JP3158734B2 - Contact load estimation device, longitudinal acceleration calculation device and lateral acceleration calculation device - Google Patents

Contact load estimation device, longitudinal acceleration calculation device and lateral acceleration calculation device

Info

Publication number
JP3158734B2
JP3158734B2 JP29728892A JP29728892A JP3158734B2 JP 3158734 B2 JP3158734 B2 JP 3158734B2 JP 29728892 A JP29728892 A JP 29728892A JP 29728892 A JP29728892 A JP 29728892A JP 3158734 B2 JP3158734 B2 JP 3158734B2
Authority
JP
Japan
Prior art keywords
load
vehicle
contact load
relative
acceleration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP29728892A
Other languages
Japanese (ja)
Other versions
JPH06147963A (en
Inventor
横山  隆久
雅彦 神谷
茂文 中村
石川  浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP29728892A priority Critical patent/JP3158734B2/en
Publication of JPH06147963A publication Critical patent/JPH06147963A/en
Application granted granted Critical
Publication of JP3158734B2 publication Critical patent/JP3158734B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/0195Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the regulation being combined with other vehicle control systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/019Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the type of sensor or the arrangement thereof
    • B60G17/01941Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the type of sensor or the arrangement thereof characterised by the use of piezoelectric elements, e.g. sensors or actuators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/10Acceleration; Deceleration
    • B60G2400/104Acceleration; Deceleration lateral or transversal with regard to vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/10Acceleration; Deceleration
    • B60G2400/106Acceleration; Deceleration longitudinal with regard to vehicle, e.g. braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/60Load
    • B60G2400/61Load distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2401/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60G2401/10Piezoelectric elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/70Estimating or calculating vehicle parameters or state variables
    • B60G2800/702Improving accuracy of a sensor signal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/90System Controller type
    • B60G2800/91Suspension Control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/90System Controller type
    • B60G2800/92ABS - Brake Control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/90System Controller type
    • B60G2800/97Engine Management System [EMS]

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Vehicle Body Suspensions (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、車両各輪の接地荷重を
推定する接地荷重推定装置、その推定された接地荷重を
用いて車両に作用する前後加速度を算出する前後加速度
算出装置と横加速度を算出する横加速度算出装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ground contact load estimating device for estimating a ground contact load of each wheel of a vehicle, a longitudinal acceleration calculating device for calculating a longitudinal acceleration acting on a vehicle using the estimated ground contact load, and a lateral acceleration. The present invention relates to a lateral acceleration calculation device that calculates

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】車両の
接地荷重を推定しようとする場合、従来の技術ではサス
ペンションのばね下のアクスル部分にひずみゲージを取
り付け、そのひずみ具合いより接地荷重を推定する方法
があった。しかしこの方法では、ひずみゲージ、ひずみ
アンプが必要となり、非常に高価となる。またサスペン
ションのアクスル部分という過酷な条件下に測定装置を
搭載しなければならず、信頼性の面でも大きな問題があ
った。
2. Description of the Related Art In order to estimate the ground contact load of a vehicle, in the prior art, a strain gauge is attached to an axle portion under a spring of a suspension, and the ground contact load is estimated from the degree of distortion. There was a way. However, this method requires a strain gauge and a strain amplifier, and is very expensive. In addition, the measuring device must be mounted under severe conditions such as the axle portion of the suspension, and there has been a major problem in terms of reliability.

【0003】もう一つの方法として、ハイドロニューマ
チック車の場合、その油圧を測定することにより、接地
荷重を推定するすることが可能であったが、この方法も
ハイドロニューマチック車にしか応用できないものであ
った。そこで本発明は、既に搭載されている又は簡単に
搭載可能な、数少ない検出信号より接地荷重を検出する
装置、及び接地荷重に付随して前後及び横加速度を推定
あるいは算出する装置を提供することを目的とする。
[0003] As another method, in the case of a hydropneumatic vehicle, it was possible to estimate the ground contact load by measuring the oil pressure, but this method is also applicable only to a hydropneumatic vehicle. Met. Accordingly, the present invention provides a device that detects a ground contact load from a small number of detection signals that are already mounted or can be easily mounted, and a device that estimates or calculates longitudinal and lateral acceleration accompanying the ground load. Aim.

【0004】[0004]

【課題を解決するための手段及び作用】上記課題を解決
するためなされた本発明の接地荷重推定装置は、車両ば
ね上・ばね下間の相対変位または相対速度または相対加
速度の内の少なくとも一つを検出する検出手段と、該検
出手段により検出した相対変位または相対速度または相
対加速度に基づいて車両各輪の接地荷重を算出する接地
荷重算出手段とを備えたことを特徴とする。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides a contact-load estimating apparatus comprising at least one of a relative displacement, a relative speed, and a relative acceleration between a vehicle sprung and a vehicle unsprung. And ground contact load calculating means for calculating the ground load of each wheel of the vehicle based on the relative displacement, relative speed, or relative acceleration detected by the detecting means.

【0005】そして、上記接地荷重算出手段は、上記相
対変位または相対速度または相対加速度の内の少なくと
も一つを用い、以下の接地荷重推定式、
[0005] The contact load calculating means uses at least one of the relative displacement, the relative speed, and the relative acceleration, and calculates the following contact load estimation formula:

【0006】[0006]

【数2】 (Equation 2)

【0007】(但し、M1はばね下荷重、M2はばね上
荷重、K2はサスペンションスプリングのばね定数、C
はアブソーバの減衰係数、Yはばね上・ばね下間の相対
変位、dYは同相対速度、d2 Yは同相対加速度であ
る。)に基づいて上記接地荷重を算出するとよい。ここ
で、上記接地荷重推定式によって接地荷重を推定する原
理について説明しておく。
(Where M1 is the unsprung load, M2 is the sprung load, K2 is the spring constant of the suspension spring, C
Is the damping coefficient of the absorber, Y is the relative displacement between sprung and unsprung, dY is the same relative speed, and d 2 Y is the same relative acceleration. ) May be calculated. Here, the principle of estimating the contact load by the above-described contact load estimation formula will be described.

【0008】図1に車両の一輪分に相当する一輪二自由
度モデルを示す。ここで、M1はばね下荷重、M2はば
ね上荷重、K2はサスペンションスプリングのばね定
数、Cはアブソーバの減衰係数、K1はタイヤのばね定
数、X0は路面変位、X1はばね下変位、X2はばね上
変位、Yはばね上・ばね下間の相対変位である。
FIG. 1 shows a one-wheel two-degree-of-freedom model corresponding to one wheel of a vehicle. Here, M1 is the unsprung load, M2 is the sprung load, K2 is the spring constant of the suspension spring, C is the damping coefficient of the absorber, K1 is the spring constant of the tire, X0 is the road surface displacement, X1 is the unsprung displacement, and X2 is the unsprung displacement. The sprung displacement, Y, is the relative displacement between sprung and unsprung.

【0009】ばね上・ばね下マスの運動方程式を考える
と以下の(1)及び(2)式のように表される。
Considering the equations of motion of the sprung mass and the unsprung mass, they are expressed by the following equations (1) and (2).

【0010】[0010]

【数3】 (Equation 3)

【0011】また、接地荷重Fは以下の(3)式のよう
に表されるので、上記(1),(2)式を代入して変形
すると、以下の(4)式のように表すことができる。
Further, since the contact load F is expressed by the following equation (3), if the above equations (1) and (2) are substituted and deformed, the following equation (4) is obtained. Can be.

【0012】[0012]

【数4】 (Equation 4)

【0013】この推定式中にはM1,M2,K2,Cの
可変パラメータが存在するが、M1,M2,K2はほぼ
一定であり、残りのCも図2に示す速度dYと減衰力推
定値(C・dY)との関係を示すグラフに基づいて、d
Yが定まれば(C・dY)として推定することが可能で
ある。よって、ハイトセンサまたは圧電センサ等によ
り、YまたはdYまたはd2 Yが求まれば、接地荷重F
を推定することが可能である。
Although there are variable parameters of M1, M2, K2, and C in this estimation formula, M1, M2, and K2 are almost constant, and the remaining C also includes the speed dY and the estimated damping force shown in FIG. Based on a graph showing the relationship with (C · dY), d
If Y is determined, it can be estimated as (C · dY). Therefore, if Y or dY or d 2 Y is determined by a height sensor or a piezoelectric sensor, the grounding load F
Can be estimated.

【0014】また、上記接地荷重推定装置を備え、その
接地荷重推定装置によって推定された接地荷重を用い、
車両前後輪の接地荷重差に基づいて車両に作用する前後
加速度を算出する前後加速度算出装置や、上記接地荷重
推定装置によって推定された接地荷重を用い、車両左右
輪の接地荷重差に基づいて車両に作用する横加速度を算
出する横加速度算出装置を得ることができる。これらの
装置により、従来のような前後Gセンサや横Gセンサを
必要とすることなく、前後加速度あるいは横加速度を算
出することができる。
The present invention further comprises the above-mentioned contact load estimating device, and uses the contact load estimated by the contact load estimating device,
A longitudinal acceleration calculator that calculates longitudinal acceleration acting on the vehicle based on a difference in the grounding load between the front and rear wheels of the vehicle, and a grounding load estimated by the grounding load estimating device. Lateral acceleration calculating device for calculating the lateral acceleration acting on the vehicle. With these devices, it is possible to calculate the longitudinal acceleration or the lateral acceleration without requiring the longitudinal G sensor or the lateral G sensor as in the related art.

【0015】[0015]

【実施例】以下本発明の実施例について説明する。ま
ず、前記接地荷重推定原理(図1及び図2を参照して説
明済み)に基づき、接地荷重推定装置の第1実施例を説
明する。本第1実施例はハイトセンサを用いた場合であ
る。
Embodiments of the present invention will be described below. First, a first embodiment of the contact load estimation device will be described based on the contact load estimation principle (explained with reference to FIGS. 1 and 2). The first embodiment is a case where a height sensor is used.

【0016】図3に示すように、ハイトセンサ1a〜1
dは、前後輪4つの車輪101a〜101dとボディ1
02間に取り付けられ、各車輪101a〜101dとボ
ディ102との距離を測定するものである。また、図4
に示すように制御装置10を備えており、少なくともイ
ンターフェース回路11、演算処理装置13、記憶装置
15を有するマイクロコンピュータで構成されている。
インターフェース回路11の入力側にはハイトセンサ1
a〜1dからの信号がそれぞれ供給され、その出力側か
らは後述する接地荷重推定演算処理による演算結果Sa
〜Sdが出力される。
As shown in FIG. 3, height sensors 1a to 1a
d is the front and rear four wheels 101a to 101d and the body 1
02, which measures the distance between each of the wheels 101a to 101d and the body 102. FIG.
As shown in FIG. 1, a control device 10 is provided, and is constituted by a microcomputer having at least an interface circuit 11, an arithmetic processing device 13, and a storage device 15.
A height sensor 1 is provided on the input side of the interface circuit 11.
a to 1d are supplied, and from the output side, the calculation result Sa by the later-described grounding load estimation calculation processing
To Sd are output.

【0017】接地荷重推定演算処理について、図5のフ
ローチャートを参照して説明する。なお、この演算処理
は、各ハイトセンサ1a〜1dからの信号に応じ、それ
ぞれ対応する車輪101a〜101dに関する値に基づ
いて演算が行われる。ステップ100(以下単にS10
0と言う。以下同様。)で初期設定がされた後、S11
0でハイトセンサ1a〜1dからの相対変位(Y)信号
を取り込み、Yの値を、メモリ1として記憶する。そし
て、S120において、相対変位(Y)にゲイン(K
2)を掛けてばね力(K2・Y)を得て、メモリ2とし
て記憶する。ここで、ゲイン(K2)はサスペンション
スプリングのばね定数である。
The ground load estimation calculation processing will be described with reference to the flowchart of FIG. In this calculation process, calculation is performed based on the values of the corresponding wheels 101a to 101d in accordance with signals from the height sensors 1a to 1d. Step 100 (hereinafter simply referred to as S10
Say 0. The same applies hereinafter. After the initial setting in (), S11
At 0, the relative displacement (Y) signals from the height sensors 1a to 1d are fetched, and the value of Y is stored as the memory 1. Then, in S120, the gain (K) is added to the relative displacement (Y).
2) is applied to obtain a spring force (K2 · Y) and stored as the memory 2. Here, the gain (K2) is a spring constant of the suspension spring.

【0018】S130では前記メモリ1(相対変位Y)
を読み込み、微分処理して相対速度(dY)を求めてメ
モリ3として記憶し、S140において、アブソーバの
減衰係数(C)を相対速度(dY)に掛けて減衰力推定
値(C・dY)を得る。そして、S150で、メモリ2
(K2・Y)を読み込み減衰力推定値(C・dY)に加
算し、S160でその加算したものにゲイン{−(M1
+M2)/M2}を掛けてメモリ4として記憶する。こ
こで、M1は一輪当りのばね下荷重、M2は一輪当りの
ばね上荷重である。
In S130, the memory 1 (relative displacement Y)
Is read and differentiated to obtain a relative speed (dY), which is stored in the memory 3. In S140, the damping force estimated value (C · dY) is multiplied by the damping coefficient (C) of the absorber by the relative speed (dY). obtain. Then, in S150, the memory 2
(K2 · Y) is added to the read damping force estimated value (C · dY), and in S160, the sum is added to the gain {− (M1
+ M2) / M2} and store it as the memory 4. Here, M1 is the unsprung load per wheel, and M2 is the sprung load per wheel.

【0019】次にS170では、メモリ3(相対速度d
Y)を読み込み微分処理して相対加速度(d2 Y)を得
て、S180でゲイン(−M1)を掛ける。そして、S
190において、前記メモリ4を読み込んでS180で
の結果に加算すると以下の(5)式に示すようになり、
接地荷重(F)を推定することができる。
Next, in S170, the memory 3 (relative speed d
To give a relative acceleration (d 2 Y) and read differential processing of Y), multiplied by the gain (-M1) in S180. And S
At 190, when the memory 4 is read and added to the result at S180, the following expression (5) is obtained.
The contact load (F) can be estimated.

【0020】[0020]

【数5】 (Equation 5)

【0021】最後にS2000では、S190で演算さ
れた接地荷重(F)を出力して本処理を終了する。次に
接地荷重推定装置の第2実施例について説明する。上記
第1実施例では、ハイトセンサ1a〜1dを用いた例を
説明したが、本第2実施例では、ピエゾ素子等を用いた
圧電センサを搭載した場合について説明する。
Finally, in S2000, the ground contact load (F) calculated in S190 is output, and this processing ends. Next, a second embodiment of the contact load estimation device will be described. In the above-described first embodiment, an example using the height sensors 1a to 1d has been described. In the second embodiment, a case in which a piezoelectric sensor using a piezo element or the like is mounted will be described.

【0022】図6に示すように、圧電センサ3a〜3d
は、前後輪4つの車輪101a〜101dそれぞれに対
応して設けられたショックアブソーバのアブソーバロッ
ド103a〜103dに取り付けられており、減衰力の
変化率を測定するためのものである。また、上記第1実
施例と同様に、図7に示す制御装置20を備えており、
少なくともインターフェース回路21、演算処理装置2
3、記憶装置25を有するマイクロコンピュータで構成
されている。インターフェース回路21の入力側には圧
電センサ3a〜3dからの信号が供給され、その出力側
からは後述する接地荷重推定演算処理による演算結果S
a〜Sdが出力される。
As shown in FIG. 6, the piezoelectric sensors 3a to 3d
Are mounted on absorber rods 103a to 103d of shock absorbers provided corresponding to the four front and rear wheels 101a to 101d, respectively, for measuring the rate of change of the damping force. Further, similarly to the above-described first embodiment, a control device 20 shown in FIG.
At least the interface circuit 21 and the arithmetic processing unit 2
3. A microcomputer having a storage device 25. Signals from the piezoelectric sensors 3a to 3d are supplied to the input side of the interface circuit 21, and the output side of the interface circuit 21 calculates the calculation result S by the later-described grounding load estimation calculation processing.
a to Sd are output.

【0023】本第2実施例による接地荷重推定演算処理
について、図8のフローチャートを参照して説明する。
なお、この演算処理は、各圧電センサ3a〜3dからの
信号に応じ、それぞれ対応する車輪101a〜101d
に関する値に基づいて演算が行われる。
The grounding load estimating operation according to the second embodiment will be described with reference to the flowchart of FIG.
Note that this calculation process is performed in accordance with signals from the piezoelectric sensors 3a to 3d, and the corresponding wheels 101a to 101d, respectively.
The calculation is performed based on the value of

【0024】S300で初期設定がされた後、S310
で圧電センサ3a〜3dからの減衰力変化率(C・d2
Y)を取り込み、メモリ1として記憶する。そして、S
320において、S310で取り込んだ減衰力変化率
(C・d2 Y)を積分処理し、減衰力推定値(C・d
Y)を得てメモリ2として記憶する。S330では、図
2に示すdYと(C・dY)との関係を示すグラフに基
づいたマップ(図示せず)を参照して相対速度(dY)
を推定してメモリ3として記憶し、さらにメモリ2の減
衰力推定値(C・dY)より減衰係数(C)を推定す
る。
After the initial setting in S300, S310
, The rate of change of the damping force from the piezoelectric sensors 3a to 3d (C · d 2
Y) is fetched and stored as the memory 1. And S
At 320, the damping force change rate (C · d 2 Y) captured at S310 is integrated, and the damping force estimated value (C · d
Y) is obtained and stored as the memory 2. In S330, the relative speed (dY) is referred to with reference to a map (not shown) based on the graph showing the relationship between dY and (C · dY) shown in FIG.
Is estimated and stored as the memory 3, and the damping coefficient (C) is further estimated from the damping force estimated value (C · dY) of the memory 2.

【0025】S340では、メモリ1(減衰力変化率
(C・d2 Y))とS330で推定された減衰係数
(C)とに基づき、相対加速度(d2 Y)を推定し、S
350でその相対加速度(d2 Y)にゲイン(−M1)
を掛けてメモリ4として記憶する。次に、S360で
は、メモリ3(相対速度dY)を読み込んで積分処理し
て相対変位(Y)を推定する。そして、S370で、そ
の相対変位(Y)にゲイン(K2)を掛けてばね力(K
2・Y)を得た後、メモリ2(減衰力推定値(C・d
Y))と加算する。
In S340, a relative acceleration (d 2 Y) is estimated based on the memory 1 (damping force change rate (C · d 2 Y)) and the damping coefficient (C) estimated in S330.
At 350, gain (−M1) to the relative acceleration (d 2 Y)
And store it as the memory 4. Next, in S360, the memory 3 (relative speed dY) is read and integrated to estimate the relative displacement (Y). Then, in S370, the relative displacement (Y) is multiplied by a gain (K2) to apply a spring force (K).
After obtaining 2 · Y, the memory 2 (damping force estimated value (C · d
Y)).

【0026】続いてS380では、S370での結果
(C・dY+K2・Y)にゲイン{−(M1+M2)/
M2}を掛ける。そして、S390において、メモリ4
を読み込み、S380での結果を加算すると以下の
(6)式に示すようになり、接地荷重(F)を推定する
ことができる。
Subsequently, in S380, the result of (C · dY + K2 · Y) in S370 is added to the gain {− (M1 + M2) /
Multiply by M2}. Then, in S390, the memory 4
Is read, and the result in S380 is added, as shown in the following equation (6), and the contact load (F) can be estimated.

【0027】[0027]

【数6】 (Equation 6)

【0028】最後にS400では、S390で演算され
た接地荷重(F)を出力して本処理を終了する。なお、
上記第1実施例ではハイトセンサ1a〜1dから取り込
んだ相対変位(Y)を用い、第2実施例では圧電センサ
3a〜3dから取り込んだ減衰力変化率(C・d2 Y)
を用いて演算した例を示したが、上述した接地荷重推定
原理より相対変位(Y)、相対速度(dY)、相対加速
度(d2 Y)または各値にばね定数(K2)あるいは減
衰係数(C)を掛けたものの内から一つ以上測定すれ
ば、接地荷重(F)を推定演算することが可能である。
Finally, in S400, the ground contact load (F) calculated in S390 is output, and this processing ends. In addition,
In the first embodiment, the relative displacement (Y) taken from the height sensors 1a to 1d is used, and in the second embodiment, the damping force change rate (C · d 2 Y) taken from the piezoelectric sensors 3a to 3d.
An example is shown which is calculated using the relative displacement from the ground contact load estimated principle described above (Y), the relative velocity (dY), the relative acceleration (d 2 Y) or values on a spring constant (K2) or attenuation coefficient ( By measuring one or more of the values multiplied by C), it is possible to estimate and calculate the contact load (F).

【0029】前後輪4つの車輪101a〜101dそれ
ぞれの接地荷重Fが求められると、これに付随して、車
両の減速・加速状態及び旋回状態を判定することが可能
となる。まず、接地荷重Fと前後Gとの関係を説明す
る。図9(A)において、車両質量をM、地面から車両
重心までの距離をH、フロント車軸・重心間距離をL
1、ホイールベースをLとし、制動減速度αでの制動中
の前輪の接地荷重をF1、後輪の接地荷重をF2とす
る。重力加速度をgとすると、前後輪の接地荷重をF
1,F2はそれぞれ以下の(7)、(8)式に示すよう
になる。
When the ground contact load F of each of the four front and rear wheels 101a to 101d is obtained, it is possible to judge the deceleration / acceleration state and the turning state of the vehicle accompanying this. First, the relationship between the ground load F and the front and rear G will be described. In FIG. 9A, the vehicle mass is M, the distance from the ground to the vehicle center of gravity is H, and the distance between the front axle and the center of gravity is L.
1. The wheel base is L, the ground load of the front wheels during braking at the braking deceleration α is F1, and the ground load of the rear wheels is F2. When the gravitational acceleration is g, the contact load of the front and rear wheels is F
1 and F2 are as shown in the following equations (7) and (8), respectively.

【0030】[0030]

【数7】 (Equation 7)

【0031】従って、前後輪の接地荷重差(F1−F
2)は、以下の(9)式に示すようになる。
Therefore, the difference between the ground load of the front and rear wheels (F1-F
2) is as shown in the following equation (9).

【0032】[0032]

【数8】 (Equation 8)

【0033】この(9)式を、縦軸が接地荷重差(F1
−F2)、横軸が減速度αのグラフとして表すと、図9
(B)のように直線で示され、前後輪の接地荷重差が車
両の前後Gに比例していることが判る。前後の荷重移動
量(上記(7)、(8)式中の(H/L)Mα)が車両
の前後Gに比例することから、前後輪の接地荷重差によ
り前後Gが得られる。
In the equation (9), the vertical axis represents the difference in the contact load (F1
−F2), and the horizontal axis represents a graph of the deceleration α, as shown in FIG.
It is shown by a straight line as in (B), and it can be seen that the difference in the ground contact load between the front and rear wheels is proportional to the front and rear G of the vehicle. Since the front and rear load movement amount ((H / L) Mα in the above equations (7) and (8)) is proportional to the front and rear G of the vehicle, the front and rear G can be obtained by the difference in the grounding load of the front and rear wheels.

【0034】次に、接地荷重Fと横Gとの関係を説明す
る。図10(A)において、車両質量をM、地面から車
両重心までの距離をH、ホイールトレッドをTとし、遠
心加速度βでの旋回中の右輪接地荷重をF3、左輪の接
地荷重をF4とする。重力加速度をgとすると、左右輪
の接地荷重をF3,F4はそれぞれ以下の(10)、
(11)式に示すようになる。
Next, the relationship between the contact load F and the lateral G will be described. 10A, the vehicle mass is M, the distance from the ground to the center of gravity of the vehicle is H, the wheel tread is T, the ground contact load of the right wheel during turning at the centrifugal acceleration β is F3, and the ground load of the left wheel is F4. I do. Assuming that the gravitational acceleration is g, the grounding loads of the left and right wheels are F3 and F4, respectively (10),
Equation (11) is obtained.

【0035】[0035]

【数9】 (Equation 9)

【0036】従って、左右輪の接地荷重差(F3−F
4)は、以下の(12)式に示すようになる。
Therefore, the difference between the ground load of the left and right wheels (F3-F
4) is as shown in the following equation (12).

【0037】[0037]

【数10】 (Equation 10)

【0038】この(12)式を、縦軸が接地荷重差(F
3−F4)、横軸が遠心加速度βのグラフとして表す
と、図10(B)のように直線で示され、左右輪の接地
荷重差が車両の横Gに比例していることが判る。左右の
荷重移動量(上記(10)、(11)式中の(H/T)
Mβ)が車両の左右Gに比例することから、左右輪の接
地荷重差により横Gが得られる。
In the equation (12), the vertical axis represents the difference in contact load (F
3-F4), when the horizontal axis is represented as a graph of the centrifugal acceleration β, it is indicated by a straight line as shown in FIG. 10B, and it can be seen that the difference in the contact load between the left and right wheels is proportional to the lateral G of the vehicle. Left and right load movement amounts ((H / T) in the above equations (10) and (11))
Mβ) is proportional to the left and right G of the vehicle, so that the lateral G can be obtained from the difference in the grounding load of the left and right wheels.

【0039】これらの前後G及び横Gの情報を基にして
車両の減速・加速及び旋回状態を判定することができ、
ABS・TRC制御への応用も可能となる。4輪若しく
はそれ以下の各輪のハイトセンサ1a〜1dの出力を用
いて各輪の接地荷重または車両の前後G・横Gが検出で
きることにより、以下に示す点でABS・TRC装置へ
の応用が可能となる。なお、図11には、以下に説明す
る、ハイトセンサ1a〜1dを応用したABS・TRC
装置及び電子制御サスペンション装置の実施例を示すブ
ロック図である。各構成の詳しい説明は省略する。
The deceleration / acceleration and turning state of the vehicle can be determined based on the information on the front / rear G and the side G.
Application to ABS / TRC control is also possible. The output of the height sensors 1a to 1d of four or less wheels can be used to detect the ground contact load of each wheel or the front and rear G and side G of the vehicle, which makes it applicable to ABS / TRC devices in the following points. It becomes possible. FIG. 11 shows an ABS / TRC to which the height sensors 1a to 1d described below are applied.
FIG. 2 is a block diagram showing an embodiment of the device and the electronic control suspension device. Detailed description of each configuration is omitted.

【0040】まず、従来、段差乗越し時にABSが誤作
動して制動不足が生じていた点について説明する。図1
2に示すように、従来は車輪速度信号のみで制御を実行
していたものを、車輪速度信号に加えてハイトセンサ1
a〜1dから得られた接地荷重も考慮することにより、
例えば接地荷重の一時的な抜けである段差を検出し、こ
れに対して適切な処置を行う。
First, a description will be given of a point that conventionally, when the vehicle crosses a step, the ABS malfunctions and braking is insufficient. FIG.
As shown in FIG. 2, the control which has conventionally been performed only with the wheel speed signal is added to the wheel speed signal and the height sensor 1 is used.
By considering the grounding load obtained from a to 1d,
For example, a step which is a temporary disconnection of the ground load is detected, and an appropriate measure is taken.

【0041】すなわち、車輪速度の、一時的な急激な落
込みと復帰に対応して、接地荷重の一時的な急激な抜け
と復帰がある場合は判定した時点でブレーキ油圧の減圧
を中止し、即時にドライバの意図するブレーキ油圧に復
帰させ、制動力の抜けを極力防ぐものとする。これによ
り、大きな制動不足は発生せず、段差乗越しがあっても
ドライバは違和感なく制動できる。
In other words, if there is a temporary sudden drop and return of the ground contact load in response to a temporary sudden drop and return of the wheel speed, the brake oil pressure reduction is stopped at the point of determination. The brake hydraulic pressure intended by the driver is immediately returned to prevent the braking force from coming off as much as possible. As a result, a large lack of braking does not occur, and the driver can brake without feeling uncomfortable even if the driver crosses a step.

【0042】次に、旋回制動時にABSで制動力を大き
くかけるべき外輪側のブレーキ油圧を抑えることにより
制動距離が延びてしまう傾向にあった点について図13
を参照しながら説明する。図13(A)には従来の制御
における結果を示してあり、早期作動による初期減速度
不足が見られる。
FIG. 13 shows that the braking distance tends to be extended by suppressing the brake oil pressure on the outer wheel side where the braking force should be increased by the ABS at the time of turning braking.
This will be described with reference to FIG. FIG. 13 (A) shows the result of the conventional control, and an insufficient initial deceleration due to early operation is seen.

【0043】それに対して、本実施例のABS制御によ
れば、ハイトセンサ1a〜1dの出力により各輪の接地
荷重を得ることや、ハイトセンサ1a〜1dの左右輪の
出力差により車両横Gを得ることによって旋回状態を検
出し、これに対して適切な処置を行う。すなわち、図1
3(B)に示すように、ハイトセンサ1a〜1dからの
信号より得られた旋回程度に基づいて内輪側は早めに制
動力を抑え込み、逆に外輪側は極力制動力をかけるよう
にして、早期作動感をなくすと共に、初期減速度を向上
させることができ、その後も旋回状態に応じた内外輪の
独立制御が可能となる。
On the other hand, according to the ABS control of this embodiment, the ground load of each wheel is obtained by the output of the height sensors 1a to 1d, and the vehicle lateral G is obtained by the output difference between the left and right wheels of the height sensors 1a to 1d. , The turning state is detected, and an appropriate measure is taken. That is, FIG.
As shown in FIG. 3 (B), based on the turning degree obtained from the signals from the height sensors 1a to 1d, the braking force is suppressed early on the inner wheel side, and conversely, the braking force is applied on the outer wheel side as much as possible. The feeling of early operation can be eliminated, and the initial deceleration can be improved. Thereafter, independent control of the inner and outer wheels according to the turning state can be performed.

【0044】これにより、旋回時の制動距離短縮を、高
価な横Gセンサを用いなくても、一般的にエアサスペン
ション装着車に車高調整用として元々装備されているハ
イトセンサ1a〜1dを転用することで達成できる。ま
た、従来は前後Gセンサによる減速度検出により行って
いたABS制御時の路面μ推定や、通常ブレーキでの前
後ブレーキ力配分制御を、高価な前後Gセンサを用いな
くて、上記同様エアサスペンション装着車に車高調整用
として元々装備されているハイトセンサ1a〜1dを転
用(前後輪の出力差が前後Gに相当、またはハイトセン
サ1a〜1dにより各輪接地荷重の変化を考慮)するこ
とにより、実施することが可能となる。
Thus, even if an expensive lateral G sensor is not used, the height sensors 1a to 1d originally provided for adjusting the vehicle height are generally diverted without using an expensive lateral G sensor. Can be achieved. Estimation of road surface μ at the time of ABS control and control of distribution of front and rear braking force with normal braking, which were conventionally performed by detecting the deceleration by the front and rear G sensor, can be performed by installing an air suspension as described above without using an expensive front and rear G sensor. By diverting the height sensors 1a to 1d originally provided for adjusting the vehicle height (the output difference between the front and rear wheels is equivalent to the front and rear G, or considering changes in the ground contact load of each wheel by the height sensors 1a to 1d) , Can be implemented.

【0045】さらに、ABSにおいて制動力の絶対値を
素早くコントロールできるアクチュエータを用いれば、
接地荷重と制動力の絶対値及び車輪速度でのスリップ状
態から路面μを推定しながら、接地荷重と路面μによっ
て最適な制動力を得ることができる。そして、段差・波
状路・砂利道での走行、あるいは旋回等の接地荷重の変
化に対して最適な制動力を加え、さらに小修正を加える
という目標制動力の推定・フィードバックが可能とな
り、各種特殊路面でのABS制御の制動不足が改善でき
る。
Further, by using an actuator capable of quickly controlling the absolute value of the braking force in the ABS,
While estimating the road surface μ from the absolute value of the ground load and the braking force and the slip state at the wheel speed, an optimum braking force can be obtained by the ground load and the road surface μ. Then, it is possible to estimate and feedback the target braking force by applying the optimal braking force to changes in the grounding load such as running on steps, wavy roads, and gravel roads, or turning, and making small corrections. Insufficient braking of the ABS control on the road surface can be improved.

【0046】一方、ABSと同様にTRCにおいても、
従来は段差乗越し時にTRCが誤作動、加速不足が生じ
ていた点について説明する。図14に示すように、従来
は車輪速度信号のみで制御を実行していたものを、車輪
速度信号に加えてハイトセンサ1a〜1dから得られた
接地荷重も考慮することにより、例えば接地荷重の一時
的な抜けである段差を検出し、これに対して適切な処置
を行う。
On the other hand, in the TRC as well as in the ABS,
A description will be given of a point that the TRC has malfunctioned and insufficient acceleration has occurred conventionally when the vehicle crosses a step. As shown in FIG. 14, the control which has conventionally been performed only with the wheel speed signal is considered in consideration of the ground load obtained from the height sensors 1 a to 1 d in addition to the wheel speed signal. A step which is a temporary omission is detected, and appropriate measures are taken.

【0047】すなわち、車輪速度の、一時的な急激な持
ち上がりと復帰に対応して、接地荷重の一時的な急激な
抜けと復帰がある場合は、判定した時点でブレーキ油圧
の増圧を中止し、即時にドライバの意図する駆動力に復
帰させ、駆動力の抜けを極力防ぐものとする。これによ
り、大きな加速不足は発生せず、段差乗越しがあっても
ドライバは違和感なく加速できる。
In other words, if there is a temporary sudden drop and return of the ground contact load in response to a temporary rapid rise and return of the wheel speed, the brake oil pressure increase is stopped at the point of determination. The driving force is immediately returned to the driving force intended by the driver, and the driving force is prevented from falling off as much as possible. As a result, a large lack of acceleration does not occur, and the driver can accelerate without discomfort even if the driver crosses a step.

【0048】また、従来は、TRCにおいて前後・横G
センサ及び操舵角センサを用いてドライバの操舵・加速
意志に対する旋回加速・トレース性の向上を行ってい
た。それに対して、高価な前後・横Gセンサを用いなく
ても、エアサスペンション装着車に車高調整用として元
々装備されているハイトセンサ1a〜1dを転用(な
お、前後輪の出力差が前後Gに相当、左右輪の出力差が
横Gに相当、またはハイトセンサ1a〜1dによる各輪
接地荷重の変化を考慮)することにより、実施すること
が可能となる。
Conventionally, in the TRC, the front / rear / horizontal G
By using the sensor and the steering angle sensor, the turning acceleration and the traceability with respect to the driver's steering and acceleration intention have been improved. On the other hand, the height sensors 1a to 1d originally provided for adjusting the vehicle height of the vehicle equipped with the air suspension can be diverted without using the expensive front / rear / lateral G sensor (the output difference between the front and rear wheels is reduced by the front and rear G sensors). , The output difference between the left and right wheels corresponds to the lateral G, or the change in the ground contact load of each wheel by the height sensors 1a to 1d is taken into account).

【0049】さらに、側溝等に駆動輪が一輪脱輪した場
合には、ハイトセンサ1a〜1d出力のモニタにより一
輪のみの出力が急激に変化し、接地荷重がほとんどなく
なることから、その判定が可能となり、これに対して適
切な処置が行える。すなわち、エンジン制御のTRCで
は脱出不可能なため、警告を発してTRCを解除する
か、またはより積極的にデフロック等の機能を使うこと
により脱出可能とする。
Further, when one of the driving wheels comes off the side groove or the like, the output of only one of the wheels suddenly changes by monitoring the output of the height sensors 1a to 1d, and the contact load almost disappears. And appropriate measures can be taken for this. That is, since it is impossible to escape by the TRC controlled by the engine, a warning is issued to release the TRC, or the escape can be achieved by more actively using a function such as a differential lock.

【0050】また、ブレーキ制御のTRCにおいては、
脱出可能な場合は良いが、脱出不可能な場合にはブレー
キ装置及びTRC装置を保護する意味で、ある制限時間
を設け、警告を発してTRCを解除しブレーキの長時間
負荷を制限するとよい。さらにまた、4輪若しくはそれ
以下の各輪のハイトセンサ1a〜1dの出力を用いて各
輪の接地荷重を検出することにより、以下に示す点で電
子制御サスペンション装置への応用が可能となる。
In the TRC of the brake control,
If it is possible to escape, it is good, but if it is impossible to escape, it is preferable to provide a certain time limit, issue a warning to release the TRC, and limit the long-term load on the brake in order to protect the brake device and the TRC device. Further, by detecting the grounding load of each wheel using the outputs of the height sensors 1a to 1d of each of the four or less wheels, application to an electronically controlled suspension device is possible in the following points.

【0051】従来の電子制御サスペンション装置では、
砂利路等荒れた路面を走行した場合に乗心地向上のため
減衰力をソフトにする方向にあった。しかし、減衰力を
ソフトにした場合、ばね下共振によりばね下がばたつ
き、接地荷重が大きく変化するため操縦安定性が悪くな
ると言う欠点があった。そこで、ハイトセンサ1a〜1
dから得られた接地荷重を用いて適切な制御を行うこと
により、操安性と乗心地との両立が可能となる。
In a conventional electronically controlled suspension device,
When traveling on rough roads such as gravel roads, the tendency was to soften the damping force to improve ride comfort. However, when the damping force is made soft, there is a disadvantage that the unsprung portion flaps due to unsprung resonance and the grounding load changes greatly, so that the steering stability is deteriorated. Therefore, the height sensors 1a to 1
By performing appropriate control using the grounding load obtained from d, it is possible to achieve both stability and ride comfort.

【0052】例えば、図15に示すように、ハイト信号
を読み込んで接地荷重を推定し、バンドパスフィルタ
(例えば10〜15Hz)を掛けて、ばたつきレベル
(例えば所定の値に応じて予め設定されたレベル1〜
3)が決まる。一方、加速度信号が読み込まれ、バンド
パスフィルタ(例えば4〜8Hz)を掛けて、ごつごつ
レベル(例えば所定の値に応じて予め設定されたレベル
1〜3)が決まる。
For example, as shown in FIG. 15, a height signal is read, a ground load is estimated, a band-pass filter (for example, 10 to 15 Hz) is applied, and a flutter level (for example, a preset value is set according to a predetermined value). Level 1
3) is determined. On the other hand, the acceleration signal is read and subjected to a band-pass filter (for example, 4 to 8 Hz) to determine a rugged level (for example, levels 1 to 3 preset according to a predetermined value).

【0053】これらばたつきレベル1〜3及びごつごつ
レベル1〜3の組み合せに対応して予め設定されている
減衰力レベルマップ(本実施例ではソフトS、ミドルソ
フトMS、ミドルM、ミドルハードMH、ハードHの5
種類が設定されている。)を参照して最適な減衰力を決
定し、アクチュエータに出力する。
Damping force level maps (soft S, middle soft MS, middle M, middle hard MH, hard hard MH in this embodiment) set in advance corresponding to the flapping levels 1 to 3 and the lumpy levels 1 to 3 in combination. H of 5
The type has been set. ) To determine the optimal damping force and output it to the actuator.

【0054】このように、ハイトセンサ1a〜1dから
得られた接地荷重の変動を見ることにより、操安性悪化
の程度を知ることができるので、それに応じて減衰力を
ハードにすることにより操安性の向上を図ることができ
る。
As described above, it is possible to know the degree of deterioration of the steering stability by observing the fluctuation of the grounding load obtained from the height sensors 1a to 1d. Security can be improved.

【0055】[0055]

【発明の効果】以上説明したように、本発明の接地荷重
推定装置は、車両ばね上・ばね下間の相対変位または相
対速度または相対加速度の内の少なくとも一つに基づい
て車両各輪の接地荷重を算出することができる。そし
て、前後加速度算出装置や横加速度算出装置は、その接
地荷重推定装置によって推定された接地荷重を用いて車
両に作用する前後加速度や横加速度を算出するため、従
来の前後Gセンサや横Gセンサに比べ簡易となる。
As described above, the apparatus for estimating the contact load according to the present invention provides a method for contacting each wheel of the vehicle based on at least one of the relative displacement or relative speed or relative acceleration between the sprung and unsprung state of the vehicle. The load can be calculated. The longitudinal acceleration calculating device and the lateral acceleration calculating device calculate the longitudinal acceleration and the lateral acceleration acting on the vehicle using the contact load estimated by the contact load estimating device. It is simpler than.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 車両の一輪分に相当する一輪二自由度モデル
を示す説明図である。
FIG. 1 is an explanatory diagram showing a one-wheel two-degree-of-freedom model corresponding to one wheel of a vehicle.

【図2】 速度dYと減衰力推定値C・dYとの関係を
示すグラフである。
FIG. 2 is a graph showing a relationship between a speed dY and a damping force estimated value C · dY.

【図3】 ハイトセンサを備えた4輪車両モデルを示す
概略説明図である。
FIG. 3 is a schematic explanatory view showing a four-wheel vehicle model provided with a height sensor.

【図4】 接地荷重推定装置の第1実施例を示すブロッ
ク図である。
FIG. 4 is a block diagram showing a first embodiment of a contact load estimation device.

【図5】 第1実施例における接地荷重推定演算処理を
示すフローチャートである。
FIG. 5 is a flowchart illustrating a contact load estimation calculation process in the first embodiment.

【図6】 圧電センサの配置を示すショックアブソーバ
の断面図である。
FIG. 6 is a cross-sectional view of a shock absorber showing an arrangement of a piezoelectric sensor.

【図7】 接地荷重推定装置の第2実施例を示すブロッ
ク図である。
FIG. 7 is a block diagram showing a second embodiment of the contact load estimation device.

【図8】 第2実施例における接地荷重推定演算処理を
示すフローチャートである。
FIG. 8 is a flowchart illustrating a grounding load estimation calculation process according to the second embodiment.

【図9】 (A)は接地荷重Fと前後Gとの関係を示す
ための説明図、(B)は縦軸を接地荷重差、横軸を減速
度αとしたグラフである。
FIG. 9A is an explanatory diagram showing the relationship between the contact load F and the front and rear G, and FIG. 9B is a graph in which the vertical axis represents the difference between the contact load and the horizontal axis represents the deceleration α.

【図10】 (A)は接地荷重Fと横Gとの関係を示す
ための説明図、(B)は縦軸を接地荷重差、横軸を遠心
加速度βとしたグラフである。
10A is an explanatory diagram showing a relationship between a contact load F and a lateral G, and FIG. 10B is a graph in which a vertical axis represents a contact load difference and a horizontal axis represents a centrifugal acceleration β.

【図11】 ハイトセンサを応用したABS・TRC装
置及び電子制御サスペンション装置の実施例を示すブロ
ック図である。
FIG. 11 is a block diagram showing an embodiment of an ABS / TRC device and an electronic control suspension device to which a height sensor is applied.

【図12】 段差乗越し時のABS制御へハイトセンサ
を応用した結果を示すタイムチャートである。
FIG. 12 is a time chart showing a result of applying the height sensor to the ABS control when the vehicle crosses a step.

【図13】 旋回制動時のABS制御への応用を示すタ
イムチャートであり、(A)は従来の結果、(B)はハ
イトセンサを応用した本実施例での結果をそれぞれ示
す。
FIGS. 13A and 13B are time charts showing application to ABS control at the time of turning braking. FIG. 13A shows a conventional result, and FIG. 13B shows a result in the present embodiment using a height sensor.

【図14】 段差乗越し時のTRC制御へハイトセンサ
を応用した結果を示すタイムチャートである。
FIG. 14 is a time chart showing a result of applying a height sensor to TRC control when the vehicle crosses a step.

【図15】 減衰力決定に関して電子制御サスペンショ
ン装置へハイトセンサを応用した場合の手順を示す流れ
図である。
FIG. 15 is a flowchart showing a procedure in a case where a height sensor is applied to an electronic control suspension device for determining a damping force.

【符号の説明】[Explanation of symbols]

1a〜1d…ハイトセンサ、 3a〜3d…圧電セン
サ、10,20…制御装置、 11,21…イン
ターフェース回路、13,23…演算処理装置、 1
5,25…記憶装置、101a〜101d…車輪、
102…ボディ、103a〜103d…アブソーバ
ロッド
1a to 1d: height sensor, 3a to 3d: piezoelectric sensor, 10, 20: control device, 11, 21: interface circuit, 13, 23: arithmetic processing device, 1
5, 25: storage device, 101a to 101d: wheels,
102: body, 103a to 103d: absorber rod

───────────────────────────────────────────────────── フロントページの続き (72)発明者 石川 浩 愛知県刈谷市昭和町1丁目1番地 日本 電装株式会社内 (56)参考文献 特開 平2−95913(JP,A) 特開 平4−90916(JP,A) 特開 平2−182525(JP,A) 特開 平2−241813(JP,A) 特開 昭62−199508(JP,A) 特開 昭62−14025(JP,A) 特開 平4−232111(JP,A) 特許2565384(JP,B2) (58)調査した分野(Int.Cl.7,DB名) G01L 5/00 G01P 15/00 B60G 17/015 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Hiroshi Ishikawa 1-1-1, Showa-cho, Kariya-shi, Aichi Japan Inside Denso Co., Ltd. (56) References JP-A-2-95913 (JP, A) JP-A-4- 90916 (JP, A) JP-A-2-182525 (JP, A) JP-A-2-24813 (JP, A) JP-A-62-219958 (JP, A) JP-A-62-140525 (JP, A) JP-A-4-232111 (JP, A) Patent 2565384 (JP, B2) (58) Fields investigated (Int. Cl. 7 , DB name) G01L 5/00 G01P 15/00 B60G 17/015

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 車両ばね上・ばね下間の相対変位または
相対速度または相対加速度の内の少なくとも一つを検出
する検出手段と、該検出手段により検出した相対変位ま
たは相対速度または相対加速度に基づいて車両各輪の接
地荷重を推定する接地荷重推定手段とを備えたことを特
徴とする接地荷重推定装置。
1. A detecting means for detecting at least one of a relative displacement, a relative speed, and a relative acceleration between a vehicle sprung and a vehicle unsprung, and based on the relative displacement, relative speed, or relative acceleration detected by the detecting means. And a contact load estimating means for estimating the contact load of each wheel of the vehicle.
【請求項2】 上記接地荷重推定手段は、上記検出手段
により検出した相対変位または相対速度または相対加速
度の内の少なくとも一つを用い、以下の接地荷重推定
式、 【数1】 (但し、M1はばね下荷重、M2はばね上荷重、K2は
サスペンションスプリングのばね定数、Cはアブソーバ
の減衰係数、Yはばね上・ばね下間の相対変位、dYは
同相対速度、d2 Yは同相対加速度である。)に基づい
て上記接地荷重を推定することを特徴とする請求項1記
載の接地荷重推定装置。
2. The ground contact load estimating means uses at least one of the relative displacement, relative speed, and relative acceleration detected by the detecting means, and calculates the following contact load estimating equation: (However, M1 is the unsprung load, M2 is sprung weight, K2 is the spring constant of the suspension spring, C is the attenuation coefficient of the absorber, Y is the relative displacement between the sprung-unsprung, dY is the relative velocity, d 2 The ground contact load estimating device according to claim 1, wherein the ground contact load is estimated based on Y is the same relative acceleration.).
【請求項3】 上記請求項1または2記載の接地荷重推
定装置を備え、該接地荷重推定装置によって推定された
接地荷重を用い、車両前後輪の接地荷重差に基づいて車
両に作用する前後加速度を算出する前後加速度算出装
置。
3. A longitudinal acceleration acting on a vehicle based on a difference in grounding load between front and rear wheels of a vehicle, using the grounding load estimated by the grounding load estimating device provided with the grounding load estimating device according to claim 1 or 2. Longitudinal acceleration calculation device that calculates
【請求項4】 上記請求項1または2記載の接地荷重推
定装置を備え、該記載の接地荷重推定装置によって推定
された接地荷重を用い、車両左右輪の接地荷重差に基づ
いて車両に作用する横加速度を算出する横加速度算出装
置。
4. A ground load estimating device according to claim 1 or 2, wherein the ground load estimated by the ground load estimating device is applied to a vehicle based on a ground contact difference between left and right wheels of the vehicle. A lateral acceleration calculation device that calculates a lateral acceleration.
JP29728892A 1992-11-06 1992-11-06 Contact load estimation device, longitudinal acceleration calculation device and lateral acceleration calculation device Expired - Lifetime JP3158734B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29728892A JP3158734B2 (en) 1992-11-06 1992-11-06 Contact load estimation device, longitudinal acceleration calculation device and lateral acceleration calculation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29728892A JP3158734B2 (en) 1992-11-06 1992-11-06 Contact load estimation device, longitudinal acceleration calculation device and lateral acceleration calculation device

Publications (2)

Publication Number Publication Date
JPH06147963A JPH06147963A (en) 1994-05-27
JP3158734B2 true JP3158734B2 (en) 2001-04-23

Family

ID=17844578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29728892A Expired - Lifetime JP3158734B2 (en) 1992-11-06 1992-11-06 Contact load estimation device, longitudinal acceleration calculation device and lateral acceleration calculation device

Country Status (1)

Country Link
JP (1) JP3158734B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101966766B1 (en) * 2015-05-21 2019-04-08 아빅 존혼 옵트로닉 테크놀로지 컴퍼니, 리미티드 Floating adjustable sealing mechanism and connector using same
US11351833B2 (en) * 2019-08-01 2022-06-07 Honda Motor Co., Ltd. Electric suspension device

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3366920B2 (en) * 1995-10-17 2003-01-14 株式会社日立ユニシアオートモティブ Loading status judgment device
JP3411429B2 (en) * 1995-10-04 2003-06-03 株式会社日立ユニシアオートモティブ Loading status judgment device
JP3428619B2 (en) * 1997-11-06 2003-07-22 トヨタ自動車株式会社 Vehicle damping force control device
DE10017506C2 (en) * 2000-04-07 2002-08-01 Continental Ag Method for determining the wheel contact force of a motor vehicle
JP2002286744A (en) * 2001-03-22 2002-10-03 Kayaba Ind Co Ltd Device and method of measuring for acceleration
JP2002286743A (en) * 2001-03-22 2002-10-03 Kayaba Ind Co Ltd Device of measuring for vibration and oscillation levels and method of measuring for it
AUPR801301A0 (en) * 2001-09-28 2001-10-25 Kinetic Pty Limited Vehicle suspension system
JP2006192946A (en) * 2005-01-11 2006-07-27 Toyota Motor Corp Wheel grounding load estimating device for vehicle
JP4892866B2 (en) * 2005-05-13 2012-03-07 トヨタ自動車株式会社 Vehicles that grasp changes in vehicle height over time
FR3008646B1 (en) * 2013-07-17 2016-08-26 Renault Sa MANAGEMENT OF A MOTOR VEHICLE DAMPING SYSTEM
JP6499417B2 (en) * 2014-10-27 2019-04-10 Kyb株式会社 Damper control device
EP3393218B1 (en) * 2017-04-21 2019-06-05 C.R.F. Società Consortile per Azioni Elastic support with an integrated load sensor for suspension systems of a motor-vehicle
JP7052311B2 (en) * 2017-11-17 2022-04-12 株式会社アドヴィックス Vehicle driving support device
WO2020120253A1 (en) * 2018-12-14 2020-06-18 Kistler Holding Ag Calibration of a wim sensor
CN113983981A (en) * 2021-10-22 2022-01-28 重庆长安汽车股份有限公司 Method for acquiring sprung and unsprung displacements of damping continuously adjustable shock absorber

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101966766B1 (en) * 2015-05-21 2019-04-08 아빅 존혼 옵트로닉 테크놀로지 컴퍼니, 리미티드 Floating adjustable sealing mechanism and connector using same
US11351833B2 (en) * 2019-08-01 2022-06-07 Honda Motor Co., Ltd. Electric suspension device

Also Published As

Publication number Publication date
JPH06147963A (en) 1994-05-27

Similar Documents

Publication Publication Date Title
JP3158734B2 (en) Contact load estimation device, longitudinal acceleration calculation device and lateral acceleration calculation device
US6654674B2 (en) Enhanced system for yaw stability control system to include roll stability control function
US7421954B2 (en) Active suspension controller
US7571039B2 (en) Vehicle yaw/roll stability control with semi-active suspension
US6593849B2 (en) Wheel lift identification for an automotive vehicle
US6684140B2 (en) System for sensing vehicle global and relative attitudes using suspension height sensors
US6804584B2 (en) Method for determining the roll angle of a vehicle using an estimation of road bank angle
US6697726B2 (en) Rolling control apparatus and method of vehicle
US6526342B1 (en) Vehicle suspensions
US6424907B1 (en) Method and device for determining and detecting the overturning hazard of a vehicle
US6718248B2 (en) System for detecting surface profile of a driving road
US7676307B2 (en) System and method for controlling a safety system of a vehicle in response to conditions sensed by tire sensors related applications
US7797093B2 (en) Wheel ground-contact state judging device and method
US6481806B1 (en) Vehicle braking apparatus having understeer correction with axle selection
JP2009520643A (en) How to determine vehicle characteristics
US8855856B2 (en) Vehicle roll control method using controllable friction force of MR dampers
GB2414815A (en) Determining lateral velocity and yaw rate of a vehicle
US20030212482A1 (en) Method and apparatus for determining lateral velocity of a motor vehicle in closed form for all road and driving conditions
US7003389B2 (en) System and method for characterizing vehicle body to road angle for vehicle roll stability control
JP2008302865A (en) Vehicle rollover prevention device
KR100993168B1 (en) Method for controlling variable damper in car
US6789002B1 (en) Determination of vehicle payload condition
JP2002012141A (en) Control device of vehicle
JP2020001605A (en) Steering control device and steering device
US20080208442A1 (en) Method for Increasing the Driving Stability of a Vehicle

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110216

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120216

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130216

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130216

Year of fee payment: 12