JP3157724U - Beam shape converter - Google Patents

Beam shape converter Download PDF

Info

Publication number
JP3157724U
JP3157724U JP2009002609U JP2009002609U JP3157724U JP 3157724 U JP3157724 U JP 3157724U JP 2009002609 U JP2009002609 U JP 2009002609U JP 2009002609 U JP2009002609 U JP 2009002609U JP 3157724 U JP3157724 U JP 3157724U
Authority
JP
Japan
Prior art keywords
light beam
beam shape
light
projection
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009002609U
Other languages
Japanese (ja)
Inventor
周建林
Original Assignee
廣東明家科技股▲分▼有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 廣東明家科技股▲分▼有限公司 filed Critical 廣東明家科技股▲分▼有限公司
Priority to JP2009002609U priority Critical patent/JP3157724U/en
Application granted granted Critical
Publication of JP3157724U publication Critical patent/JP3157724U/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

【課題】点状の光源を変換して矩形投影面として射出する光束形状変換器の提供。【解決手段】本考案の光束形状変換器は、点状の光源を変換して矩形投影面として射出する光束形状変換器であって、主に、射出面が複合光学面であり、入射面が内陥球面である光学屈折本体を備え、前記射出面は屈折平面、及び子午線(Meridian)両側に設けた2つの反射面、子午線前後の屈折平面の相対する辺に接続された2つの光学曲面から構成され、前記入射面が光束を屈折本体の内球面に完全に作用させ、前記複合光学面の相互作用により、点状の光源の輻射光束をそれぞれ進行角度において規範し、光束の形状を変換して矩形に近い光学投影面として放射することができる。【選択図】図1Provided is a light beam shape converter for converting a point light source to emit as a rectangular projection surface. A light beam shape converter of the present invention is a light beam shape converter that converts a point light source and emits it as a rectangular projection surface. The light beam shape converter is mainly a composite optical surface, and an incident surface is an incident surface. An optically refracting body that is an indented spherical surface, the exit surface comprising a refracting plane, two reflecting surfaces provided on both sides of the meridian, and two optical curved surfaces connected to opposite sides of the refracting plane before and after the meridian The incident surface causes the light beam to completely act on the inner spherical surface of the refracting body, and the interaction of the composite optical surface normalizes the radiant light beam of the point light source at the respective traveling angles, thereby converting the shape of the light beam. And can be emitted as an optical projection surface close to a rectangle. [Selection] Figure 1

Description

本考案は点状光源の投射光束を矩形の投射面に変換する光束形状変換器に関し、特に、立体円錐状の照明光形を方錐状に変換し、照射面を矩形に近い面とすることができる、光束形状変換器に関する。   The present invention relates to a light beam shape converter that converts a projected light beam of a point light source into a rectangular projection surface, and in particular, converts a solid conical illumination light shape into a pyramid shape, and makes the irradiation surface a surface close to a rectangle. The present invention relates to a luminous flux shape converter.

照明装置が発射する光束の照射角度は規範されていなければその光束を光の照射が必要な投射面に効果的に集結させることができない。従来の電球は、ランプカバーを利用して背面光を反射し、その光束を必要な照射面(投影面)に集結させることができる。より新しいものでは、ダイオード発光装置が発生する光束は、ダイオード発光素子本体の内側背面にあらかじめ小型の反射面が設けられ、素子が発生する光束が正面に向かって投射される。また、この反射面の曲率の規範により、LEDが発生する光束を15、30、45、60度等望み通りの角度に効果的に制御することができ、各投射角度は使用現場の必要性に応じて採用を決定できる。   If the irradiation angle of the light beam emitted by the illumination device is not specified, the light beam cannot be effectively collected on the projection surface that needs to be irradiated with light. A conventional light bulb uses a lamp cover to reflect back light and concentrate the light flux on a necessary irradiation surface (projection surface). In the newer one, the light flux generated by the diode light-emitting device is provided with a small reflecting surface in advance on the inner back surface of the diode light-emitting element body, and the light flux generated by the element is projected toward the front. In addition, the luminous flux generated by the LED can be effectively controlled to an angle as desired, such as 15, 30, 45, 60 degrees, etc., according to the norm of the curvature of the reflecting surface, and each projection angle can be adjusted according to the needs of the use site. Adoption can be decided accordingly.

従来の電球またはより新しいダイオードLED光源のいずれにしても、その発光点は点状の光源であり、反射カバーにより反射された後の光形は円錐状で、かつ照明投影面はみな円形面または楕円形の面となり、街道の表面や家庭の方形の床空間など特殊な場面で実施する際、光源の光束を効果的に集結させて利用したい場合、光束の形を方錐状などに変換することで、その底面(投影面)を矩形や方形に規範することができる。   Whether it is a conventional light bulb or a newer diode LED light source, its light emitting point is a point light source, the light shape after being reflected by the reflective cover is conical, and the illumination projection surface is all circular or If the surface of an ellipse is to be used in a special situation such as the surface of a street or a square floor space at home, the shape of the light beam is converted into a pyramid shape, etc., when the light beam from the light source is to be collected effectively Thus, the bottom surface (projection surface) can be specified as a rectangle or a rectangle.

本考案の主な目的は、射出面が複数の光学面の複合で構成される屈折本体から成り、入光面が内側に凹陥した球面であり、該球面の曲率を利用して点状の光源が発生する光束が進入するとき、屈折臨界角度を避けて全量を屈折本体に進入させることができると共に、初歩的な光拡散作用を提供することができ、かつ前記射出面は複数の光学面から構成され、基本的に射出面の中央に屈折平面が設けられ、該屈折平面は子午線の方向に光軸が該屈折平面の光軸に交わる2つの光学曲面が接続され、かつ、子午線の両側に反射能力を備えた反射面が設けられ、両側の反射面を利用して2つの反射光束が相対する挟角の角度が限縮され、反射光束を縮限して投影面の必要な照明面積の平行な両側に投射することができ、また、2つの光学曲面と屈折平面が相互に作用し、投影面の底辺長さを長くして点状光源の照明光束を矩形に近い照射投影面として分布させることができる、光束形状変換器を提供することにある。   The main object of the present invention is a spherical surface having an exit surface composed of a refractive body composed of a composite of a plurality of optical surfaces, and a light incident surface recessed inward, and a point light source utilizing the curvature of the spherical surface. When the light flux generated by the light enters, the entire amount can be allowed to enter the refracting body while avoiding the refraction critical angle, and an elementary light diffusing action can be provided, and the exit surface is formed from a plurality of optical surfaces. In general, a refracting plane is provided at the center of the exit surface. The refracting plane is connected to two meridian surfaces whose optical axes intersect the optical axis of the refracting plane in the meridian direction, and on both sides of the meridian. A reflecting surface having a reflecting ability is provided, and the angle between the two reflected light beams facing each other is limited by using the reflecting surfaces on both sides, and the reflected light beam is reduced to reduce the required illumination area of the projection surface. Can be projected on both sides parallel, two optical curved surfaces and refraction Surfaces interact, it is possible to distribute the illumination light beam of the point-like light source as illumination projection plane closer to a rectangle with a longer base length of the projection surface, to provide a light shaping unit.

本考案の別の目的は、屈折本体の射出面の子午線両側に設けた反射面が屈折平面に垂直を成し、かつ2つの反射面は内側反射作用を備え、内側に向けた反射層膜または反射鏡を複合的に設けることができる、光束形状変換器を提供することにある。   Another object of the present invention is that the reflecting surfaces provided on both sides of the meridian of the exit surface of the refracting body are perpendicular to the refracting plane, and the two reflecting surfaces have an inner reflecting action, and the reflecting layer film facing inward or An object of the present invention is to provide a light beam shape converter capable of providing a plurality of reflecting mirrors.

本考案の光束形状変換器は、点状の光源を矩形の投影面に変換する光束形状変換器であって、そのうち、前記変換器が入射面と射出面を備えた屈折本体から成り、そのうち前記入射面が内陥球面から成り、前記射出面が複数の光学面の複合から成り、前記複数の複合面が、その光軸が前記内陥球面の光学動作軸と重なる屈折平面と、前記屈折平面の子午線方向の平面辺線に沿って接続された2つの光学曲面と、前記射出面の子午線の両側に位置し、かつ前記屈折平面の二側と一定の角度で接続された2つの反射面を含み、前記2つの光学曲面の2つの軸心を延伸した交点が前記入射面の方向に位置し、かつ前記光学動作軸心線に交わることを特徴とする。   A light beam shape converter of the present invention is a light beam shape converter for converting a point light source into a rectangular projection surface, wherein the converter comprises a refraction body having an entrance surface and an exit surface, of which the The entrance surface is composed of an inner spherical surface, the exit surface is composed of a composite of a plurality of optical surfaces, and the plurality of composite surfaces include a refractive plane whose optical axis overlaps the optical operation axis of the concave spherical surface, and the refractive plane Two optical curved surfaces connected along a plane side line in the meridian direction, and two reflecting surfaces located on both sides of the meridian of the exit surface and connected at two angles to the two sides of the refractive plane. In addition, an intersection of extending two axes of the two optical curved surfaces is located in the direction of the incident surface and intersects the optical operation axis.

本考案の屈折本体の立体外観図である。It is a three-dimensional external view of the refraction body of the present invention. 本考案の屈折本体に発光ユニットを組み合わせて構成した投射ユニットの側面図である。It is a side view of the projection unit comprised combining the light emission unit with the refractive main body of this invention. 本考案の屈折本体に発光ユニットを組み合わせて構成した投射ユニットの光束の進行を示す側面図である。It is a side view which shows advancing of the light beam of the projection unit comprised combining the light emission unit with the refractive main body of this invention. 本考案の屈折本体の子午線位置の側面図である。It is a side view of the meridian position of the refraction body of the present invention. 本考案の屈折本体の子午線位置の正面図である。It is a front view of the meridian position of the refraction body of the present invention. 本考案の光束形状変換器による変換後の矩形投影面の照度ブロックを示す立体図である。It is a three-dimensional view showing the illuminance block on the rectangular projection surface after conversion by the light beam shape converter of the present invention. 本考案を照明装置の放光面に実施した状態を示す平面図である。It is a top view which shows the state which implemented this invention in the light emission surface of an illuminating device. 図7の側面図である。FIG. 8 is a side view of FIG. 7. 本考案の模擬道路での応用を示す図である。It is a figure which shows the application in the simulation road of this invention. 図9の作用後の照度ブロック分布を示す図である。It is a figure which shows the illumination intensity block distribution after the effect | action of FIG. 本考案の複数の投影面を重ねる方式で均一かつ高輝度の単一投影面を取得する方式を示す図である。It is a figure which shows the system which acquires the uniform and high-intensity single projection surface by the method of overlapping the several projection surface of this invention.

本考案の詳細な実施内容について説明する。まず図1、図2に示すように、本考案の光束形状変換器10は主に高透光率の屈折本体1の底面に底板11を結合して構成され、前記底板11は外部連結作用を備え、取り付けに用いることができ、前記屈折本体1は外表に複数の光学面を複合して成る射出面2を備え、そのうち、前記射出面2の複数の光学面は中央に底板11と同一方向の水平の屈折平面21を含み、該屈折平面21表面の子午線方向に、屈折平面21の平面を基準とし、その辺線210を交線として2つの光学曲面22がそれぞれ設けられ、かつ前記屈折本体1の子午線の両側にそれぞれ屈折平面21の角度に対して垂直な2つの反射面23が設けられると共に、前記射出面2に相反し屈折平面21の背面に入射面が設けられ、該入射面は内陥球面24から成り、かつ該内陥球面24の光軸Sと屈折平面21の光の進行光軸Sが重なり、内陥球面24外部に同じ光軸Sで発光ユニット3が設置される。   Detailed implementation contents of the present invention will be described. First, as shown in FIG. 1 and FIG. 2, a light beam shape converter 10 of the present invention is mainly configured by connecting a bottom plate 11 to the bottom surface of a refraction body 1 having a high light transmittance, and the bottom plate 11 has an external coupling action. The refracting body 1 includes an exit surface 2 formed by combining a plurality of optical surfaces on the outer surface, and the plurality of optical surfaces of the exit surface 2 have the same direction as the bottom plate 11 in the center. The optical surface 22 is provided in the meridional direction of the surface of the refractive plane 21 with the plane of the refractive plane 21 as a reference and the side line 210 as an intersection line. Two reflecting surfaces 23 perpendicular to the angle of the refracting plane 21 are provided on both sides of one meridian, and an entrance surface is provided on the back surface of the refracting plane 21 contrary to the exit surface 2. The inner spherical surface 24, and the Recessed light axis S to the traveling optical axis S of light refraction plane 21 of the spherical 24 is overlapped, the light emitting unit 3 is disposed on the inner Recessed spherical 24 outside the same optical axis S.

底板11の底部には結合部12が設けられ、該結合部12は結合部材51により回路板5と結合され、該結合部材51は結合部12に設置された突起部121に作用して乾式の結合を形成する。また、前記結合部12と回路板5の間は接着やその他螺合固定方式などを採用して達成することができ、主に屈折本体1の光軸Sが発光ユニット3の光束出射部の中心に正対するよう維持する。   A coupling portion 12 is provided at the bottom of the bottom plate 11, and the coupling portion 12 is coupled to the circuit board 5 by a coupling member 51, and the coupling member 51 acts on a protruding portion 121 installed in the coupling portion 12 to dry. Form a bond. In addition, the coupling portion 12 and the circuit board 5 can be achieved by using an adhesive or other screw fixing method. The optical axis S of the refractive body 1 is mainly the center of the light beam emitting portion of the light emitting unit 3. Keep it facing the front.

本考案の光束形状変換器10は発光ユニット3を結合した後、投射ユニット100を形成する。また、前記発光ユニット3と回路板5間が電気的に接続され、発光ユニット3が駆動電力を得ることができ、該電力は前記回路板5から外部電源に導通されるが、この導通方式は一般的な技術であるため、ここでは説明を省略する。   The light beam shape converter 10 of the present invention forms the projection unit 100 after the light emitting unit 3 is coupled. Further, the light emitting unit 3 and the circuit board 5 are electrically connected, and the light emitting unit 3 can obtain driving power, and the power is conducted from the circuit board 5 to an external power source. Since this is a general technique, the description is omitted here.

上述の光束形状変換器10と発光ユニット3を結合した後に形成される投射ユニット100(図3参照)は、前記発光ユニット3が発生する光束が光束形状変換器10の内陥球面24に作用し、該内陥球面24の曲率を利用して発光ユニット3の発光射出角度が包囲され、これにより発光ユニット3が発生する光束が前記内陥球面24の曲率の規範を経てすべて光束形状変換器10内部に進入し、屈折臨界角の問題により光束の無駄な反射損耗が発生するのを回避し、その光束全量を光束形状変換器10内部に作用させることができる。発光ユニット3が1つの点状光源の場合、例えば∠60°の放射角度を具備しており、かつ光源と内陥球面24の行路距離Lを越えない状況において、放射角度の二斜辺が内陥球面24の球面範囲内に位置し、発光光束Bn全量が内陥球面24を介して屈折本体1に進入する。その発生する光束は内陥球面24の法線の関係で光束形状変換器10内部で屈折の原理により初歩的な拡散が達成され、かつ象限で均一に拡散されて光束形状変換器10の屈折を経た後射出面2から射出される。   In the projection unit 100 (see FIG. 3) formed after the light beam shape converter 10 and the light emitting unit 3 are combined, the light beam generated by the light emitting unit 3 acts on the inner spherical surface 24 of the light beam shape converter 10. The light emission angle of the light emitting unit 3 is surrounded by using the curvature of the inner spherical surface 24, whereby all the light beams generated by the light emitting unit 3 pass the norm of the curvature of the inner spherical surface 24 and thereby the light beam shape converter 10. It is possible to avoid the occurrence of useless reflection loss of the light flux due to the problem of the refraction critical angle by entering the inside, and the total amount of the light flux can be applied to the inside of the light beam shape converter 10. In the case where the light emitting unit 3 is a single point light source, for example, when the light source has a radiation angle of 60 ° and does not exceed the path distance L between the light source and the inner spherical surface 24, the two oblique sides of the radiation angle are indented. Located within the spherical surface range of the spherical surface 24, the entire amount of the luminous flux Bn enters the refractive body 1 via the inner spherical surface 24. The generated light beam is basically diffused by the principle of refraction inside the light beam shape converter 10 due to the normal of the inner spherical surface 24, and is uniformly diffused in the quadrant to refraction the light beam shape converter 10. After passing, it is ejected from the ejection surface 2.

上述の屈折平面21の光の進行光軸Sは内陥球面24の光軸と重なり、2つの光学曲面22の2つの光軸Sは入射面方向で交差し、かつ屈折平面21の光の進行光軸Sと重なる。 Traveling optical axis S of light refraction plane 21 above overlaps with the optical axis of the Recessed spherical surface 24, the two optical axes S 1 of the two optical curved surface 22 intersects the incident plane direction and the refractive plane 21 of the light It overlaps with the traveling optical axis S.

図4、図5に示すように、本考案の光束形状変換器10は発光ユニット3と結合した後、投射ユニット100を形成し、前記光束形状変換器10の子午線の側面方向は、その射出面2が屈折平面21及び両側に接続された光学曲面22から構成され、3つの光学面が形成される。このため、発光ユニット3が発生する点状の光源が内陥球面24から光束形状変換器10内部に進入し、屈折伝達を経た後射出面2から穿出され、屈折平面21の平面作用と光学曲面22の曲率作用に基づき、発光ユニット3が発生する光束を折射して拡散状の屈折光束Btとし、かつ3つの光学面により拡散して120度近くの投光角度を形成し、投影面6に投影したとき、投影面6の矩形の長辺aとなる。   4 and 5, the light beam shape converter 10 of the present invention is combined with the light emitting unit 3 to form a projection unit 100, and the meridian side direction of the light beam shape converter 10 is the exit surface thereof. 2 is composed of a refractive surface 21 and an optical curved surface 22 connected to both sides, and three optical surfaces are formed. For this reason, the point light source generated by the light emitting unit 3 enters the light beam shape converter 10 from the inner spherical surface 24 and is pierced from the exit surface 2 after passing through the refractive transmission, and the planar action of the refractive plane 21 and the optical function. Based on the curvature action of the curved surface 22, the light beam generated by the light emitting unit 3 is reflected to form a diffracted refracted light beam Bt, and diffused by three optical surfaces to form a light projection angle of nearly 120 degrees, thereby producing a projection surface 6. The long side a of the rectangular surface of the projection surface 6 is projected.

図5に示すように、光束形状変換器10は発光ユニット3と結合した後投射ユニット100を形成し、発光ユニット3が発生する光束が内陥球面24から光束形状変換器10の内部に進入して反射される。光束形状変換器10の両側に設けた反射面23の反射角度は限縮され、発光ユニット3が発生する光束が反射面23の反射作用を経て反射光束Brを形成し、該反射光束Brは限縮後投影面6の表面に作用し、矩形の投影面6の短辺bとなる。その投影面積は長辺に短辺を乗じて得ることができる。   As shown in FIG. 5, the light beam shape converter 10 is combined with the light emitting unit 3 to form a projection unit 100, and the light beam generated by the light emitting unit 3 enters the light beam shape converter 10 from the inner spherical surface 24. And reflected. The reflection angles of the reflecting surfaces 23 provided on both sides of the light beam shape converter 10 are limited, and the light beam generated by the light emitting unit 3 forms the reflected light beam Br through the reflecting action of the reflecting surface 23, and the reflected light beam Br is limited. It acts on the surface of the projection surface 6 after contraction and becomes the short side b of the rectangular projection surface 6. The projected area can be obtained by multiplying the long side by the short side.

光束形状変換器10の射出面2は、図5の方向において屈折平面21と両側の反射面23から構成される。基本的に前記反射面23は反射率が高い光学面とし、かつ電気めっき膜または反射鏡を付加する(図示しない)方式で反射部材231を結合して内側に向かう反射率を強化し、発光ユニット3が発生する光束が反射面23で全反射されるようにし、発生した光束が反射面23の作用を経て完全に反射され、反射光束Brを射出するようにするか、屈折平面21の作用で直接屈折して射出することもできる。   The exit surface 2 of the light beam shape converter 10 is composed of a refracting plane 21 and reflecting surfaces 23 on both sides in the direction of FIG. Basically, the reflection surface 23 is an optical surface having a high reflectance, and the reflection member 231 is coupled by a method of adding an electroplating film or a reflection mirror (not shown) to enhance the reflectance toward the inside, and the light emitting unit. 3 is totally reflected by the reflecting surface 23, and the generated light beam is completely reflected through the action of the reflecting surface 23 to emit the reflected light beam Br, or by the action of the refracting plane 21. Direct refraction can also be emitted.

図6に示すように、本考案の光束形状変換器10は発光ユニット3と結合されて投射ユニット100が形成され、前記投射ユニット100は2組以上を配置し、一定の高さに配置してより大きな投影面6を形成することができる。一定の高さにおいて、前記投影面6の長さ、幅は複数の投射ユニット100を並べて排列して構成することができ、構成される投影面6は重ねた状態を形成し、投影面6の照射輝度を増加すると共に、その輝度をより均一にすることもできる。そのうち、前記投影面は図3、図4の作用を経た後矩形の投影面を形成し、前記矩形の投影面は街道の表面に使用したり、室内の矩形の床空間に使用したりすることができる。   As shown in FIG. 6, the luminous flux shape converter 10 of the present invention is combined with the light emitting unit 3 to form a projection unit 100. Two or more sets of the projection units 100 are arranged at a certain height. A larger projection surface 6 can be formed. At a certain height, the length and width of the projection surface 6 can be configured by arranging a plurality of projection units 100 side by side, and the configured projection surface 6 forms an overlapped state. The irradiation luminance can be increased and the luminance can be made more uniform. Of these, the projection plane forms a rectangular projection plane after the operation of FIGS. 3 and 4, and the rectangular projection plane is used for a street surface or a rectangular floor space in a room. Can do.

前記投影面6は図5と図6の規範を経た後、その光密度が投影面6の中央の縦方向線及び長辺の両側に集結され、基本的に3つの異なる明るさのブロックが大まかに区分される。例えば、両側が40(Lx)の照度であるとき、中央に向かって低下する30(Lx)と20(Lx)の3つの照度のブロックができ、これら3ブロック間に別の投射ユニット100の投影面6を重ねて光密度を強化すると共に輝度を均一にすることができる。   The projection surface 6 is subjected to the norms of FIG. 5 and FIG. 6 and then its light density is concentrated on both sides of the central vertical line and the long side of the projection surface 6, and basically three different brightness blocks are roughly arranged. It is divided into. For example, when both sides have illuminance of 40 (Lx), three illuminance blocks of 30 (Lx) and 20 (Lx) that decrease toward the center are formed, and projection of another projection unit 100 between these three blocks. The surface 6 can be overlapped to enhance the light density and make the luminance uniform.

本考案は上述の原理を利用して、光束を累積する方式で照明装置に実施して使用することができる。図7、図8に示すように、照明装置4の放光面41の表面にマトリックス方式で複数の投射ユニット100を排列し、複数の投射ユニット100のそれぞれその発光ユニット3が図6に示すような投影面6の光学照明作用を発生する。複数の投射ユニット100は図2と同じように回路板5に集結され、かつ放熱のメカニズムが必要であるため、照明装置4の放光面41周辺に放熱孔43をそれぞれ設置し、内部の熱を外部の冷めた空気と交換させ、放熱効果を達することができる。照明装置は一側に連結部42を設け、壁面や高いところに設置して床面に向け光を照射する照明とすることができる。   The present invention can be used by being applied to an illuminating device by using the principle described above and accumulating a luminous flux. As shown in FIGS. 7 and 8, a plurality of projection units 100 are arranged in a matrix manner on the surface of the light emitting surface 41 of the illumination device 4, and the light emitting units 3 of the plurality of projection units 100 are as shown in FIG. An optical illumination function of the projection surface 6 is generated. Since the plurality of projection units 100 are concentrated on the circuit board 5 in the same manner as in FIG. 2 and a mechanism for heat dissipation is required, a heat dissipation hole 43 is installed around the light emitting surface 41 of the lighting device 4 to heat the internal unit. Can be exchanged with external cold air to achieve a heat dissipation effect. The lighting device may be provided with a connecting portion 42 on one side and installed on a wall surface or a high place to illuminate the floor surface with light.

図8に示すように、複数の投射ユニット100はマトリックス状に排列した後、側面から見て分かるように、照明装置4内部に複数の投射ユニット100が分布され、それぞれが照射角度120度の光束Bを発生する。投射ユニット100が前後に接近した状態で並べて排列する方式で組み立てられるため、各投射ユニット100がそれぞれ射出する光束の角度は同じであり、光束Bの進行経路は近隣のものと重なり合い、かつ複数の投射ユニット100を集合した後、照明装置4全体の放射角度も同じ120度の角度となる。同様に、照明装置4の子午線方向も図5と同じように全体の照射角度が60度となり、図7の実施後、複数の投射ユニット100が累積されてより高い輝度が形成され、屋外照明とすることができる。   As shown in FIG. 8, after the plurality of projection units 100 are arranged in a matrix, as can be seen from the side, the plurality of projection units 100 are distributed inside the illumination device 4, and each has a light flux with an irradiation angle of 120 degrees. B is generated. Since the projection units 100 are assembled in such a manner that they are arranged side by side in a state of approaching the front and rear, the angles of the light beams emitted by the projection units 100 are the same, the traveling paths of the light beams B overlap with neighboring ones, and a plurality of After the projection units 100 are assembled, the radiation angle of the entire illumination device 4 is also the same 120 degrees. Similarly, the meridian direction of the lighting device 4 is 60 degrees as in the case of FIG. 5, and after the implementation of FIG. 7, a plurality of projection units 100 are accumulated to form higher brightness, can do.

図9に示すように、本案を道路上など2つの平行な辺線を有する地表面積に使用した場合、本考案の試作は、標準的な四車線の16.5メートル幅の道路上で、24メートルの距離にそれぞれ相互に対面した照明装置4を設置し、該照明装置4の発光高度は8メートルとする。   As shown in FIG. 9, when the present plan is used for a ground surface area having two parallel side lines such as on a road, the prototype of the present invention is obtained on a standard four-lane 16.5 meter wide road. The lighting devices 4 facing each other are installed at a distance of meters, and the light emission altitude of the lighting device 4 is 8 meters.

図10に示すように、図9の実施後、道路表面に必要な投影面601、602、603、604が形成され、複数の投影面601、602、603、604から成る照射面積は、道路の表面積の要求を満たすことができる。   As shown in FIG. 10, after the implementation of FIG. 9, necessary projection surfaces 601, 602, 603, 604 are formed on the road surface, and an irradiation area composed of a plurality of projection surfaces 601, 602, 603, 604 is the road surface. The surface area requirement can be met.

各照明装置4(図9、図10参照)が投影するそれぞれの投影面601、602、603、604は、光密度の分布も図6の投影面6の3つの異なる明暗のブロックの効果と同じようになる。   Each projection plane 601, 602, 603, 604 projected by each lighting device 4 (see FIGS. 9 and 10) has the same light density distribution as the effect of three different light and dark blocks on the projection plane 6 in FIG. It becomes like this.

照明装置4の照明角度は調整可能であり、各投影面601、602、603、604に重なりを形成することで、本考案の試作は投影面601、602、603、604に比較的規則的な光密度の投影ブロックを形成し、道路中央で比較的大きな光密度に結合させ、照度は40(Lx)に達することができ、かつ道路両側で同じように40(Lx)の照度に到達させることで、16.5メートル幅の四車線の標準道路上に実施したとき、夜間の運転時のニーズを満たすことができ、具体的な道路または街道の照明としての実施が得られる。本考案は16.5メートル幅の四車線標準道路で模擬した試作を利用し、街道の幅が16.5メートルに満たない、または8メートル幅の街道でも、路線上で片側に照明装置4を実施すればよく、対称に道路両側に実施する必要はない。   The illumination angle of the illuminating device 4 can be adjusted, and by forming an overlap on each projection surface 601, 602, 603, 604, the prototype of the present invention is relatively regular on the projection surfaces 601, 602, 603, 604. Form a light density projection block, combined with a relatively large light density in the middle of the road, the illuminance can reach 40 (Lx), and reach the illuminance of 40 (Lx) on both sides of the road as well Therefore, when implemented on a 16.5 meter wide four-lane standard road, it can meet the needs of night driving and can be implemented as concrete road or street lighting. The present invention uses a prototype simulating a 16.5 meter wide four-lane standard road, and the lighting device 4 is installed on one side of the route even if the road is less than 16.5 meters wide or 8 meters wide. It only needs to be implemented, and it is not necessary to carry out symmetrically on both sides of the road.

本考案は図6のような投影面6の状態下で、複数の照明装置4を実施し、かつそれぞれの投影面6を集結させた状況において、投影面6は輝度が非常に均一な光学的表現を形成することができる(図11参照)。単一の投影面6に複数の照明装置4を実施することができ、かつ各照明装置4の投射角度を変換した後、投影面601、602、603、604が同一に近い角度で重ねられ、この重なりによって輝度が非常に均一で高い輝度を累積した投影効果が得られる。このため、図6の投影ブロックに基づき、投影面601、602、603、604の重なりを経て、実際に必要な投影面6に非常に均一な輝度と高密度な光学照射面を得ることができる。   In the present invention, in a situation where a plurality of illumination devices 4 are implemented under the condition of the projection surface 6 as shown in FIG. An expression can be formed (see FIG. 11). After a plurality of illumination devices 4 can be implemented on a single projection surface 6 and the projection angle of each illumination device 4 is converted, the projection surfaces 601, 602, 603, 604 are overlaid at nearly the same angle, Due to this overlap, a projection effect in which the luminance is very uniform and high luminance is accumulated can be obtained. Therefore, based on the projection block of FIG. 6, the projection surfaces 601, 602, 603, and 604 can be overlapped to obtain a very uniform luminance and high-density optical irradiation surface on the actually required projection surface 6. .

1 屈折本体
10 光束形状変換器
100 投射ユニット
11 底板
12 結合部
121 突起部
2 射出面
21 屈折平面
210 辺線
22 光学曲面
23 反射面
231 反射部材
24 内陥球面
3 発光ユニット
4 照明装置
41 放光面
42 連結部
43 放熱孔
5 回路板
51 結合部材
6、601、602、603、604 投影面
B、Bn 光束
Bt 屈折光束
Br 反射光束
a 長辺
b 短辺
S 光軸
光軸
L 行路距離
1 Refraction body
DESCRIPTION OF SYMBOLS 10 Light beam shape converter 100 Projection unit 11 Bottom plate 12 Coupling part 121 Projection part 2 Ejection surface 21 Refraction plane 210 Side line 22 Optical curved surface 23 Reflection surface 231 Reflection member
24 Inner spherical surface 3 Light emitting unit 4 Illumination device
41 Light Emission Surface 42 Connecting Portion 43 Heat Dissipation Hole
5 Circuit board 51 Coupling member 6,601,602,603,604 Projection surface
B, Bn Light flux Bt Refraction light flux Br Reflected light flux
a Long side b Short side S Optical axis S 1 Optical axis L Path distance

Claims (4)

点状の光源を矩形の投影面に変換する光束形状変換器であって、そのうち、前記変換器が入射面と射出面を備えた屈折本体から成り、そのうち前記入射面が内陥球面から成り、前記射出面が複数の光学面の複合から成り、前記複数の複合面が、その光軸が前記内陥球面の光学動作軸と重なる屈折平面と、前記屈折平面の子午線方向の平面辺線に沿って接続された2つの光学曲面と、前記射出面の子午線の両側に位置し、かつ前記屈折平面の二側と一定の角度で接続された2つの反射面を含み、前記2つの光学曲面の2つの軸心を延伸した交点が前記入射面の方向に位置し、かつ前記光学動作軸心線に交わることを特徴とする、光束形状変換器。 A light beam shape converter for converting a point light source into a rectangular projection surface, wherein the converter comprises a refractive body having an entrance surface and an exit surface, of which the entrance surface comprises an inward spherical surface, The exit surface is composed of a composite of a plurality of optical surfaces, and the plurality of composite surfaces are along a refraction plane whose optical axis overlaps the optical operation axis of the inner spherical surface and a meridian plane side line of the refraction plane. Two optical curved surfaces connected to each other on both sides of the meridian of the exit surface and connected to two sides of the refracting plane at a constant angle. A light beam shape converter characterized in that an intersection obtained by extending two axes is located in the direction of the incident surface and intersects the optical operation axis. 前記反射面と前記屈折平面が垂直であることを特徴とする、請求項1に記載の光束形状変換器。 The light beam shape converter according to claim 1, wherein the reflecting surface and the refracting plane are perpendicular to each other. 前記反射面に反射部材を設置したことを特徴とする、請求項1に記載の光束形状変換器。 The light beam shape converter according to claim 1, wherein a reflecting member is provided on the reflecting surface. 前記屈折本体の底面に底板を結合したことを特徴とする、請求項1に記載の光束形状変換器。 The light beam shape converter according to claim 1, wherein a bottom plate is coupled to a bottom surface of the refractive body.
JP2009002609U 2009-04-22 2009-04-22 Beam shape converter Expired - Fee Related JP3157724U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009002609U JP3157724U (en) 2009-04-22 2009-04-22 Beam shape converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009002609U JP3157724U (en) 2009-04-22 2009-04-22 Beam shape converter

Publications (1)

Publication Number Publication Date
JP3157724U true JP3157724U (en) 2010-03-04

Family

ID=54861356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009002609U Expired - Fee Related JP3157724U (en) 2009-04-22 2009-04-22 Beam shape converter

Country Status (1)

Country Link
JP (1) JP3157724U (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012119140A (en) * 2010-11-30 2012-06-21 Panasonic Corp Lighting fixture
JP2013030446A (en) * 2011-06-22 2013-02-07 Enplas Corp Light flux control member, light-emitting device, and lighting device
WO2014162681A1 (en) * 2013-04-03 2014-10-09 株式会社小糸製作所 Road lighting device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012119140A (en) * 2010-11-30 2012-06-21 Panasonic Corp Lighting fixture
JP2013030446A (en) * 2011-06-22 2013-02-07 Enplas Corp Light flux control member, light-emitting device, and lighting device
WO2014162681A1 (en) * 2013-04-03 2014-10-09 株式会社小糸製作所 Road lighting device
JPWO2014162681A1 (en) * 2013-04-03 2017-02-16 株式会社小糸製作所 Road lighting equipment

Similar Documents

Publication Publication Date Title
US7988338B2 (en) Optical transformation device
US10295150B2 (en) Asymmetrical optical system
US8132942B2 (en) LED devices for offset wide beam generation
US9175832B2 (en) Faceted LED street lamp lens
US7600894B1 (en) Luminaires and optics for control and distribution of multiple quasi point source light sources such as LEDs
JP6345488B2 (en) Luminous flux control member, light emitting device, and illumination device
EP3273144B1 (en) Led spotlight
CN106764783B (en) Headlight for vehicle
JP5292629B2 (en) Lighting device
JP3157724U (en) Beam shape converter
US8356914B2 (en) Luminaires and optics for control and distribution of multiple quasi point source light sources such as LEDs
US10995915B2 (en) LED module and lighting module
CN105351811A (en) Compact multilayer reflecting type lighting system
WO2017002723A1 (en) Light flux control member, light-emitting device and illumination device
CN106996534A (en) Luminaire and the lighting apparatus for the vehicle including the luminaire
JP6437242B2 (en) Luminous flux control member, surface light source device, and display device
JP5693096B2 (en) Lighting device
JP2010073652A (en) Light for vehicle, and multi-light source control lens
CN104214668A (en) Lens and LED lamp with same
CN201259103Y (en) Integration LED array light source
US9423085B2 (en) Beam shaping light emitting module
CN217763273U (en) Optical assembly, lighting and/or signalling device, and motor vehicle
CN101545611A (en) Light beam deflector
JP3073246U (en) LED lighting device
JP5901223B2 (en) Lighting device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091211

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees