JP3157224B2 - Manufacturing method of cellulose molded product - Google Patents
Manufacturing method of cellulose molded productInfo
- Publication number
- JP3157224B2 JP3157224B2 JP30321391A JP30321391A JP3157224B2 JP 3157224 B2 JP3157224 B2 JP 3157224B2 JP 30321391 A JP30321391 A JP 30321391A JP 30321391 A JP30321391 A JP 30321391A JP 3157224 B2 JP3157224 B2 JP 3157224B2
- Authority
- JP
- Japan
- Prior art keywords
- cellulose
- acid
- dope
- alkali
- solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Processes Of Treating Macromolecular Substances (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Polysaccharides And Polysaccharide Derivatives (AREA)
Description
【0001】[0001]
【産業上の技術分野】本発明は、フィルムや繊維(中空
糸,不織布を含む)やパウダー等に代表されるセルロー
ス成型品を実質的にアルカリに可溶なセルロースとアル
カリ水溶液とからなるドープより製造する方法に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cellulose molded product represented by a film, a fiber (including a hollow fiber or a non-woven fabric), a powder, etc., by a dope comprising a substantially alkali-soluble cellulose and an aqueous alkali solution. It relates to a method of manufacturing.
【0002】[0002]
【従来の技術】一般にセルロースの成型品(繊維、フィ
ルム、パウダー)は、セルロースをある種の方法で溶媒
に溶解して調製した溶液を非溶媒である媒体中に投入す
ることにより製造される。現在、上記の目的に工業的に
利用されているセルロースの溶解法は、ほぼ100年前
(1890年代後半)に既に発見されていた、いわゆる
セルロースをアルカリを作用させてアルカリセルロース
とし、これに二硫化炭素を反応せしめ、そのあとでアル
カリに溶解する方法(ビスコース法)か、セルロースを
銅アンモニア溶液に溶解させる方法(銅安法)の二つだ
けであり、いずれも高分子の概念が樹立する以前に見い
だされた技術であるという点で興味深い。これらの方法
で得た溶液中のセルロースは、セルロースがそのままの
形で溶解しているのではなく、ある種のセルロース誘導
体として溶解しているためセルロースに戻すためには、
凝固以外に再生というプロセスを必要とする。従来か
ら、この再生過程の制御が繊維の糸物性を決める重要な
ファクターであることが知られており、ドープの改質や
凝固条件(凝固浴組成、凝固温度、凝固浴長、浴流、ノ
ズル)等、様々な角度から最適な糸物性となる凝固/再
生条件が検討されてきた。例えば、ビスコースレーヨン
法ではミューラー浴を用いる方法、ポリノジック法、H
Wモジュラス法、強力レーヨン法、高濃度硫酸を凝固浴
に用いるリリエンフェルド法等であり、銅安法では流下
緊張紡糸法などが挙げられる。 上記のいずれの方法も
溶液を調製する過程や成型品を製造する過程で毒性気体
の発生や重金属の排出を避けることができず作業環境面
や地球環境的な見地からみても問題点がないとは言えな
い。 このほかセルロースを溶解する方法としてカドキ
セン(カドミウム/エチレンジアミン/アリカリ)、ニ
オキセン(ニッケル/エチレンジアミン/アルカリ)、
EWNN(鉄/酒石酸/アリカリ)など金属錯体が中心
に検討されたが、安全性や経済性の点で銅安法やビスコ
ース法を凌駕するものではない。一方、二硫化炭素を用
いるビスコース法は、現在の再生セルロース繊維工業で
は、圧倒的に多数の企業が採用しているが、上記の観点
からビスコース法の工業的存続すら危惧する声が欧米で
起きている。その顕著な現れは1960〜1970年代
にかけての多くの企業のビスコースレーヨン事業からの
撤退であり(第一波)、現在、全世界的なスケールで押
し進められつつある反環境破壊運動の高まりと共に各企
業でも環境/安全志向の体制作りが急務とされつつある
(第二波)。前者に於いては既存の溶解方法への反省と
して,セルロースを直接有機溶媒に溶解し、繊維やフィ
ルム製造プロセスをクローズド化して新規な再生セルロ
ース成型品を得ようとする研究が1970年代より、カ
ナダ、米国を中心になされてきた。その結果、実に多く
の溶解方法が見いだされたが、いずれも複雑な多成分系
溶媒を用いており、溶媒自体のコスト高、毒性、爆発
性、溶媒回収困難などの為実用化(工業化)された例は
みないのが現状である。これらの新しく発見された溶解
方法は、殆ど総て、セルロースをある種の誘導体の形に
してその誘導体を適当な溶媒に溶解していると言う点
で、ビスコース法や銅安法となんら技術的に大きな違い
のあるものではない。2. Description of the Related Art In general, a molded product of cellulose (fiber, film, powder) is produced by dissolving cellulose in a solvent by a certain method and pouring the solution into a non-solvent medium. At present, a method for dissolving cellulose which is industrially used for the above-mentioned purpose is a method in which so-called cellulose, which was already discovered almost 100 years ago (late 1890s), is treated with alkali to form alkali cellulose. There are only two methods, the method of reacting carbon sulfide and then dissolving it in alkali (viscose method) and the method of dissolving cellulose in copper ammonia solution (copper copper method). Interesting in that it is a technology that was discovered before The cellulose in the solution obtained by these methods is not dissolved in the form of cellulose as it is, but in order to return to cellulose because it is dissolved as a certain cellulose derivative,
It requires a process called regeneration in addition to coagulation. It has been known that the control of the regeneration process is an important factor that determines the fiber properties of the fiber. The dope modification and coagulation conditions (coagulation bath composition, coagulation temperature, coagulation bath length, bath flow, nozzle, ), Etc., coagulation / regeneration conditions that provide optimum yarn physical properties have been studied from various angles. For example, the viscose rayon method uses a Mueller bath, the polynosic method, H
Examples thereof include a W modulus method, a strong rayon method, and a Lilyenfeld method using a high-concentration sulfuric acid for a coagulation bath, and a falling copper spinning method includes a falling tension spinning method. Both of the above methods cannot avoid the generation of toxic gas and the emission of heavy metals in the process of preparing solutions and in the process of manufacturing molded products, and there is no problem from the viewpoint of work environment and global environment. I can't say. In addition, as a method for dissolving cellulose, cadoxene (cadmium / ethylenediamine / alkaline), nioxene (nickel / ethylenediamine / alkali),
Although metal complexes such as EWNN (iron / tartaric acid / alkari) have been mainly studied, they do not surpass the copper cheap method or viscose method in terms of safety and economy. On the other hand, the viscose method using carbon disulfide is overwhelmingly adopted by many companies in the present regenerated cellulose fiber industry. Waking up. A remarkable manifestation is the withdrawal of many companies from the viscose rayon business in the 1960s and 1970s (first wave), and with the growing anti-environmental destruction movement that is currently being pushed on a global scale. It is urgent for companies to create an environment / safety-oriented system (second wave). In the former case, as a reflection on the existing dissolution method, a study to dissolve cellulose directly in an organic solvent and close the fiber and film manufacturing process to obtain a new regenerated cellulose molded product has been conducted since the 1970s in Canada. , Mainly in the United States. As a result, many dissolution methods were found, but all of them used complicated multi-component solvents and were practically used (industrialized) due to the high cost of the solvent itself, toxicity, explosive properties, and difficulty in solvent recovery. At present, there is no such example. Almost all of these newly discovered dissolving methods use techniques such as the viscose method and the copper copper method in that cellulose is formed into a certain derivative and the derivative is dissolved in an appropriate solvent. There is no significant difference.
【0003】一方、これらの流れに対して環境にやさし
いプロセスでセルロース成型品を製造しようとする試み
が2、3行われつつある。特開昭62−240328号
および特開昭62−240329号では、アルカリ水溶
液にセルロースを溶解してなるドープからフィルムや繊
維等の成型品を製造する方法について開示している。こ
れらによれば凝固剤の選択によって得られる成型品の固
体構造、特に、分子内水素結合性が大幅に変化したもの
が得られている。例えば、特開昭62−240328号
では直接酸を用いて凝固させるか、予め、水、塩基、中
性塩等で一旦凝固させた後、酸性浴で中和させると分子
内水素結合の破壊の程度を表す尺度であるχam(C
3)が55%以下のセルロース成型品が得られるのに対
し、特開昭62−240329号では直接塩を含む酸性
浴で凝固させることにより、χam(C3)が55〜8
5%のセルロース成型品が得られるとしている。ここで
χam(C3)は固体高分解能NMR(CP/MAS
法)から評価される分子内水素結合の破壊の程度であ
り、特開昭62−116601号に記載の方法で評価す
ることが出来る。[0003] On the other hand, a few attempts have been made to produce a cellulose molded article in an environmentally friendly process for these flows. JP-A-62-240328 and JP-A-62-240329 disclose a method for producing a molded product such as a film or a fiber from a dope obtained by dissolving cellulose in an aqueous alkali solution. According to these, a solid structure of a molded article obtained by selecting a coagulant, particularly one in which the intramolecular hydrogen bonding property has been significantly changed has been obtained. For example, in Japanese Patent Application Laid-Open No. 62-240328, coagulation using an acid directly, or coagulation in advance with water, a base, a neutral salt, or the like, and then neutralization in an acidic bath can destroy intramolecular hydrogen bonds.尺度 am (C, a measure of the degree
In contrast to the method described in JP-A-62-240329, a cellulose molded product having 3% or less of 55% or less is directly coagulated in an acid bath containing a salt, whereby Δam (C3) is 55 to 8%.
It is said that a 5% cellulose molded product can be obtained. Here, χam (C3) is a solid-state high-resolution NMR (CP / MAS
Method), which is the degree of breaking of intramolecular hydrogen bonds, which can be evaluated by the method described in JP-A-62-116601.
【0004】特開昭62−240328号記載の方法で
使用される凝固剤は酸性浴である。第一浴に直接酸を用
いる点は本発明法と類似しているが、酸性浴の脱水作用
が低い為に得られた成型品のχam(C3)が55%以
下のものしか得られない。また、特開昭62−2403
229号記載の方法の場合も同様に酸性浴の脱水作用が
充分でないため、NMR的な固体構造(χam(C
3))は本願発明の成型品と同一範疇に属するが、実施
例で後述するように高次構造(凝集構造)に違いがあ
り、得られるセルロース成型品の諸物性が異なる。いず
れにしても湿式法では凝固剤の選択いかんが得られる成
型品の諸物性を支配していることを示唆する。また本発
明者らは、このセルロースとアルカリとからなるドープ
から種々の方法によるセルロース成型品の製法を検討
し、通常の紡糸法では可紡性が低く困難であったアルカ
リや水を凝固剤に用いても、かかる凝固浴を強制的に流
動させることによりセルロース成型品を得ることに成功
している(特開平3−40806号)。The coagulant used in the method described in JP-A-62-240328 is an acidic bath. The use of an acid directly in the first bath is similar to the method of the present invention, but the molded product obtained has a Δam (C3) of only 55% or less due to the low dehydration effect of the acidic bath. Also, Japanese Patent Application Laid-Open No. 62-2403
Similarly, in the case of the method described in No. 229, the dehydration effect of the acidic bath is not sufficient, so that the NMR-like solid structure (χam (C
3)) belongs to the same category as the molded article of the present invention, but there is a difference in the higher-order structure (agglomerated structure) as described later in the Examples, and the physical properties of the obtained cellulose molded article are different. In any case, the wet method suggests that the choice of coagulant controls the physical properties of the molded article obtained. In addition, the present inventors studied various methods for producing a cellulose molded product from the dope composed of cellulose and alkali by using alkali or water, which had low spinnability and was difficult with a normal spinning method, as a coagulant. Even when used, a cellulose molded article has been successfully obtained by forcibly flowing such a coagulation bath (Japanese Patent Laid-Open No. 40806/1991).
【0005】しかしながら、これらの方法でセルロース
成型品を製造する際には、基本的にセルロースとアルカ
リだけからなるドープを使用している為、従来法(ビス
コース法や銅安法)の成型過程において諸物性の制御に
重要な要素であった、いわゆる再生プロセスが存在しな
い。このため再生プロセス(化学反応)のないことが特
長であったこれらの系においては,中和過程が即凝固あ
るいはゲル化であり、凝固時の凝集構造の制御、例えば
凝固時にポリマーを緻密に凝集させるとか凝固ゲルを変
形させる等のコントロールが極めて難しく、得られるセ
ルロース成型品の諸物性も充分満足できるものではな
い。However, when producing a molded cellulose product by these methods, a dope consisting essentially of cellulose and alkali is basically used. However, there is no so-called regeneration process, which is an important element for controlling various physical properties. Therefore, in these systems, which were characterized by no regeneration process (chemical reaction), the neutralization process was immediate solidification or gelation, and the coagulation structure during coagulation was controlled, for example, the polymer was coagulated densely during coagulation. It is extremely difficult to control the formation of the solidified gel or to deform the solidified gel, and the physical properties of the obtained molded cellulose product are not sufficiently satisfactory.
【0006】[0006]
【発明が解決しようとする課題】前述したようにビスコ
ース法や銅安法は歴史的に見て古典的製造法ではあるも
のの、現在でも繊維工業のなかで基幹的役割を果たして
いる事実は否めない。しかし、国際的な規模で環境問題
が取り沙汰されている現状を踏まえれば多くの問題点を
抱かえた工業であるといわざるを得ない。即ち、:人
体に悪影響を及ぼす二硫化炭素やアンモニアを使用して
おり、かつ、これらが爆発限界を持つこと。:重金属
である銅を含み、また、溶解/凝固/再生/精練過程で
有害な廃ガスが生成するため、それらの回収/精製/廃
棄処理に多大のエネルギーや水を必要とすること。:
およびより必然的に労働集約型の事業形態に成らざ
るを得ないこと。等が挙げられる。As described above, the viscose method and the copper copper method are historically classical production methods, but they still play a fundamental role in the textile industry. Absent. However, given the current status of environmental issues on an international scale, it must be said that the industry has many problems. That is: carbon disulfide or ammonia, which has an adverse effect on the human body, is used and has an explosive limit. : It contains copper which is a heavy metal, and harmful waste gas is generated in the process of dissolution / solidification / regeneration / smelting, so that a large amount of energy and water are required for their recovery / purification / disposal processing. :
And, more inevitably, a labor-intensive business form. And the like.
【0007】一方、セルロースの有機溶媒紡糸の場合、
重金属や揮発性ガスを使用しないと言うメリットは有る
ものの、:その多くは溶解時に化学反応を伴うため溶
解状態ではセルロースが誘導体の形で溶解しており、再
生時に副生成物の生成(溶媒自体の変成)が生起する
か、あるいは、再生出来ず最終的にセルロース誘導体の
まま成型品となってしまう。:溶媒自体の反応/再生
に伴う変成によるロスや高価なため高回収率を要した
り、高沸点の溶媒が多いためエネルギーが多大に必要で
ある等溶媒回収面での問題もある。:勿論、溶媒自体
の毒性や分解性、爆発性等の問題もある。などの観点か
ら工業的とは言いがたい。On the other hand, in the case of organic solvent spinning of cellulose,
Although there is an advantage of not using heavy metals or volatile gases, most of them involve a chemical reaction during dissolution, so that cellulose is dissolved in the form of a derivative in the dissolved state, and by-products are generated during regeneration (solvent itself). Of the cellulose derivative), or cannot be regenerated, and finally becomes a molded product with the cellulose derivative as it is. : There is also a problem in terms of solvent recovery, such as loss due to denaturation due to reaction / regeneration of the solvent itself and high cost, which requires a high recovery rate, and a large amount of high boiling point solvents, which requires a great deal of energy. : Of course, there are also problems such as toxicity, decomposability and explosiveness of the solvent itself. It is hard to say that it is industrial from such a viewpoint.
【0008】他方、アルカリ水溶液にセルロースを溶解
してなるドープからフィルムや繊維等の成型品を製造す
る方法に関する先行技術においては、凝固時の凝集構造
の制御(凝固時に緻密に凝集させるとか凝固ゲルを変形
させる等)が極めて難しく、得られるセルロース成型品
の諸物性も充分満足できるものになっていない。かかる
点に鑑み、本発明者らは、環境にやさしいプロセスでセ
ルロース成型品を製造しようとする視点に立ち、セルロ
ースを実質的にアルカリ水溶液に溶解してなるドープの
凝固性を系統的に検討した結果、驚くべきことに凝固剤
に高度に脱水作用をもつ媒体を使用すれば、凝固時の凝
集構造や固体構造が容易にコントロールできることを見
いだした。 即ち、基本的にセルロースとアルカリだけ
からなるドープを使用している本発明の系の場合、従来
法(ビスコース法や銅安法)の成型過程において諸物性
の制御に重要な要素であった再生プロセスが存在しない
にも拘わらず、高度に脱水作用をもつ媒体を凝固剤に使
用することにより、中和過程に於いて即凝固あるいは即
ゲル化を生起させることなく脱溶媒を促進させることに
成功し本発明に到達した。On the other hand, in the prior art relating to a method for producing a molded product such as a film or a fiber from a dope obtained by dissolving cellulose in an alkaline aqueous solution, control of the coagulation structure at the time of coagulation (eg, coagulation at the time of coagulation or coagulation gel) is carried out. Is extremely difficult, and the physical properties of the obtained cellulose molded product are not sufficiently satisfactory. In view of the above, the present inventors systematically examined the coagulability of a dope obtained by substantially dissolving cellulose in an alkaline aqueous solution, from the viewpoint of producing a cellulose molded product by an environmentally friendly process. As a result, it was surprisingly found that if a medium having a high dehydration effect is used as the coagulant, the coagulated structure and the solid structure during coagulation can be easily controlled. That is, in the case of the system of the present invention using a dope consisting essentially of cellulose and alkali, it was an important factor for controlling various physical properties in the molding process of the conventional method (viscose method or copper-aluminum method). The use of a highly dehydrating medium as a coagulant, despite the absence of a regeneration process, facilitates desolvation without causing immediate coagulation or gelation during the neutralization process. Successful and reached the present invention.
【0009】本発明は、新規なセルロース成型品を製造
するに当たって、紡糸プロセス中に廃ガスの発生や爆発
の危険がなく、しかも、廃液、廃ガスなどによる環境汚
染のない製造プロセスを提供することを目的としてい
る。即ち、本発明の課題は工業的視点および環境問題的
視点からみて充分満足できる次世代型のセルロース成型
品の製造方法を構築することにある。An object of the present invention is to provide a process for producing a novel cellulose molded article which does not generate waste gas or explosion during the spinning process and which is free from environmental pollution due to waste liquid and waste gas. It is an object. That is, an object of the present invention is to construct a method for producing a next-generation cellulose molded product that is sufficiently satisfactory from an industrial viewpoint and an environmental problem viewpoint.
【0010】[0010]
【課題を解決するための手段】本発明は、実質的にアル
カリに可溶なセルロース、または置換度が0.2以下の
セルロース誘導体をアルカリ水溶液に溶解してなるドー
プから湿式法によりセルロース成型品を製造するに際
し、該ドープを50〜80重量%の硫酸、40〜42.
5重量%の塩酸、60〜80重量%の硝酸、60〜90
重量%のポリリン酸、100重量%のトリフルオロ酢
酸、および65重量%の硫酸と20%のメタリン酸の混
合溶液の群から選ばれる少なくとも1種からなる溶液中
で、−8℃〜10℃の温度範囲で凝固、成型せしめてな
ることを特徴とするセルロース成型品の製造法である。SUMMARY OF THE INVENTION The present invention relates to a cellulose which is substantially soluble in alkali , or a cellulose having a degree of substitution of 0.2 or less.
In producing a cellulose molded product by a wet method from a dope obtained by dissolving a cellulose derivative in an aqueous alkali solution, the dope is mixed with 50 to 80% by weight of sulfuric acid, 40 to 42.
5% by weight hydrochloric acid, 60-80% by weight nitric acid, 60-90%
By weight polyphosphoric acid, 100% by weight trifluorovinegar
Acid and a mixture of 65% by weight sulfuric acid and 20% metaphosphoric acid
A method for producing a molded cellulose product, comprising coagulating and molding in a solution comprising at least one selected from the group consisting of a combined solution in a temperature range of -8 ° C to 10 ° C.
【0011】本発明の方法に使用できるセルロースは低
温下でアルカリ水溶液に溶解可能な、いわゆるアルカリ
可溶セルロースであり、例えば、特開昭60−4240
1号や特開昭62−116601号に開示されたセルロ
ースが好適に用いられる。更には、置換度が0.2以下
のアルカリに可溶なセルロース誘導体を用いることもで
きる。置換基の種類は置換度が0.2以下であればエー
テル基、エステル基に関係なく用いることができるが、
置換度が0.2より大きくなると得られるセルロース成
型品の性質に置換基の性状が反映されるため、物性的
(例えば、力学的性質)に好ましくない。具体的には、
メチル、エチル、プロピル等のアルキルセルロース、ヒ
ロドキシエチル、ヒロドキシプロピル等のヒロドキシア
ルキルセルロース、カルボキシエチルセルロース、カル
バモイルエチルセルロース、シアノエチルセルロース、
オキシセルロース、セルロースナイトレート等が用いら
れる。The cellulose which can be used in the method of the present invention is a so-called alkali-soluble cellulose which can be dissolved in an aqueous alkali solution at a low temperature.
Cellulose disclosed in No. 1 and JP-A No. 62-116601 are preferably used. Further, an alkali-soluble cellulose derivative having a substitution degree of 0.2 or less can also be used. The type of the substituent can be used irrespective of the ether group and the ester group if the degree of substitution is 0.2 or less,
When the degree of substitution is greater than 0.2, the properties of the resulting cellulose molded article are reflected in the properties of the substituent, which is not preferable in physical properties (for example, mechanical properties). In particular,
Methyl, ethyl, alkyl cellulose such as propyl, hydroxyethyl, hydroxyalkyl cellulose such as hydroxypropyl, carboxyethyl cellulose, carbamoylethyl cellulose, cyanoethyl cellulose,
Oxycellulose, cellulose nitrate and the like are used.
【0012】また、セルロースの重合度は得られる成型
品の物性や成型時操作性などを加味すれば最低100以
上が好ましい。一方、セルロース濃度はセルロースの重
合度や溶媒組成によって決定すべき問題であるが、経済
的観点や得られる成型品の物性から3重量%以上含有す
ることが好ましい。溶媒であるアルカリ水溶液は、水酸
化ナトリウム、水酸化リチウムなどが好適に用いられ
る。この場合アルカリ水酸化物の濃度は5〜15%で種
類に応じて好適濃度が変わるが、水酸化ナトリウムの場
合7〜10重量%が好適に用いられる。溶解は16℃以
下、好ましくは−10℃以上10℃以下で行われる。ま
た,必要に応じて第三成分、例えば、ダル調にするため
には酸化チタン、可紡性を調整するための界面活性剤、
機能を付与させるための架橋剤やアルカリに可溶な高分
子などを添加しても構わない。The degree of polymerization of cellulose is preferably at least 100 in consideration of the physical properties of the molded article obtained and the operability during molding. On the other hand, the concentration of cellulose is a matter to be determined depending on the degree of polymerization of cellulose and the composition of the solvent. However, it is preferable that the content of cellulose is 3% by weight or more from the viewpoint of economy and physical properties of the obtained molded article. Sodium hydroxide, lithium hydroxide and the like are suitably used as the alkaline aqueous solution as a solvent. In this case, the concentration of the alkali hydroxide is 5 to 15%, and the preferred concentration varies depending on the type. In the case of sodium hydroxide, 7 to 10% by weight is suitably used. The dissolution is performed at a temperature of 16 ° C. or less, preferably from −10 ° C. to 10 ° C. Also, if necessary, a third component, for example, titanium oxide for dull tone, a surfactant for adjusting spinnability,
A crosslinking agent for imparting a function, an alkali-soluble polymer, or the like may be added.
【0013】かかる方法によって得られたセルロースの
アルカリ溶液(以下、単にドープと略称する)は、無水
硫酸、硫酸、ハロゲン化硫酸、チオ硫酸、亜硫酸、塩
酸、臭酸、フッ化水素酸、硝酸、燐酸、ピロリン酸、メ
タリン酸、ポリリン酸、次亜リン酸、トリフルオロ酢
酸、チオシアン酸塩、ハロゲン化金属塩等の中から少な
くとも一種以上選ばれて成る高度に脱水作用を有する媒
体を凝固剤に使用することによって成型される。ここで
高度に脱水作用を有するとは、ドープ中の水を媒体中に
引き抜く作用が高いことを意味し、例えば、硫酸の場
合、390atm以上の浸透圧πを有する濃度の硫酸が
使用される。 従って、使用に際してこれらの媒体は、
比較的高濃度の水溶液、即ち、水あるいはアルカリ水溶
液に対して脱水作用を持つ濃度範囲で使用される。使用
する媒体によってその濃度範囲は異なるので一義的に規
定することはできないが、 例えば、硫酸の場合、50
〜80重量%(π:395〜1620atm)、塩酸の
場合、40〜42.5重量%(π:1355〜1619
atm)、硝酸の場合、60〜80重量%(π:133
0〜6070atm)、ポリリン酸の場合、60〜90
重量%の範囲が好適に用いられる。 但し、ここで、塩
酸と硝酸の浸透圧πは、高濃度領域でも正則溶液(ラウ
ールの法則が成立する)であるとして算出した値を示し
ている。かかる酸は上記に示した濃度以上でも高い浸透
圧πを示すものの、セルロースに対する分解作用や溶解
作用や変成作用および取り扱い性(発煙性が高い、粘性
が高い)の点から実用的ではない。また、当然、これら
の媒体が混合されて用いられる場合には一成分の濃度が
前記の濃度より低くても構わない。同様に、本発明の凝
固剤は一次凝固浴に他の凝固剤を用いた後、二次凝固浴
に使用しても後述する作用効果を付与することができ
る。一方、成型時の凝固浴の温度は特に限定する必要は
ないが、ドープのゲル化が生起しない低温ほど好まし
い。特に好ましくは、−8℃〜10℃である。−8℃未
満になるとドープ中の溶媒が凍結するので好ましくな
く、また、10℃を越えると媒体の加水分解作用による
セルロース分子の主鎖が切断(解重合)したり、ドープ
自体のゲル化が生起するので好ましくない。An alkaline solution of cellulose (hereinafter simply referred to as a dope) obtained by the above method is used for sulfuric anhydride, sulfuric acid, halogenated sulfuric acid, thiosulfuric acid, sulfurous acid, hydrochloric acid, hydrobromic acid, hydrofluoric acid, nitric acid, A highly dehydrating medium selected from at least one of phosphoric acid, pyrophosphoric acid, metaphosphoric acid, polyphosphoric acid, hypophosphorous acid, trifluoroacetic acid, thiocyanate, metal halide salt and the like is used as a coagulant. Molded by use. Here, having a high dehydrating action means that the action of extracting water in the dope into the medium is high. For example, in the case of sulfuric acid, sulfuric acid having a concentration of osmotic pressure π of 390 atm or more is used. Therefore, upon use, these media
It is used in an aqueous solution having a relatively high concentration, that is, in a concentration range having a dehydrating effect on water or an aqueous alkaline solution. Since the concentration range varies depending on the medium used, it cannot be specified unambiguously.
80 to 80% by weight (π: 395 to 1620 atm), and in the case of hydrochloric acid, 40 to 42.5% by weight (π: 1355 to 1619).
atm), in the case of nitric acid, 60 to 80% by weight (π: 133
0 to 6070 atm), and in the case of polyphosphoric acid, 60 to 90
A weight percent range is preferably used. Here, the osmotic pressure π of hydrochloric acid and nitric acid is a value calculated as a regular solution (Raul's law is satisfied) even in a high concentration region. Although such an acid shows a high osmotic pressure π even at the above-mentioned concentration, it is not practical in terms of decomposition, dissolving, denaturing, and handling properties (high smoke emission and high viscosity) for cellulose. When these media are used as a mixture, the concentration of one component may be lower than the above-mentioned concentration. Similarly, the coagulant of the present invention can provide the effects described below even when used in a secondary coagulation bath after using another coagulant in the primary coagulation bath. On the other hand, the temperature of the coagulation bath at the time of molding does not need to be particularly limited, but the lower the temperature at which gelation of the dope does not occur, the more preferable. Particularly preferably, it is −8 ° C. to 10 ° C. -8 ° C not yet
If the temperature is full , the solvent in the dope freezes, which is not preferable. If the temperature exceeds 10 ° C. , the main chain of the cellulose molecule is cut (depolymerized) by the hydrolysis action of the medium, or the dope itself gels. Not preferred.
【0014】本発明法によれば、特に成型法に制約は受
けず通常の製膜方法や紡糸方法を行えば充分である。例
えば、製膜法については、製膜用原液をアプリケーター
やナイフコーターを用いてガラス板のごとき支持板にキ
ャストさせた後、前記脱水作用を有する媒体に浸漬/凝
固(任意の温度、時間)させ、しかる後、水洗/乾燥さ
せれば良い。According to the method of the present invention, there is no particular restriction on the molding method, and it is sufficient to carry out ordinary film forming methods and spinning methods. For example, in the film forming method, a stock solution for film forming is cast on a support plate such as a glass plate using an applicator or a knife coater, and then immersed / coagulated (arbitrary temperature and time) in the medium having the dehydrating action. Thereafter, washing / drying may be performed.
【0015】勿論、スリットノズルを用いて直接凝固浴
中の吐出させてもよい。繊維化に於いては、紡糸原液を
通常の細孔を有する湿式ノズルや中空糸用ノズルやジェ
ットノズルを用いて凝固浴中に吐出させた後、必要に応
じて延伸を加え水洗/乾燥後巻き取れば良い。また,パ
ウダー化の場合は、高速攪拌下の凝固浴中に成型用原液
を滴下させて粉末状に成型させればよい。Of course, the liquid may be directly discharged into the coagulation bath using a slit nozzle. In the fiberization, the spinning stock solution is discharged into a coagulation bath using a wet nozzle having a normal pore, a nozzle for hollow fiber, or a jet nozzle, and then, if necessary, is stretched, washed with water, dried, and wound. Just take it. In the case of powdering, the stock solution may be dropped into a coagulation bath under high-speed stirring to form a powder.
【0016】[0016]
【実施例】以下、実施例により本発明を説明するが本発
明はこれらになんら限定されるものではない。The present invention will be described below with reference to examples, but the present invention is not limited to these examples.
【0017】[0017]
【実施例1〜3、比較例1〜3】重合度1300の針葉
樹パルプ(アラスカパルプ)100部を1000部の水
に3時間浸漬後,脱水機で水を脱水し,190部の含水
セルロースを得た。この含水セルロースを爆砕処理装置
(日本化学機械製)を用いて235℃で25秒間スチー
ム処理して重合度340のアルカリ水溶液に可溶なセル
ロースを得た。このセルロース100gを8重量%の苛
性ソーダ水溶液1900gに5℃でホモジナイザーをも
ちいて溶解させ均一な溶液を得た。かかる溶液を300
メッシュの金属網2枚とポリアミド不織布2枚を用いて
濾過した後,自然放置により脱泡させ紡糸原液とした。
この紡糸原液をギアポンプつきの押し出し機を用いて,
0.08mmΦの孔が100個空いたノズルから表1に
示した濃度の硫酸浴に吐出量30.16ml/minで
吐出させた。凝固浴の温度は−5℃で浸漬長25cmの
条件で凝固させた後、水洗行程を経て120℃の熱ロー
ル上で乾燥させ、60m/minで紙管に巻き取った。
表1に実施例1〜3、比較例1〜3を示す。TS、T
E、KS、Xcはそれぞれ引っ張り強度、引っ張り伸
度、結節強度、X線結晶化度である。20%、40%硫
酸を用いた場合、可紡性は良好であるもののTS、T
E、KS等の物性が低いため繊維としての実用性は低
い。また、90%硫酸を用いた場合、ドープ中のセルロ
ースの溶解や分解が生起し、紡糸不能であった。一方、
本発明法、実施例1〜3の場合、TS、TE、KS、X
cとも既存の再生セルロース繊維並であり、衣料用繊維
として充分使用できる。Examples 1 to 3 and Comparative Examples 1 to 3 100 parts of softwood pulp (Alaska pulp) having a polymerization degree of 1300 were immersed in 1,000 parts of water for 3 hours, and the water was dehydrated with a dehydrator to remove 190 parts of hydrous cellulose. Obtained. This hydrous cellulose was subjected to a steam treatment at 235 ° C. for 25 seconds using an explosion treatment apparatus (manufactured by Nippon Kagaku Kikai) to obtain cellulose soluble in an aqueous alkali solution having a polymerization degree of 340. 100 g of this cellulose was dissolved in 1900 g of an 8% by weight aqueous solution of caustic soda at 5 ° C. using a homogenizer to obtain a uniform solution. Such a solution is
After filtration using two mesh metal nets and two polyamide non-woven fabrics, the mixture was defoamed by standing naturally to obtain a spinning stock solution.
Using an extruder equipped with a gear pump,
A nozzle having 100 holes of 0.08 mmφ was discharged into a sulfuric acid bath having the concentration shown in Table 1 at a discharge rate of 30.16 ml / min. The coagulation bath was coagulated at a temperature of −5 ° C. and a dipping length of 25 cm, then dried on a hot roll at 120 ° C. through a washing step, and wound around a paper tube at 60 m / min.
Table 1 shows Examples 1 to 3 and Comparative Examples 1 to 3. TS, T
E, KS, and Xc are tensile strength, tensile elongation, knot strength, and X-ray crystallinity, respectively. When 20% and 40% sulfuric acid is used, TS and T are good although spinnability is good.
Since the physical properties of E, KS, etc. are low, the utility as a fiber is low. When 90% sulfuric acid was used, dissolution and decomposition of cellulose in the dope occurred, and spinning was impossible. on the other hand,
In the case of the method of the present invention, Examples 1 to 3, TS, TE, KS, X
Both of them are comparable to existing regenerated cellulose fibers, and can be sufficiently used as clothing fibers.
【0018】このように本発明法によれば、セルロース
とアルカリと水とから成る極めてシンプルなドープから
環境汚染のないプロセスで既存と同程度の物性を持つ繊
維を得ることができる。As described above, according to the method of the present invention, a fiber having the same physical properties as existing ones can be obtained from an extremely simple dope composed of cellulose, alkali and water by a process without environmental pollution.
【0019】[0019]
【実施例4〜8、比較例4〜6】実施例1の方法に準拠
して調製したアルカリ可溶セルロース100gを5.6
重量%の水酸化リチウム水溶液1900gに−5℃でホ
モジナイザーを用いて溶解させ均一な溶液を得た。かか
る溶液を300メッシュの金属網3枚を用いて濾過した
後、自然放置により脱泡させ製膜原液とした。この製膜
原液を流延厚1mmのアプリケーターを用いて、ガラス
板上に流延し、表−2に示した凝固浴に5分間浸漬させ
た後、5℃の冷水で充分に水洗した。水洗後の生フィル
ム(湿潤フィルム)の一部を液体窒素で凍結させ凍結乾
燥機で乾燥させた。この乾燥フィルムの断面構造を電子
顕微鏡を用いて観察し、凝集状態の粗密さを評価した。
残りのフィルムは濾紙に挟み真空乾燥させた後、強伸度
測定用とした。これらの結果を表2にまとめて示す。凝
集構造(断面)の判定は、電子顕微鏡で観察した凝集状
態の粗密さをもとにボイッドの有無やそのサイズ等で肉
眼判定した。○はボイッドの孔径が50nm以下の緻密
な構造、×はボイッド孔径が200nm以上の粗な構造
を表す。また、強伸度は東洋ボールドウイン製の引っ張
り試験機“テンシロン”を用いて測定した。Examples 4 to 8 and Comparative Examples 4 to 6 100 g of an alkali-soluble cellulose prepared according to the method of Example 1 was charged to 5.6.
A homogenizer was dissolved in 1900 g of a 1% by weight aqueous solution of lithium hydroxide at −5 ° C. to obtain a uniform solution. The solution was filtered using three 300-mesh metal nets, and then defoamed by standing naturally to obtain a stock solution. This film forming stock solution was cast on a glass plate using an applicator having a casting thickness of 1 mm, immersed in a coagulation bath shown in Table 2 for 5 minutes, and then sufficiently washed with cold water at 5 ° C. A part of the raw film after washing with water (wet film) was frozen with liquid nitrogen and dried with a freeze dryer. The cross-sectional structure of this dried film was observed using an electron microscope, and the coarseness of the aggregated state was evaluated.
The remaining film was sandwiched between filter papers and vacuum dried, and then used for measuring the elongation. The results are summarized in Table 2. The determination of the aggregated structure (cross-section) was made with the naked eye based on the presence or absence of a void, its size, etc., based on the density of the aggregated state observed with an electron microscope. ○ represents a dense structure having a void diameter of 50 nm or less, and x represents a coarse structure having a void diameter of 200 nm or more. The elongation was measured using a tensile tester "Tensilon" manufactured by Toyo Baldwin.
【0020】表2中に実施例4〜8および比較例4〜6
を示す。実施例8及び比較例4、5は凝固浴温度の影響
を示す。表から明らかなように凝固温度が低くても高く
ても得られるフィルムの凝集構造や強度が高くならない
ことを示す。比較例4の場合、ドープの凍結温度より凝
固温度が低いためドープのゲル化および凍結が生起し、
また、比較例5の場合にはドープのゲル化とセルロース
自体の分解により劣ったフィルムになったものと推定さ
れる。また、比較例6は本発明法により得られるフィル
ムと同様に分子内水素結合の破壊の程度が大きい(χa
m(C3)=73%)構造をとるものの凝集構造や強度
は本発明法より劣る。In Table 2, Examples 4 to 8 and Comparative Examples 4 to 6
Is shown. Example 8 and Comparative Examples 4 and 5 show the effect of the coagulation bath temperature. As is clear from the table, it is shown that the cohesive structure and strength of the obtained film do not increase even if the solidification temperature is low or high. In the case of Comparative Example 4, gelling and freezing of the dope occurred because the solidification temperature was lower than the freezing temperature of the dope,
In the case of Comparative Example 5, it is presumed that the film was inferior due to gelation of the dope and decomposition of cellulose itself. In Comparative Example 6, the degree of breaking of intramolecular hydrogen bonds was large as in the film obtained by the method of the present invention (Δa
m (C3) = 73%), but the aggregate structure and strength are inferior to those of the present invention.
【0021】この凝固浴組成は現行のビスコースレーヨ
ン法に使用されているミューラー浴組成にほぼ相当す
る。一方、実施例4〜8に見られる様に、本発明法によ
れば市販のセロファン(ビスコース法)並の強度を有す
るセルロースフィルムが、二硫化炭素や硫化水素等の有
毒ガスを排出することのないプロセスより作ることがで
きる。This composition of the coagulation bath substantially corresponds to the Mueller bath composition used in the current viscose rayon method. On the other hand, as can be seen in Examples 4 to 8, according to the method of the present invention, a cellulose film having a strength comparable to that of a commercially available cellophane (viscose method) emits toxic gases such as carbon disulfide and hydrogen sulfide. It can be made from a process without.
【0022】[0022]
【実施例9〜11、比較例7〜8】高αセルロースパル
プ(レオニア社製,αセルロース含有量95.4%)を
2.5規定の硫酸水溶液を用いて50℃で60分間酸加
水分解させ粘度平均重合度340のセルロースを得た。
このセルロースを出発原料として以下に示す方法で2〜
3のアルカリ可溶性低置換度セルロース誘導体を調製
し、セルロース成型品を製造した。 (1)メチルセルロース(MC)の調製: 上記方法で
調製したセルロース48.6gを9重量%の苛性ソーダ
水溶液923.4gに5℃下で溶解し、硫酸ジメチル
7.56g(対セルロース0.2mol)および硫酸ジ
メチル30.2g(対セルロース0.8mol)を添加
/混合させた後50℃に加温し60分間反応させた。こ
れらのドープをエタノール中に再沈させて数回エタノー
ル/2重量%酢酸(1/1,vol/vol)で洗浄を
繰り返した後、充分水洗した。引き続きアセトン置換し
真空乾燥した。得られた誘導体を8.65重量%水酸化
ナトリウム水溶液に溶解してNMR測定より置換度を評
価した結果、置換度は0.08および0.41であっ
た。 (2)ヒドロキシプロピルセルロース(HPC)の調
製: 上記方法で調製したセルロース48.6gを1
7.5重量%の苛性ソーダ水溶液600gに30℃下で
30分間浸漬処理させた後、圧搾し135gのアルカリ
セルロースを得た。このアルカリセルロースを脱気口の
付いた密閉容器にいれ、真空ポンプで脱気した後プロピ
レンオキサイド2.6g(対セルロース0.12mo
l)を注入し40℃で2時間反応させた。この混合物を
エタノール中に再沈させて数回エタノール/2重量%酢
酸(1/1,vol/vol)で洗浄を繰り返した後、
充分水洗した。引き続きアセトン置換し真空乾燥した。
同様に反応剤であるプロピレンオキサイドを17.0g
(対セルロース0.8mol)注入したものについても
調製した。得られた誘導体を8.65重量%水酸化ナト
リウム水溶液に溶解してNMR測定より置換度を評価し
た結果、置換度は0.06および0.38であった。 (3)カルバモイルエチルカルボキシエチルセルロース
(CEC)の調製: 上記方法で調製したセルロース4
8.6gを9重量%の苛性ソーダ水溶液923.4gに
5℃下で溶解し、アクリルアミド4.32g(対セルロ
ース0.2mol)を添加/混合させた後50℃に加温
し60分間反応させた。このドープをエタノール中に再
沈させて数回エタノール/2重量%酢酸(1/1,vo
l/vol)で洗浄を繰り返した後、充分水洗した。引
き続きアセトン置換し真空乾燥した。得られた誘導体を
8.65重量%水酸化ナトリウム水溶液に溶解してNM
R測定より置換度を評価した結果、置換度は0.13で
あった。Examples 9-11, Comparative Examples 7-8 Acid hydrolysis of high α-cellulose pulp (manufactured by Leonia, α-cellulose content 95.4%) using 2.5N sulfuric acid aqueous solution at 50 ° C. for 60 minutes. Then, a cellulose having a viscosity average degree of polymerization of 340 was obtained.
Using this cellulose as a starting material,
The alkali-soluble low-substituted cellulose derivative of No. 3 was prepared to produce a cellulose molded product. (1) Preparation of methylcellulose (MC): 48.6 g of the cellulose prepared by the above method was dissolved in 923.4 g of a 9% by weight aqueous sodium hydroxide solution at 5 ° C., and 7.56 g of dimethyl sulfate (0.2 mol of cellulose) and After adding / mixing 30.2 g of dimethyl sulfate (based on 0.8 mol of cellulose), the mixture was heated to 50 ° C. and reacted for 60 minutes. These dopes were reprecipitated in ethanol, washed several times with ethanol / 2% by weight acetic acid (1/1, vol / vol), and then sufficiently washed with water. Subsequently, it was replaced with acetone and dried under vacuum. The obtained derivative was dissolved in an 8.65% by weight aqueous sodium hydroxide solution, and the degree of substitution was evaluated by NMR measurement. As a result, the degree of substitution was 0.08 and 0.41. (2) Preparation of hydroxypropylcellulose (HPC): 48.6 g of the cellulose prepared by the above method was added to 1
After being immersed in 600 g of a 7.5% by weight aqueous solution of caustic soda at 30 ° C. for 30 minutes, it was pressed to obtain 135 g of alkali cellulose. This alkali cellulose was placed in a sealed container having a deaeration port, deaerated by a vacuum pump, and then 2.6 g of propylene oxide (0.12 mol of cellulose).
l) was injected and reacted at 40 ° C. for 2 hours. The mixture was reprecipitated in ethanol and washed several times with ethanol / 2% by weight acetic acid (1/1, vol / vol).
Washed thoroughly with water. Subsequently, it was replaced with acetone and dried under vacuum.
Similarly, 17.0 g of propylene oxide as a reactant was used.
(To 0.8 mol of cellulose) The injection was also prepared. The obtained derivative was dissolved in an 8.65% by weight aqueous sodium hydroxide solution, and the degree of substitution was evaluated by NMR measurement. As a result, the degree of substitution was 0.06 and 0.38. (3) Preparation of carbamoylethylcarboxyethylcellulose (CEC): Cellulose 4 prepared by the above method
8.6 g was dissolved in 923.4 g of 9% by weight aqueous sodium hydroxide solution at 5 ° C., and 4.32 g of acrylamide (based on 0.2 mol of cellulose) was added / mixed, then heated to 50 ° C. and reacted for 60 minutes. . This dope was reprecipitated in ethanol, and several times ethanol / 2% by weight acetic acid (1/1, vo
(l / vol), and then sufficiently washed with water. Subsequently, it was replaced with acetone and dried under vacuum. The obtained derivative was dissolved in an 8.65% by weight aqueous solution of sodium hydroxide to prepare NM.
As a result of evaluating the degree of substitution by R measurement, the degree of substitution was 0.13.
【0023】それぞれのセルロース誘導体42gを5℃
下で9.5重量%の水酸化ナトリウム水溶液558gに
ホモジナイザーを用いて溶解させ均一な溶液を得た。か
かる溶液を400メッシュの金属網1枚とポリアミド不
織布2枚を用いて濾過した後、自然放置により脱泡させ
紡糸原液とした。この紡糸原液をギアポンプつきの押し
出し機を用いて、0.08mmΦの孔が22個空いたノ
ズルから65重量%濃度の硫酸浴に吐出量2.2ml/
minで吐出させた。凝固浴の温度は−7℃で浸漬長3
0cmの条件で凝固させた後、水洗行程をへて120℃
の熱ロール上で乾燥させ、20m/minで紙管に巻き
取った。Each cellulose derivative (42 g) was placed at 5 ° C.
The mixture was dissolved in 558 g of a 9.5% by weight aqueous sodium hydroxide solution using a homogenizer to obtain a uniform solution. This solution was filtered using one 400-mesh metal net and two polyamide non-woven fabrics, and then defoamed by standing naturally to obtain a spinning solution. Using an extruder equipped with a gear pump, this spinning stock solution was discharged from a nozzle having 22 holes of 0.08 mmΦ into a 65% by weight sulfuric acid bath at a discharge rate of 2.2 ml /
min. Coagulation bath temperature is -7 ° C and immersion length 3
After solidification under the condition of 0 cm, the water was washed and the temperature was reduced to 120 ° C.
And heated on a paper tube at 20 m / min.
【0024】表3に得られた繊維の物性をまとめて示
す。本発明法によれば純セルロースのみでなくアルカリ
可溶性を示す低置換度のセルロース誘導体を使用しても
既存の再生セルロース繊維並の物性を持つ糸を得ること
ができるが、通常アルカリ可溶性として知られている置
換度範囲のセルロース誘導体(比較例7および8)を用
いた場合,湿潤時の引っ張り強度(TSw)が弱く、対
洗濯性に劣るため実用的ではない。Table 3 summarizes the physical properties of the obtained fibers. According to the method of the present invention, not only pure cellulose but also a low-substituted cellulose derivative exhibiting alkali solubility can be used to obtain a yarn having the same physical properties as existing regenerated cellulose fibers. When a cellulose derivative having a substitution degree in the above range (Comparative Examples 7 and 8) is used, it is not practical because the wet tensile strength (TSw) is low and the washing resistance is poor.
【0025】[0025]
【表1】 [Table 1]
【0026】[0026]
【表2】 [Table 2]
【0027】[0027]
【表3】 [Table 3]
【0028】[0028]
【発明の効果】本発明は、実質的にセルロースとアルカ
リと水とから成るドープから物性の良好なセルロース成
型品を製造するに当たり、プロセス面では成型プロセス
中に廃ガスの発生や爆発の危険がなく、しかも排液、廃
ガスなどによる環境汚染がないプロセスが提供できる利
点を持つ。また、物性面ではこれまでの実質的にセルロ
ースとアリカリと水とから成るドープから物性の良好な
セルロース成型品を得ようとした先行技術では不可能で
あった既存の繊維やフィルムと同程度の力学的性質を持
ちながら、分子内水素結合が極度に破壊された構造体を
形成せしめることができる。かかる構造上の特徴によ
り,繊維の場合、樹脂加工性や染色性の優れた繊維を得
ることが出来る。また、フィルムの場合には、フレキシ
ビリティーの高いフィルムを得ることが出来る。According to the present invention, in producing a cellulose molded article having good physical properties from a dope substantially composed of cellulose, alkali and water, there is a danger of generation of waste gas and explosion during the molding process. There is an advantage that a process can be provided that does not cause environmental pollution due to wastewater, waste gas, and the like. In addition, in terms of physical properties, it was substantially the same as existing fibers and films which were not possible in the prior art, which had been attempted to obtain a cellulose molded product having good physical properties from a dope substantially consisting of cellulose, alkali and water. While having mechanical properties, a structure in which intramolecular hydrogen bonds are extremely broken can be formed. Due to such a structural feature, in the case of a fiber, a fiber having excellent resin processability and dyeability can be obtained. In the case of a film, a film having high flexibility can be obtained.
Claims (1)
または置換度が0.2以下のセルロース誘導体をアルカ
リ水溶液に溶解してなるドープから湿式法によりセルロ
ース成型品を製造するに際し、該ドープを50〜80重
量%の硫酸、40〜42.5重量%の塩酸、60〜80
重量%の硝酸、60〜90重量%のポリリン酸、100
重量%のトリフルオロ酢酸、および65重量%の硫酸と
20%のメタリン酸の混合溶液の群から選ばれる少なく
とも1種からなる溶液中で、−8℃〜10℃の温度範囲
で凝固、成型せしめてなることを特徴とするセルロース
成型品の製造法。1. A cellulose substantially soluble in alkali ,
Alternatively , when a cellulose molded product is produced by a wet method from a dope obtained by dissolving a cellulose derivative having a substitution degree of 0.2 or less in an aqueous alkali solution, the dope is used in an amount of 50 to 80 times
% Sulfuric acid, 40-42.5% by weight hydrochloric acid, 60-80%
Wt% nitric acid, 60-90 wt% polyphosphoric acid, 100
Weight percent trifluoroacetic acid, and 65 weight percent sulfuric acid
20% metaphosphoric acid mixed solution selected from the group
Temperature range of -8 ° C to 10 ° C in both solutions
A method for producing a molded cellulose product, characterized by coagulating and molding by the above method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30321391A JP3157224B2 (en) | 1991-11-19 | 1991-11-19 | Manufacturing method of cellulose molded product |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30321391A JP3157224B2 (en) | 1991-11-19 | 1991-11-19 | Manufacturing method of cellulose molded product |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05140332A JPH05140332A (en) | 1993-06-08 |
JP3157224B2 true JP3157224B2 (en) | 2001-04-16 |
Family
ID=17918242
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP30321391A Expired - Lifetime JP3157224B2 (en) | 1991-11-19 | 1991-11-19 | Manufacturing method of cellulose molded product |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3157224B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2458623T3 (en) * | 2007-01-12 | 2014-05-06 | Asahi Kasei Fibers Corporation | Fine particles of cellulose and liquid or solid dispersion thereof |
CN118824742A (en) * | 2018-11-21 | 2024-10-22 | 德克萨斯大学系统董事会 | Manufacturing method of metallized graphene fiber and bioelectronic application |
-
1991
- 1991-11-19 JP JP30321391A patent/JP3157224B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH05140332A (en) | 1993-06-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1104313A (en) | Chitin films and fibers | |
AU724024B2 (en) | Dispersion spinning process for poly(tetrafluoroethylene) and related polymers | |
Li et al. | Preparation of high strength chitosan fibers by using ionic liquid as spinning solution | |
CA2100756C (en) | Method for producing cellulose shaped article | |
US9610379B2 (en) | Absorbent fibres produced from low-substituted carboxymethyl cellulose and the process thereof | |
CN104726963A (en) | Chitosan fiber and preparation method thereof | |
Lin et al. | Dissolution of cellulose in the mixed solvent of [bmim] Cl–DMAc and its application | |
US4367191A (en) | Preparation of cellulose films or fibers from cellulose solutions | |
JPH11503197A (en) | Cellulose sponge and method for producing the same | |
CN103147144B (en) | Method for dissolving cellulose and method for preparing regenerated fiber | |
JPS6318601B2 (en) | ||
JP5901112B2 (en) | Cellulose porous gel | |
EP1245576A1 (en) | Cellulose dope and process for producing the same | |
JP3157224B2 (en) | Manufacturing method of cellulose molded product | |
KR101896476B1 (en) | Preparation method of regenerated cellulose with high crystallinity using co-solvent | |
JP2000226720A (en) | Cellulose yarn having controlled fibrillation and its production | |
KR20000067612A (en) | The chitosan fiber having high degree of strength and elasticity | |
JPH01188539A (en) | Novel cellulosic cellular membrane and production thereof | |
TWI547609B (en) | Preparation method of high cellulose concentratlon spinning dope and manufacturing method of non-woven fabric | |
JPS6225168B2 (en) | ||
JP2754162B2 (en) | Manufacturing method of chitin sponge, chitin paper and chitin film | |
Yang et al. | Structure of regenerated cellulose films from cellulose/aqueous NaOH solution as a function of coagulation conditions | |
JPS6135224B2 (en) | ||
JPH08158148A (en) | Cellulose dope and its preparation | |
JP2000234291A (en) | Method for coating cellulose solution |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20010123 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080209 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090209 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090209 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100209 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100209 Year of fee payment: 9 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100209 Year of fee payment: 9 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100209 Year of fee payment: 9 |
|
R370 | Written measure of declining of transfer procedure |
Free format text: JAPANESE INTERMEDIATE CODE: R370 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100209 Year of fee payment: 9 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100209 Year of fee payment: 9 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110209 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110209 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120209 Year of fee payment: 11 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120209 Year of fee payment: 11 |