JP3158603U - Spectrofluorometer - Google Patents

Spectrofluorometer Download PDF

Info

Publication number
JP3158603U
JP3158603U JP2010000468U JP2010000468U JP3158603U JP 3158603 U JP3158603 U JP 3158603U JP 2010000468 U JP2010000468 U JP 2010000468U JP 2010000468 U JP2010000468 U JP 2010000468U JP 3158603 U JP3158603 U JP 3158603U
Authority
JP
Japan
Prior art keywords
cell
sample
fluorescence
excitation light
test tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2010000468U
Other languages
Japanese (ja)
Inventor
渡邉 康之
康之 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2010000468U priority Critical patent/JP3158603U/en
Application granted granted Critical
Publication of JP3158603U publication Critical patent/JP3158603U/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

【課題】分光蛍光光度計の測定対象としては、例えば生体系に属するものであって試料量を多く取ることが困難な試料や、あるいは高価なものであることから微量な試料である場合もあるが、これらの測定が可能である高感度な蛍光測定が可能な蛍光分光光度計を提供する。【解決手段】試料セルとして試験管形細形チューブセル1を用いることにより測定対象試料量を少なくすることができるとともに、前記試験管形細形チューブセル1を用いることによる前記試料セルへの照射励起光の減少を防ぐために、励起光の光路上に集光レンズ3を配置する。【選択図】 図1[PROBLEMS] To measure a spectrofluorometer, for example, may be a sample that belongs to a biological system and it is difficult to obtain a large amount of sample, or a minute sample because it is expensive. However, the present invention provides a fluorescence spectrophotometer capable of highly sensitive fluorescence measurement capable of performing these measurements. By using a test tube-shaped thin tube cell as a sample cell, the amount of sample to be measured can be reduced, and the sample cell can be irradiated by using the test tube-shaped thin tube cell. In order to prevent a decrease in the excitation light, the condenser lens 3 is disposed on the optical path of the excitation light. [Selection] Figure 1

Description

本考案は、分光蛍光光度計に係わり、特に、溶液中の微量物質の蛍光測定に好適な分光蛍光光度計に関する。   The present invention relates to a spectrofluorometer, and more particularly to a spectrofluorometer suitable for measuring fluorescence of trace substances in a solution.

一般に分光蛍光光度計は、図7に示すとおり励起光を発生させる光源10と、光源10からの光を波長毎に分離する分光器(励起側凹面回折格子)11と該分光器11により波長分散された励起光を絞り込む励起側スリット14と測定対象の試料を収容するセルホルダ21と前記試料が発する蛍光を波長分散するための分光器(蛍光側凹面回折格子)12と該分光器12により波長分散された蛍光を絞り込む蛍光側スリット15と検出器13から構成されている。   In general, a spectrofluorometer is provided with a light source 10 that generates excitation light, a spectroscope (excitation-side concave diffraction grating) 11 that separates light from the light source 10 for each wavelength, and wavelength dispersion by the spectroscope 11 as shown in FIG. Excitation-side slit 14 for narrowing down the excitation light, cell holder 21 for accommodating the sample to be measured, spectrometer (fluorescence-side concave diffraction grating) 12 for wavelength-dispersing the fluorescence emitted from the sample, and wavelength dispersion by the spectrometer 12 It comprises a fluorescence side slit 15 and a detector 13 for narrowing down the emitted fluorescence.

光源10から照射された光は励起側凹面回折格子11により波長分散され励起側スリット14を通ってセルホルダ21に挿着された角型キュベットセル18に照射される。試料から発せられた蛍光は蛍光側凹面回折格子12により同じく波長分散され蛍光側スリット15を通過したあと検出器13により検出される(特許文献1参照)。   Light emitted from the light source 10 is wavelength-dispersed by the excitation-side concave diffraction grating 11, passes through the excitation-side slit 14, and is irradiated to the square cuvette cell 18 inserted in the cell holder 21. The fluorescence emitted from the sample is also wavelength-dispersed by the fluorescent concave grating 12 and passes through the fluorescent slit 15 and then detected by the detector 13 (see Patent Document 1).

図5に一般的な分光蛍光光度計における試料セル周りの構成を示す。液状の試料について蛍光測定を行う場合には、角形キュベットセル18が用いられることが一般的であり、測定する波長レンジによってガラス製や石英製のものが選択される。   FIG. 5 shows a configuration around a sample cell in a general spectrofluorometer. When fluorescence measurement is performed on a liquid sample, a square cuvette cell 18 is generally used, and one made of glass or quartz is selected depending on the wavelength range to be measured.

さらに測定に必要な試料量を極力少なくするために、例えば図6に示すとおり、外形寸法はそのままで内積の横幅を狭くした内積縮小型キュベットセル19、あるいは幅を狭めた短小幅キュベットセル(図示せず)を用いて、測定に必要な励起光が照射される部分以外の試料量を不要とする方法があるが、この場合には励起光がセル内壁に当たって測定データの不安定化を防ぐために励起側スリット20のスリット幅の小さいものを選択する必要がある。   In order to reduce the amount of sample necessary for measurement as much as possible, as shown in FIG. 6, for example, as shown in FIG. In this case, the excitation light hits the inner wall of the cell to prevent the measurement data from becoming unstable. It is necessary to select the excitation side slit 20 having a small slit width.

なお図5において、励起光はセルホルダ21の励起光通路22を通り、セルホルダ21に挿着された角型キュベットセル18に照射される。試料から発せられた蛍光はセルホルダ21の蛍光通路9を通り、蛍光側スリット(図示せず)を通過したあと検出器(図示せず)により検出される。なお図6において、図5と同一の符号で示される部品は図5と同一の部品である。   In FIG. 5, the excitation light passes through the excitation light path 22 of the cell holder 21 and is irradiated to the square cuvette cell 18 inserted in the cell holder 21. Fluorescence emitted from the sample passes through the fluorescence path 9 of the cell holder 21, passes through the fluorescence side slit (not shown), and is then detected by a detector (not shown). In FIG. 6, parts denoted by the same reference numerals as in FIG. 5 are the same parts as in FIG.

特表平8−500183号公報Japanese National Patent Publication No. 8-500183

分光蛍光光度計の利用分野としては、例えば生体系に属するものであって試料量を多く取ることが困難な場合や、あるいは高価なものであることから蛍光測定用の必要試料量がより少ない蛍光分析装置が求められる。また上記のとおり蛍光測定用の必要試料量を少なくしたために、設定するスリット幅が小さいものに限定されると、蛍光強度自体が小さくなり測定感度が低下する。   As a field of application of a spectrofluorometer, for example, it belongs to a biological system and it is difficult to take a large amount of sample, or it is expensive, so that the amount of sample required for fluorescence measurement is smaller. An analyzer is required. Further, as described above, since the necessary sample amount for fluorescence measurement is reduced, if the slit width to be set is limited to a small one, the fluorescence intensity itself becomes small and the measurement sensitivity is lowered.

本考案は前記課題を解決するために、励起光を発する光源と、前記励起光を分光する励起側分光器と、測定対象の試料を収容する試料セルと、前記試料が発する蛍光を分光する蛍光側分光器と、前記蛍光側分光器によって分光された蛍光を検出する検出器を備えた分光蛍光光度計において、前記試料セルを試験管形細形チューブセルにて構成するとともに、前記光源から前記試験管形細形チューブセル間の励起光側光軸上に集光レンズを設置する。さらに、前記試験管形細形チューブセルを挟んで前記励起光の入射側の反対側に凹面反射鏡を設置するとともに、前記試験管形細形チューブセルを挟んで前記試料から発生する蛍光の出射側の反対側に平面反射鏡を設置してもよい。   In order to solve the above-mentioned problems, the present invention provides a light source that emits excitation light, an excitation-side spectrometer that separates the excitation light, a sample cell that houses a sample to be measured, and a fluorescence that separates fluorescence emitted by the sample. In a spectrofluorometer comprising a side spectroscope and a detector for detecting fluorescence dispersed by the fluorescence side spectroscope, the sample cell is constituted by a test tube-shaped thin tube cell, and the light source A condensing lens is installed on the excitation light side optical axis between the test tube type narrow tube cells. Further, a concave reflecting mirror is installed on the opposite side of the excitation light incident side across the test tube-shaped thin tube cell, and emission of fluorescence generated from the sample is sandwiched between the test tube-shaped thin tube cell. A plane reflecting mirror may be installed on the opposite side.

第一に、前記試料セルとして試験管形細形チューブセルを用いることにより測定対象の試料量を少なくすることができ、セルの幅が狭くなるため設定するスリット幅が小型化される。第二に、蛍光強度自体が小さくなり測定感度が低下する傾向もあるが前記光源から前記試験管形細形チューブセル間の励起光側光軸上に集光レンズを設置することにより測定感度の低下を防止できる。   First, by using a test tube type thin tube cell as the sample cell, the amount of sample to be measured can be reduced, and the slit width to be set is reduced because the cell width is narrowed. Second, although the fluorescence intensity itself tends to decrease and the measurement sensitivity tends to decrease, the measurement sensitivity can be reduced by installing a condenser lens on the excitation light side optical axis between the light source and the test tube-shaped thin tube cell. Decline can be prevented.

第三に、前記試験管形細形チューブセルを挟んで前記励起光の入射側の反対側に励起光反射凹面鏡を、および前記試験管形細形チューブセルを挟んで前記試料から発生する蛍光の出射側の反対側に蛍光反射平面鏡を設置することにより、前記励起光反射凹面鏡に前記試験管形細形チューブセルを透過した励起光が反射され再び前記試験管形細形チューブセル内の試料を励起することにより反復励起効果が得られる。   Third, an excitation light reflecting concave mirror is placed on the opposite side of the excitation light incident side across the test tube-shaped thin tube cell, and fluorescence generated from the sample is sandwiched between the test tube-shaped thin tube cell. By installing a fluorescence reflecting plane mirror on the opposite side of the emission side, the excitation light that has passed through the test tube-shaped thin tube cell is reflected by the excitation light reflecting concave mirror, and the sample in the test tube-shaped thin tube cell is again applied. Excitation provides a repeated excitation effect.

また蛍光は四方八方に放射するので、前記蛍光反射平面鏡方向に出射された蛍光は反射され検出器側に取り込まれ、これらの反射鏡がない状態と比較して蛍光強度増加の効果が得られる。第四に、より微量な試料であっても高感度な蛍光測定が可能である。   In addition, since the fluorescence is emitted in all directions, the fluorescence emitted in the direction of the fluorescence reflecting plane mirror is reflected and taken into the detector side, and an effect of increasing the fluorescence intensity is obtained as compared with the state without these reflecting mirrors. Fourth, highly sensitive fluorescence measurement is possible even with a smaller amount of sample.

第五に、前記試験管形細形チューブセルの内側には角がなくセル内面先端が球面状の構造になっているため、試料が残留し難く、またブラシなどの器具によりセルの洗浄が非常に簡単になり、セルの再使用も可能である。従って試料準備のコストダウンを図ることが可能であり、またオペレータの洗浄工程の不必要な手間も削減することができる。   Fifth, since the inside of the test tube type narrow tube cell has no corners and the tip of the inner surface of the cell has a spherical structure, the sample hardly remains, and the cell can be cleaned with a tool such as a brush. The cell can be reused. Therefore, it is possible to reduce the cost of sample preparation, and it is possible to reduce unnecessary labor of the operator's cleaning process.

本考案実施例1を示す図で、セルホルダの縦断面図である。It is a figure which shows this invention Example 1, and is a longitudinal cross-sectional view of a cell holder. 本考案実施例1を示す図で、セルホルダの横断面図である。It is a figure which shows this invention Example 1, and is a cross-sectional view of a cell holder. 本考案実施例1の分光蛍光光度計の光学レイアウトを示す図である。It is a figure which shows the optical layout of the spectrofluorometer of this invention Example 1. FIG. 本考案実施例2を示す図で、セルホルダの横断面図である。It is a figure which shows this invention Example 2, and is a cross-sectional view of a cell holder. 従来の実施例を示す図で、角型キュベットセルを使用したセルホルダの横断面図である。It is a figure which shows the conventional Example, and is a cross-sectional view of the cell holder using a square cuvette cell. 従来の実施例を示す図で、内積縮小型キュベットセルを使用したセルホルダの横断面図である。It is a figure which shows the prior art example, and is a cross-sectional view of a cell holder using an inner product reduced cuvette cell. 従来の分光蛍光光度計の光学レイアウトを示す図である。It is a figure which shows the optical layout of the conventional spectrofluorometer.

試料セルとして、試験管形の細形チューブセルを用いるとともに、前記細形チューブセルを用いることによる前記試料セルへの照射励起光の減少を防ぐために、励起光の光路上に集光レンズを設置する。   A sample tube-type thin tube cell is used as a sample cell, and a condensing lens is installed on the optical path of the excitation light in order to prevent a decrease in irradiation excitation light to the sample cell due to the use of the thin tube cell. To do.

図3は分光蛍光光度計の全体の構成を概略的に示す図である。図において光源10から照射された光は励起側凹面回折格子11により波長分散され励起側スリット14を通り集光レンズ3を経てセルホルダ2に挿着された試験管形細形チューブセル1に照射される。試料から発せられた蛍光は蛍光側凹面回折格子12により同じく波長分散され蛍光側スリット15を通過したあと検出器13により検出される。   FIG. 3 is a diagram schematically showing the overall configuration of the spectrofluorometer. In the figure, the light emitted from the light source 10 is wavelength-dispersed by the excitation-side concave diffraction grating 11, passes through the excitation-side slit 14, passes through the condenser lens 3, and is applied to the test tube-shaped narrow tube cell 1. The The fluorescence emitted from the sample is also wavelength-dispersed by the fluorescent-side concave diffraction grating 12 and then detected by the detector 13 after passing through the fluorescent-side slit 15.

図1、図2および図3は具体的な実施例1を示す。図1および図2に示すとおり、試料セルとして試験管形細形チューブセル1を用い、該試験管形細形チューブセル1はチューブセル挿入路4より挿入してセルホルダ2に挿着される。該セルホルダ2は図3に示す本考案に係わる実施例1の分光蛍光光度計の光学レイアウト中に配置される。   1, 2 and 3 show a specific example 1. FIG. As shown in FIGS. 1 and 2, a test tube-shaped thin tube cell 1 is used as a sample cell, and the test tube-shaped thin tube cell 1 is inserted through the tube cell insertion path 4 and attached to the cell holder 2. The cell holder 2 is arranged in the optical layout of the spectrofluorometer of the first embodiment according to the present invention shown in FIG.

励起光は集光レンズ3を経てセルホルダ2の励起光通路5を通り、セルホルダ2に挿着された試験管形細形チューブセル1に照射される。試料から発せられた蛍光はセルホルダ2の蛍光通路6を通り、蛍光側凹面回折格子12を経て同じく波長分散され蛍光側スリット15を通過したあと検出器13により検出される。   The excitation light passes through the condenser lens 3, passes through the excitation light path 5 of the cell holder 2, and is irradiated to the test tube-shaped thin tube cell 1 inserted into the cell holder 2. Fluorescence emitted from the sample passes through the fluorescence path 6 of the cell holder 2, passes through the fluorescence side concave diffraction grating 12, is similarly wavelength dispersed, passes through the fluorescence side slit 15, and is detected by the detector 13.

試験管形細形チューブセル1を使用するため、従来の幅広の角型キュベットセル18の試料に対すると同量の励起光を照射することは不可能のため、該励起光を絞って前記試験管形細形チューブセル1に同量の励起光を照射できるように励起光通路5の入口に集光レンズ3を設置する。なお、集光レンズ3としては、球面レンズおよび非球面レンズその他種類を問わない。また、試験管形細形チューブセル1の寸法例として直径2mmまたは3mmのセルがあげられる。   Since the test tube-shaped thin tube cell 1 is used, it is impossible to irradiate the same amount of excitation light as that of the sample of the conventional wide square cuvette cell 18, and therefore the test tube is narrowed down. The condensing lens 3 is installed at the entrance of the excitation light path 5 so that the same amount of excitation light can be irradiated onto the narrow tube cell 1. The condensing lens 3 may be a spherical lens, an aspherical lens, or any other type. Examples of dimensions of the test tube-shaped thin tube cell 1 include a cell having a diameter of 2 mm or 3 mm.

図4に実施例2を示す。励起光が試験管形細形チューブセル1を透過する側に励起光反射凹面鏡7を設置し、蛍光出射側の反対側にある蛍光通路16の開口部17に蛍光反射平面鏡8を設置する。前記励起光反射凹面鏡7の設置によって、前記励起光反射凹面鏡7に前記試験管形細形チューブセル1を透過した励起光が反射され再び前記試験管形細形チューブセル1内の試料を励起することにより反復励起効果が得られる。   Example 2 is shown in FIG. An excitation light reflecting concave mirror 7 is installed on the side where the excitation light passes through the test tube-shaped narrow tube cell 1, and a fluorescence reflecting plane mirror 8 is installed in the opening 17 of the fluorescence path 16 on the opposite side of the fluorescence emission side. By installing the excitation light reflecting concave mirror 7, the excitation light that has passed through the test tube thin tube cell 1 is reflected on the excitation light reflecting concave mirror 7 to excite the sample in the test tube thin tube cell 1 again. Thus, a repeated excitation effect can be obtained.

また前記蛍光反射平面鏡8の設置によって、蛍光は四方八方に放射し、前記蛍光反射平面鏡8方向に出射された蛍光は反射され検出器側に取り込まれる。従って反射鏡がない状態と比較して蛍光強度を増加させることができる。なお図4において、図2と同一の符号で示される部品は図2と同一の部品である。   Further, by the installation of the fluorescence reflecting plane mirror 8, the fluorescence is emitted in all directions, and the fluorescence emitted in the direction of the fluorescence reflecting plane mirror 8 is reflected and taken into the detector side. Accordingly, it is possible to increase the fluorescence intensity as compared with the state without the reflecting mirror. In FIG. 4, parts denoted by the same reference numerals as in FIG. 2 are the same parts as in FIG.

1 試験管形細形チューブセル
2 セルホルダ
3 集光レンズ
4 チューブセル挿入路
5 励起光通路
6 蛍光通路
7 励起光反射凹面鏡
8 蛍光反射平面鏡
9 蛍光通路
10 光源
11 励起側凹面回折格子
12 蛍光側凹面回折格子
13 検出器
14 励起側スリット
15 蛍光側スリット
16 蛍光通路
17 開口部
18 角型キュベットセル
19 内積縮小型キュベットセル
20 励起側スリット
21 セルホルダ
22 励起光通路
DESCRIPTION OF SYMBOLS 1 Test tube type thin tube cell 2 Cell holder 3 Condensing lens 4 Tube cell insertion path 5 Excitation light path 6 Fluorescence path 7 Excitation light reflection concave mirror 8 Fluorescence reflection plane mirror 9 Fluorescence path 10 Light source 11 Excitation side concave diffraction grating 12 Fluorescence side concave surface Diffraction grating 13 Detector 14 Excitation side slit 15 Fluorescence side slit 16 Fluorescence path 17 Opening 18 Square cuvette cell 19 Inner product reduction type cuvette cell 20 Excitation side slit 21 Cell holder 22 Excitation light path

Claims (2)

励起光を発する光源と、前記励起光を分光する励起側分光器と、測定対象の試料を収容する試料セルと、前記試料が発する蛍光を分光する蛍光側分光器と、前記蛍光側分光器によって分光された蛍光を検出する検出器を備えた分光蛍光光度計において、前記試料セルを試験管形細形チューブセルにて構成するとともに、前記光源から前記試験管形細形チューブセル間の励起光側光軸上に集光レンズを設置したことを特徴とする分光蛍光光度計。   A light source that emits excitation light, an excitation-side spectrometer that separates the excitation light, a sample cell that houses a sample to be measured, a fluorescence-side spectrometer that separates fluorescence emitted by the sample, and a fluorescence-side spectrometer In a spectrofluorometer equipped with a detector for detecting spectroscopic fluorescence, the sample cell is constituted by a test tube type narrow tube cell, and excitation light between the light source and the test tube type thin tube cell A spectrofluorometer characterized in that a condensing lens is installed on the side optical axis. 前記試験管形細形チューブセルを挟んで前記励起光の入射側の反対側に凹面反射鏡を設置するとともに、前記試験管形細形チューブセルを挟んで前記試料から発生する蛍光の出射側の反対側に平面反射鏡を設置したことを特徴とする請求項1記載の分光蛍光光度計。   A concave reflecting mirror is installed on the opposite side of the excitation light incident side across the test tube-shaped thin tube cell, and on the emission side of the fluorescence generated from the sample across the test tube-shaped thin tube cell. 2. The spectrofluorometer according to claim 1, wherein a plane reflecting mirror is installed on the opposite side.
JP2010000468U 2010-01-28 2010-01-28 Spectrofluorometer Expired - Lifetime JP3158603U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010000468U JP3158603U (en) 2010-01-28 2010-01-28 Spectrofluorometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010000468U JP3158603U (en) 2010-01-28 2010-01-28 Spectrofluorometer

Publications (1)

Publication Number Publication Date
JP3158603U true JP3158603U (en) 2010-04-08

Family

ID=54862148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010000468U Expired - Lifetime JP3158603U (en) 2010-01-28 2010-01-28 Spectrofluorometer

Country Status (1)

Country Link
JP (1) JP3158603U (en)

Similar Documents

Publication Publication Date Title
Wu et al. High-sensitivity fluorescence detector for fluorescein isothiocyanate derivatives of amino acids separated by capillary zone electrophoresis
Lakowicz Principles of fluorescence spectroscopy
US5491344A (en) Method and system for examining the composition of a fluid or solid sample using fluorescence and/or absorption spectroscopy
US9523637B2 (en) Thermal selectivity multivariate optical computing
Resch-Genger et al. Traceability in fluorometry: Part II. Spectral fluorescence standards
CN103499391B (en) Spectral measurement system
US20150041682A1 (en) Systems and Methods for Monitoring Phenanthrene Equivalent Concentrations
US9297760B2 (en) Apparatus for analysing a small amount of liquid
DeRose et al. Qualification of a fluorescence spectrometer for measuring true fluorescence spectra
JP2011013167A (en) Spectrofluorometer and sample cell
JP5272965B2 (en) Fluorescence detector
JP2008116314A (en) Device for measuring trace quantity liquid
Gilmore How to collect National Institute of Standards and Technology (NIST) traceable fluorescence excitation and emission spectra
Zwinkels et al. Spectral fluorescence measurements
JP2010160043A (en) Surface intensifying raman spectrophotometric method, and surface intensifying raman spectrophotometric apparatus using the same
JP2010175251A (en) Surface intensified raman spectrophotometric method, and surface intensified raman spectrophotometer using the same
JP3158603U (en) Spectrofluorometer
JP3422725B2 (en) An analyzer that simultaneously performs Raman spectroscopy and particle size distribution measurement
Höhl et al. Efficient procedure for the measurement of preresonant excitation profiles in UV Raman spectroscopy
CN212059104U (en) Wide-spectrum high-sensitivity Raman spectrometer
JP4336847B2 (en) Microspectrophotometer
JP2006125919A (en) Spectral analyzer and spectral analysis method
KR20140103304A (en) Device for receiving small volume liquid samples
JP3448135B2 (en) Optical axis moving type fluorescence photometer and measurement method
JP5208774B2 (en) Fluorescence spectrophotometer

Legal Events

Date Code Title Description
R150 Certificate of patent or registration of utility model

Ref document number: 3158603

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 3

EXPY Cancellation because of completion of term