Application granted granted Critical
Publication of JP3160452B2 publication Critical patent/JP3160452B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、天然ガスや原油など
の炭酸ガスを含む流体の輸送に使用されるサブマージア
ーク溶接された溶接鋼管に関し、なかでも熱間曲げ管な
どのように造管後に熱処理が施されるような鋼管に用い
て好適な耐炭酸ガス腐食性に優れた溶接鋼管に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a submerged arc welded steel pipe used for transporting a fluid containing carbon dioxide gas such as natural gas or crude oil. The present invention relates to a welded steel pipe having excellent carbon dioxide corrosion resistance suitable for use in a steel pipe to be subjected to heat treatment.

【0002】[0002]

【従来の技術】従来、炭酸ガスを含む天然ガスや原油等
の炭酸ガス含有流体を輸送するパイプラインでは、炭酸
ガス腐食を防ぐために、輸送流体中にインヒビターを添
加することが一般的に行われている。しかし、このイン
ヒビターの使用は、パイプのすべての部位において効率
よく作用するものとは言えない場合があった。しかも、
インヒビター注入装置にトラブルが発生した時などに
は、炭酸ガス腐食に対して十分な対応ができないという
問題もあった。
2. Description of the Related Art Conventionally, in pipelines for transporting carbon dioxide-containing fluids such as natural gas and crude oil containing carbon dioxide, an inhibitor is generally added to the transport fluid in order to prevent carbon dioxide corrosion. ing. However, the use of this inhibitor has not always been able to be said to work efficiently at all parts of the pipe. Moreover,
When a trouble occurs in the inhibitor injection device, there is also a problem that it is not possible to sufficiently cope with carbon dioxide gas corrosion.

【0003】このような問題に対して、従来、鋼管の素
材そのものの耐食性を向上させるべく、例えば、ステン
レス鋼や高合金鋼にて造管することで対処していた。し
かしながら、このような耐食性材料の採用は、高価なこ
とに加え、硫化水素が混入した場合に硫化物応力腐食割
れが発生しやすく、また、パイプライン建設時の円周溶
接の作業性が劣り、特に熱影響部が硬化しやすいという
問題があった。
[0003] In order to improve the corrosion resistance of the steel pipe material itself, such a problem has been conventionally dealt with by, for example, forming the pipe from stainless steel or high alloy steel. However, the use of such a corrosion-resistant material is expensive, and sulfide stress corrosion cracking is likely to occur when hydrogen sulfide is mixed, and workability of circumferential welding at the time of pipeline construction is poor. In particular, there is a problem that the heat-affected zone is easily cured.

【0004】このような問題に対し、新たにこれを解決
するための技術として、特開平3−110071号公報では、
「C:0.25%以下, Si:0.01〜0.50%, Mn:0.1 〜2.0
%, P:0.03%以下, S:0.01%以下, Cr:0.25〜1.0
%, Al:0.01〜0.10%を含み、残部がFe及び不可避的不
純物からなる母材に対して、Cr量が母材より 0.2%少な
い領域から、1.0%多い領域の範囲にある溶接金属を有
する耐炭酸ガス腐食性に優れたパイプライン用鋼管。」
を提案している。しかしながら、この従来技術にかかる
鋼管は、熱間曲げ管などのように造管後に熱処理が施さ
れるものである場合、Crの焼入れ硬化性のため、溶接金
属の靱性が劣化するという問題があった。
[0004] As a technique for newly solving such a problem, Japanese Patent Laid-Open No. 3-110071 discloses a technique.
"C: 0.25% or less, Si: 0.01 to 0.50%, Mn: 0.1 to 2.0
%, P: 0.03% or less, S: 0.01% or less, Cr: 0.25 to 1.0
%, Al: 0.01 to 0.10%, with the balance being from 0.2% less Cr to 1.0% more Cr based on the base metal consisting of Fe and unavoidable impurities Steel pipe for pipelines with excellent carbon dioxide gas corrosion resistance. "
Has been proposed. However, when the steel pipe according to the conventional technique is subjected to heat treatment after pipe forming, such as a hot-bent pipe, there is a problem that the toughness of the weld metal is deteriorated due to the quench hardening property of Cr. Was.

【0005】[0005]

【発明が解決しようとする課題】上述した「特開平3−
110071号公報」に開示されたパイプライン用鋼管は、溶
接接合部の溶接金属の靱性が熱処理により劣化するとい
う短所があったことから、この問題を解決することで流
体輸送用ラインパイプを一層改善できることが判った。
そこで、本発明は、炭酸ガスを含む環境下で使用される
パイプライン用鋼管について、全面腐食及びサブマージ
アーク溶接部における局部腐食の両者を低減し、かつ熱
処理の有無に拘わらず十分な靱性を有する耐炭酸ガス腐
食性に優れた溶接鋼管を提供することを課題とする。
SUMMARY OF THE INVENTION The above-mentioned Japanese Patent Laid-Open Publication No. Hei.
The steel pipe for pipeline disclosed in Japanese Patent No. 110071 has the disadvantage that the toughness of the weld metal at the weld joint is deteriorated by heat treatment, so that solving this problem further improves the line pipe for fluid transportation. I can do it.
Therefore, the present invention reduces both general corrosion and local corrosion in a submerged arc welded portion of a steel pipe for a pipeline used in an environment containing carbon dioxide gas, and has sufficient toughness regardless of the presence or absence of heat treatment. An object of the present invention is to provide a welded steel pipe excellent in carbon dioxide gas corrosion resistance.

【0006】[0006]

【課題を解決するための手段】本発明は、Cr含有量が0.
25〜1.0 wt%である母材を使い、かつ溶接接合部の内・
外面をそれぞれ1層以上のサブマージアーク溶接を施す
ことによって得られる溶接鋼管において、この鋼管の内
面より設計腐食代に相当する厚み以上から板厚の50%以
下にあたる厚みまでの範囲については、溶接金属のCr含
有量が母材のCr含有量に対して−0.2 〜+1.0 wt%の範
囲内となるCrを含み、そして、残厚部分の溶接金属のCr
含有量が母材及び前記内面側溶接金属のCr含有量未満の
範囲にあるようにすることによって前記課題を解決した
ものである。
According to the present invention, the content of Cr is set to be less than 0.1.
Use a base material of 25-1.0 wt%, and
In a welded steel pipe obtained by applying one or more layers of submerged arc welding to the outer surface, the thickness of the welded metal pipe from the inner surface of the pipe to the thickness corresponding to the design corrosion allowance to 50% or less of the plate thickness Contains Cr whose Cr content is in the range of -0.2 to +1.0 wt% with respect to the Cr content of the base metal, and the Cr of the weld metal in the remaining thickness portion
The object has been achieved by making the content within the range of less than the Cr content of the base metal and the inner surface side weld metal.

【0007】なお、溶接金属中のCr含有量の調節は、内
・外面から行うサブマージアーク溶接各層に使う溶加材
(フィラー)の組成を変えることで行うことが望まし
い。また、この調節は、開先形状や溶接条件などの選択
によっても可能であり、これらのいずれか1種以上の手
段の採用によって、溶接金属中のCr含有量の調整を行
う。
It is desirable to adjust the Cr content in the weld metal by changing the composition of the filler used for each layer of the submerged arc welding performed from the inner and outer surfaces. This adjustment can also be made by selecting a groove shape, welding conditions, and the like, and the Cr content in the weld metal is adjusted by employing one or more of these means.

【0008】[0008]

【作用】発明者が行った、炭酸ガス含有流体を送るライ
ンパイプ用材料についての研究によれば、パイプ内面,
とくに溶接接合部の材料特性については、Cr含有量の影
響が大きく、とりわけ母材と溶接金属中に含まれるCr含
有量の相対的な割合が重要であることが判った。即ち、
サブマージアーク溶接金属のCr含有量が、母材のCr含有
量に対して 0.2wt%以上少ないと、溶接金属に局部腐食
が発生しやすくなる。一方、溶接金属のCr含有量が母材
のCr含有量に対して 1.0wt%以上多い場合においても、
溶接熱影響部に局部腐食が発生しやすくなる。従って、
耐炭酸ガス腐食性を向上させるには、この接合部におけ
るサブマージアーク溶接金属のCr含有量が母材のCr含有
量に対して、−0.2 〜+1.0 wt%となる範囲内の量にす
る必要がある。
According to the research conducted by the inventor on a material for a line pipe that sends a fluid containing carbon dioxide gas, the inner surface of the pipe,
In particular, it was found that the Cr content had a great influence on the material properties of the welded joint, and the relative proportion of the Cr content in the base metal and the weld metal was particularly important. That is,
If the Cr content of the submerged arc weld metal is smaller than the Cr content of the base metal by 0.2 wt% or more, local corrosion is likely to occur in the weld metal. On the other hand, even when the Cr content of the weld metal is at least 1.0 wt% greater than the Cr content of the base metal,
Local corrosion is likely to occur in the weld heat affected zone. Therefore,
In order to improve the carbon dioxide gas corrosion resistance, the Cr content of the submerged arc weld metal at this joint should be within the range of -0.2 to +1.0 wt% with respect to the Cr content of the base metal. There is a need.

【0009】また、Crは焼入れ硬化性元素であるため、
熱処理を行った場合には靱性が劣化する傾向がある。特
に、酸素含有量の高い溶接金属については、その傾向が
顕著である。図1は、溶接金属中のCr含有量がシャルピ
ー衝撃試験による吸収エネルギーに及ぼす熱処理の影響
を調査した結果を示すものである。この図に明らかなよ
うに、熱処理を行わない場合は、Cr含有量が1wt%であ
ってもエネルギーの低下は認められないが、熱処理を行
った場合には、Cr含有量が多くなればなるほどエネルギ
ー低下が顕著になることが判った。
Further, since Cr is a quench hardening element,
When heat treatment is performed, the toughness tends to deteriorate. In particular, the tendency is remarkable for a weld metal having a high oxygen content. FIG. 1 shows the results of investigating the effect of heat treatment on the absorbed energy by the Cr content in the weld metal by the Charpy impact test. As is apparent from this figure, when the heat treatment was not performed, no decrease in energy was observed even when the Cr content was 1 wt%, but when the heat treatment was performed, the higher the Cr content, the higher the Cr content. It was found that the energy reduction was remarkable.

【0010】以上の結果から、溶接接合部に関しては、
板厚方向で観察すると、耐炭酸ガス腐食性を確保しなけ
ればならない部分と、靱性を確保しなければならない部
分とに分けて考えることが必要であり、このように分け
て考えた場合に始めて耐食性と靱性を両立させることが
できる。そのためには、前者の部分(耐腐食性)は鋼管
内表面より設計腐食代(例えば、板厚25mmのとき、3〜
10mmの範囲)のところにおいて母材のCr含有量に対して
所要のCr含有量(−0.2 〜+1.0 wt%) の範囲にするこ
とが必要であり、一方、設計腐食代は一般に板厚の50%
以内であることから、後者の目的のためには、残厚部す
なわち、少なくとも板厚の50%を超える部分のCrの含有
量を母材及び前記内面側溶接金属のCr含有量よりも低く
することが必要である。
From the above results, regarding the weld joint,
When observing in the thickness direction, it is necessary to consider separately the part where carbon dioxide gas corrosion resistance must be ensured and the part where toughness must be ensured. Both corrosion resistance and toughness can be achieved. For that purpose, the former part (corrosion resistance) is designed corrosion allowance (for example, when the plate thickness is 25 mm, 3 to
(The range of 10 mm), it is necessary to set the Cr content within the required range (−0.2 to +1.0 wt%) with respect to the Cr content of the base material. 50% of
Therefore, for the latter purpose, the Cr content of the remaining thickness portion, that is, at least a portion exceeding 50% of the plate thickness, is made lower than the Cr content of the base metal and the inner surface side weld metal. It is necessary.

【0011】以上の理由から、鋼管の厚み方向における
内表面より設計腐食代以上でかつ板厚の50%以下の厚み
領域の部分における、溶接金属のCr含有量を、母材のCr
含有量の−0.2 〜+1.0 wt%の範囲とし、残部厚の溶接
金属のCr含有量を母材及び前記内面側溶接金属のCr含有
量以下の範囲にすることとした。
[0011] For the above reasons, the Cr content of the weld metal in the portion of the thickness region not less than the design corrosion allowance and 50% or less of the plate thickness from the inner surface in the thickness direction of the steel pipe is determined by the Cr content of the base metal.
The Cr content of the weld metal having the remaining thickness was set to a range of not more than the Cr content of the base metal and the Cr content of the inner surface side weld metal.

【0012】なお、本発明は、熱処理を施さない鋼管に
対しても有効であり、外面側溶接金属中のCr含有量を削
減することにより、コストメリットがある。
The present invention is also effective for steel pipes not subjected to heat treatment, and has a cost advantage by reducing the Cr content in the outer surface weld metal.

【0013】[0013]

【実施例】本発明の第1の実施例では、1wt%のCrを含
有する板厚20mmの母材(API 規格5L×60) に対して、内
外面とも各1層のサブマージアーク溶接を行い、外面溶
接金属のCr含有量を約0.6 %とし、内面溶接金属のCr含
有量を約1.1 %とし、各々の板厚方向へ占める割合を3
段階に変化させた溶接鋼管を作製した。また、比較例と
して、内, 外面とも溶接金属のCr含有量を約 0.6%とし
た溶接鋼管を作製した。これらについて、腐食試験と溶
接金属のシャルピー衝撃試験を行った。なお、溶接金属
中のCr量の調整は、開先形状の調整とCr含有量の異なる
溶加材(フィラー)を使用することで行った。
In the first embodiment of the present invention, a single layer of submerged arc welding was performed on both the inner and outer surfaces of a 20 mm thick base material (API standard 5L × 60) containing 1 wt% of Cr. The Cr content of the outer weld metal is about 0.6%, the Cr content of the inner weld metal is about 1.1%, and the proportion of each in the thickness direction is 3%.
Welded steel pipes with different stages were produced. As a comparative example, a welded steel pipe was prepared in which the Cr content of the weld metal was about 0.6% on both the inner and outer surfaces. For these, a corrosion test and a Charpy impact test of the weld metal were performed. Adjustment of the Cr content in the weld metal was performed by adjusting the groove shape and using a filler having a different Cr content.

【0014】表1に母材の化学組成を、表2に開先形状
と溶接条件を示す。鋼管の溶接部より試験片を採取し、
表3に示す条件で熱処理を行った後、表4および表5に
示す条件で各々衝撃試験と腐食試験を行った。表6に溶
接金属と溶接ワイヤーのCr含有量とシャルピー衝撃試験
結果および腐食試験結果を示す。腐食試験は図2に示す
回転式浸漬試験装置を用いた。局部腐食の状況を調べる
ため、試験後の試料を図3に示すように、5mm×25mm×
100mm の短冊型に切断して各8断面観察し、その平均値
を求めたものである。
Table 1 shows the chemical composition of the base material, and Table 2 shows the groove shape and welding conditions. Collect a test piece from the weld of the steel pipe,
After heat treatment was performed under the conditions shown in Table 3, an impact test and a corrosion test were performed under the conditions shown in Tables 4 and 5, respectively. Table 6 shows the Cr content of the weld metal and the welding wire, the results of the Charpy impact test, and the results of the corrosion test. For the corrosion test, a rotary immersion test apparatus shown in FIG. 2 was used. In order to investigate the state of local corrosion, the sample after the test was 5 mm x 25 mm x
The sample was cut into 100 mm strips, and eight sections were observed. The average value was obtained.

【0015】[0015]

【表1】 [Table 1]

【0016】[0016]

【表2】 [Table 2]

【0017】[0017]

【表3】 [Table 3]

【0018】[0018]

【表4】 [Table 4]

【0019】[0019]

【表5】 [Table 5]

【0020】[0020]

【表6】 [Table 6]

【0021】各試料と衝撃試験成績および局部腐食代の
関係を表6示す。なお、表6に示す局部腐食代とは、溶
接金属の腐食代(厚み)と母材の腐食代(厚み)の差を
表し、正の値は溶接金属より母材の腐食代が大きいこ
と、逆に負の値は母材より溶接金属の腐食代の大きいこ
とを示す。この表に明らかなように、Cr含有量の高い内
面溶接金属が板厚の76%を占める継手C (比較例1)
は、局部腐食はほとんど発生していないが、衝撃試験成
績が低い。一方、Cr含有量が高い内面溶接金属が板厚の
27%である継手A(本発明例1)は衝撃試験成績が高
い。また、内面溶接金属が板厚の約50%である継手B
(本発明例2)においても、シャルピー吸収エネルギー
は高く、ラインパイプの一般的な設計エネルギーである
40J以上を十分満足できることが分かった。また、本発
明例1, 2および比較例1は、局部腐食は4週間の試験
期間中はほとんど発生していないが、溶接金属のCr含有
量が母材のそれより約 0.4wt%低い継手D(比較例2)
は、他の3種の継手に対して溶接金属側で約10倍の腐食
代が生じている。以上のことから、長期に腐食環境にお
かれて腐食が進み、内面の高Cr部がなくなった場合、急
激に局部腐食が生じ、パイプの漏洩につながるおそれが
考えられ、設計腐食代以上の範囲は母材とほぼ同等のCr
を含有させた溶接金属とすることが必須であると言え
る。
Table 6 shows the relationship between each sample and the results of the impact test and the local corrosion allowance. The local corrosion allowance shown in Table 6 represents the difference between the corrosion allowance (thickness) of the weld metal and the corrosion allowance (thickness) of the base metal, and a positive value indicates that the base metal has a larger corrosion allowance than the weld metal. Conversely, a negative value indicates that the corrosion allowance of the weld metal is larger than that of the base metal. As is clear from this table, the joint C in which the inner weld metal having a high Cr content accounts for 76% of the plate thickness (Comparative Example 1)
Has almost no local corrosion, but has low impact test results. On the other hand, the inner surface weld metal with high Cr content
The joint A (Example 1 of the present invention) having 27% has a high impact test result. In addition, joint B in which the inner surface weld metal is about 50% of the plate thickness
Also in (Example 2 of the present invention), the Charpy absorbed energy is high, which is a general design energy of a line pipe.
It turned out that 40J or more can be fully satisfied. In Examples 1 and 2 of the present invention and Comparative Example 1, although local corrosion hardly occurred during the test period of 4 weeks, the joint D in which the Cr content of the weld metal was about 0.4 wt% lower than that of the base metal was obtained. (Comparative Example 2)
Has about 10 times more corrosion allowance on the weld metal side than the other three types of joints. Based on the above, if corrosion progresses in a corrosive environment for a long time and the high Cr portion on the inner surface disappears, local corrosion may suddenly occur, leading to leakage of the pipe, and it is considered that the corrosion rate may exceed the design corrosion allowance. Is Cr equivalent to the base metal
Can be said to be essential.

【0022】次に、本発明の第2の実施例について述べ
る。この実施例は、0.6 wt%のCrを含有する板厚25mmの
母材 (API 規格5L×60) に対して、内外面とも各1層の
サブマージアーク溶接を行い、外面溶接金属のCr含有量
を約0.4 wt%から1.6 wt%まで5段階に変化させた溶接
鋼管を作製した。また、比較例として、内外面とも溶接
金属のCr含有量を約 0.6wt%及び約1.6 wt%とそれぞれ
同一とした溶接鋼管を作製した。これらについて溶接金
属部のシャルピー衝撃試験を行った。表7に母材の化学
組成を、表8に開先形状と溶接条件を示す。鋼管の溶接
部より試験片を作製し、前記表3に示す条件で熱処理を
行ったものと行わないものについて、試験温度を−30℃
から−10℃に変えた以外は前記表4に示す条件でシャル
ピー衝撃試験を行った。
Next, a second embodiment of the present invention will be described. In this example, a single-layer submerged arc welding was performed on both the inner and outer surfaces of a 25 mm thick base material (API standard 5L × 60) containing 0.6 wt% Cr, and the Cr content of the outer surface weld metal was measured. Welded steel pipes were prepared in which was changed in five stages from about 0.4 wt% to 1.6 wt%. Further, as comparative examples, welded steel pipes in which the Cr content of the weld metal was equal to about 0.6 wt% and about 1.6 wt% on both the inner and outer surfaces were produced. These were subjected to a Charpy impact test of the weld metal. Table 7 shows the chemical composition of the base material, and Table 8 shows the groove shape and welding conditions. A test piece was prepared from the welded portion of the steel pipe, and the test temperature was set to -30 ° C for those subjected to heat treatment under the conditions shown in Table 3 and those not subjected to heat treatment.
The Charpy impact test was performed under the conditions shown in Table 4 except that the temperature was changed to -10 ° C.

【0023】各試料の内・外面側溶接金属のCr含有量と
シャルピー衝撃試験結果の関係を表9に示す。本発明例
3〜7においては、内面溶接金属のCr含有量が多くなる
ほど衝撃エネルギーが低くなっているが、この理由は内
面溶接金属が引続き行われる外面溶接金属により熱影響
を受ける際に、Crの焼入れ硬化性により、内面溶接金属
の一部が脆化したためである。しかしながら、この範囲
ではラインパイプの一般的な設計基準である40Jを確
保することは可能であり、さらに熱処理後は衝撃性が向
上していることがわかる。一方、比較例3, 4において
は、外面溶接金属のCr含有量が比較的高いために、溶接
ままの状態の衝撃性は内面溶接金属のCr含有量が同等で
ある本発明例4または7に比較して高いものの、熱処理
後は極端に低くなっている。
Table 9 shows the relationship between the Cr content of the inner and outer surface side weld metals of each sample and the results of the Charpy impact test. In Examples 3 to 7 of the present invention, the higher the Cr content of the inner surface weld metal, the lower the impact energy. The reason for this is that when the inner surface weld metal is thermally affected by the successive outer surface weld metal, This is because part of the inner surface weld metal was embrittled by the quench hardening property of the steel. However, in this range, it is possible to secure 40 J, which is a general design standard for line pipes, and it is understood that the impact resistance is improved after the heat treatment. On the other hand, in Comparative Examples 3 and 4, since the Cr content of the outer surface weld metal was relatively high, the impact strength in the as-welded state was lower than that of Inventive Example 4 or 7 in which the Cr content of the inner surface weld metal was equivalent. Although relatively high, it is extremely low after heat treatment.

【0024】[0024]

【表7】 [Table 7]

【0025】[0025]

【表8】 [Table 8]

【0026】[0026]

【表9】 [Table 9]

【0027】以上より、溶接まま及び熱処理後の両方の
状態でバランスのとれた靱性を得るために、外面側の溶
接金属のCr含有量を母材及び内面溶接金属のCr含有量よ
りも低くした本発明の優位性が判る。
As described above, in order to obtain a balanced toughness both in the as-welded state and after the heat treatment, the Cr content of the outer side weld metal is made lower than that of the base metal and the inner side weld metal. The superiority of the present invention is understood.

【0028】[0028]

【発明の効果】以上説明したように、本発明の溶接鋼管
は、たとえ熱処理鋼管であったとしても靱性に優れ、か
つ炭酸ガスを含む流体輸送ライン等において全面腐食お
よび局部腐食が少なく、長寿命のパイプライン用鋼管を
得ることができる。
As described above, the welded steel pipe of the present invention is excellent in toughness even if it is a heat-treated steel pipe, has little overall corrosion and local corrosion in a fluid transportation line containing carbon dioxide gas, and has a long service life. Can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】Cr含有量とシャルピー衝撃性能との関係を示す
図である。
FIG. 1 is a diagram showing the relationship between Cr content and Charpy impact performance.

【図2】CO2 腐食試験装置の説明図である。FIG. 2 is an explanatory diagram of a CO 2 corrosion test apparatus.

【図3】試験片採取容量の図である。FIG. 3 is a diagram of a test piece collection capacity.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) B23K 9/23 C22C 38/00 C22C 38/28 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) B23K 9/23 C22C 38/00 C22C 38/28

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 Cr含有量が0.25〜1.0 wt%である母材を
使い、かつ溶接接合部の内・外面をそれぞれ1層以上の
サブマージアーク溶接を施すことによって得られる溶接
鋼管において、この鋼管の内面より設計腐食代に相当す
る厚み以上から板厚の50%以下にあたる厚みまでの範囲
については、溶接金属のCr含有量が母材のCr含有量に対
して−0.2 〜+1.0 wt%の範囲内となるCrを含み、そし
て、残厚部分の溶接金属のCr含有量は母材及び前記内面
側溶接金属のCr含有量未満の範囲にあることを特徴とす
る耐炭酸ガス腐食性に優れた溶接鋼管。
1. A welded steel pipe obtained by using a base metal having a Cr content of 0.25 to 1.0 wt% and performing one or more layers of submerged arc welding on each of the inner and outer surfaces of the welded joint. In the range from the thickness corresponding to the design corrosion allowance to the thickness corresponding to 50% or less of the plate thickness, the Cr content of the weld metal is -0.2 to +1.0 wt% with respect to the Cr content of the base metal. The Cr content of the weld metal in the remaining thickness portion is within the range of less than the Cr content of the base metal and the Cr on the inner surface side weld metal. Excellent welded steel pipe.
JP31826693A 1993-12-17 1993-12-17 Welded steel pipe with excellent carbon dioxide gas corrosion resistance Expired - Fee Related JP3160452B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31826693A JP3160452B2 (en) 1993-12-17 1993-12-17 Welded steel pipe with excellent carbon dioxide gas corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31826693A JP3160452B2 (en) 1993-12-17 1993-12-17 Welded steel pipe with excellent carbon dioxide gas corrosion resistance

Publications (2)

Publication Number Publication Date
JPH07171684A JPH07171684A (en) 1995-07-11
JP3160452B2 true JP3160452B2 (en) 2001-04-25

Family

ID=18097287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31826693A Expired - Fee Related JP3160452B2 (en) 1993-12-17 1993-12-17 Welded steel pipe with excellent carbon dioxide gas corrosion resistance

Country Status (1)

Country Link
JP (1) JP3160452B2 (en)

Also Published As

Publication number Publication date
JPH07171684A (en) 1995-07-11

Similar Documents

Publication Publication Date Title
JP3427387B2 (en) High strength welded steel structure with excellent corrosion resistance
RU2421539C2 (en) Martensite stainless steel for welded structures
US6042782A (en) Welding material for stainless steels
EP0867256A1 (en) Welding material for stainless steels
KR20150101469A (en) Coated electrode
JPH10146691A (en) Method for welding high chromium steel
JP2004090045A (en) Gas shielded arc welding wire for low alloy steel excellent in hydrochloric acid resistance and sulfuric acid resistance, and gas shielded arc welding method using same
WO1997024203A1 (en) Method of manufacturing large diameter welded steel pipe having high strength and toughness
EP0393522A1 (en) Steel pipe and a method for welding thereof and pipeline resistant to carbon dioxide corrosion
JP4631414B2 (en) High tough, thick welded steel pipe with excellent sour resistance
EP0546549A1 (en) Line pipe having good corrosion-resistance and weldability
JP2002226947A (en) Martensitic stainless steel welded joint having excellent strain aging resistance
JP3160452B2 (en) Welded steel pipe with excellent carbon dioxide gas corrosion resistance
JP4314903B2 (en) Welded joints using stainless steel with excellent weldability
JP3475885B2 (en) Welding material for low thermal expansion alloy, method for manufacturing welded pipe, and method for circumferential welding of welded pipe
JP3541778B2 (en) Welded steel pipe with excellent carbon dioxide corrosion resistance and hydrogen sulfide cracking resistance
JP3165902B2 (en) High Cr steel welding method
JPH04253572A (en) Butt welding method for clad pipe
JPH11277293A (en) Welding metal and welding joint excellent in reheat crack resistance
JP2503329B2 (en) Steel for line pipes with excellent carbon dioxide corrosion resistance and HIC resistance to hydrogen sulfide gas
JP2004181527A (en) Wire for mig welding of martensitic stainless steel pipe and welding method for the same pipe
JPH07106455B2 (en) Pipeline excellent in carbon dioxide corrosion resistance, steel pipe for it, and its circumferential welding method
JP7360032B2 (en) Austenitic heat resistant steel welded joints
Fager et al. Welding of the super duplex stainless steel sandvik SAF2507™(UNS S32750)
JPH08252690A (en) Weld metal for gas metal arc welding

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees