JP3156815B2 - FM-CW radar signal processing device - Google Patents

FM-CW radar signal processing device

Info

Publication number
JP3156815B2
JP3156815B2 JP25318393A JP25318393A JP3156815B2 JP 3156815 B2 JP3156815 B2 JP 3156815B2 JP 25318393 A JP25318393 A JP 25318393A JP 25318393 A JP25318393 A JP 25318393A JP 3156815 B2 JP3156815 B2 JP 3156815B2
Authority
JP
Japan
Prior art keywords
amplitude
signal
noise
data
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25318393A
Other languages
Japanese (ja)
Other versions
JPH07110373A (en
Inventor
明 飯星
泰仕 岡田
卓 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP25318393A priority Critical patent/JP3156815B2/en
Publication of JPH07110373A publication Critical patent/JPH07110373A/en
Application granted granted Critical
Publication of JP3156815B2 publication Critical patent/JP3156815B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/023Interference mitigation, e.g. reducing or avoiding non-intentional interference with other HF-transmitters, base station transmitters for mobile communication or other radar systems, e.g. using electro-magnetic interference [EMI] reduction techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • G01S13/343Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal using sawtooth modulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/35Details of non-pulse systems
    • G01S7/352Receivers
    • G01S7/356Receivers involving particularities of FFT processing

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、送信信号と受信信号
とを混合して得たビート信号をサンプリングして対応す
るデジタル信号データへ変換し、この信号データに高速
フーリエ変換等のデジタル信号処理を施してビート信号
の周波数を解析し、ビート信号の周波数から対象物まで
の距離を測定するFM−CWレーダの信号処理装置に係
り、特に、スパイクノイズ等の突発性ノイズを効果的に
除去した形でデジタル信号処理を施すことで、突発性ノ
イズの影響で距離測定精度が低下するのを防止するよう
にしたFM−CWレーダの信号処理装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for sampling a beat signal obtained by mixing a transmission signal and a reception signal, converting the signal into corresponding digital signal data, and subjecting the signal data to digital signal processing such as fast Fourier transform. The present invention relates to a signal processing device of an FM-CW radar that analyzes the frequency of a beat signal by performing the above-described processing and measures the distance from the frequency of the beat signal to an object, and in particular, effectively removes sudden noise such as spike noise. TECHNICAL FIELD The present invention relates to a signal processing device for an FM-CW radar which performs digital signal processing in a form to prevent a decrease in distance measurement accuracy due to sudden noise.

【0002】[0002]

【従来の技術】所望する信号とノイズの周波数成分の違
いに着目し、低域通過フィルタ、高域通過フィルタ、帯
域通過フィルタ等を用いてノイズ成分を除去する技術は
知られている。しかしながら、信号の周波数成分とノイ
ズの周波数成分がほぼ重なり合う場合、フィルタではノ
イズを効果的に除去することができない。そこで、本出
願人は特願平4−90403号で、非送信期間における
定常ノイズのスペクトラムデータをメモリに記憶してお
き、ビート信号のスペクトラムデータを定常ノイズのス
ペクトラムデータに基づいて補正することで、定常ノイ
ズの影響を軽減させる技術を提案している。
2. Description of the Related Art There is known a technique in which a noise component is removed by using a low-pass filter, a high-pass filter, a band-pass filter, etc., focusing on a difference between a desired signal and a frequency component of noise. However, when the frequency component of the signal and the frequency component of the noise substantially overlap, the filter cannot effectively remove the noise. Therefore, the applicant of the present invention disclosed in Japanese Patent Application No. 4-90403 that the spectrum data of the stationary noise during the non-transmission period is stored in the memory, and the spectrum data of the beat signal is corrected based on the spectrum data of the stationary noise. A technique for reducing the influence of stationary noise is proposed.

【0003】[0003]

【発明が解決しようとする課題】前述のスペクトラムデ
ータの補正を行なうことによって定常ノイズの影響を軽
減することはできるが、スパイクノイズ等の突発性ノイ
ズは除去することができない。突発性ノイズが混入した
場合、距離測定精度が低下することがあり好ましくな
い。
The above-described correction of the spectrum data can reduce the influence of the stationary noise, but cannot eliminate sudden noise such as spike noise. When sudden noise is mixed, the distance measurement accuracy may be reduced, which is not preferable.

【0004】この発明はこのような課題を解決するため
なされたもので、突発性ノイズの影響を軽減し、距離測
定をより確実に行なえるようにしたFM−CWレーダの
信号処理装置に提供することを目的とする。
The present invention has been made to solve such a problem, and provides an FM-CW radar signal processing apparatus capable of reducing the influence of sudden noise and performing distance measurement more reliably. The purpose is to:

【0005】[0005]

【課題を解決するための手段】前記課題を解決するため
請求項1に係るFM−CWレーダの信号処理装置は、デ
ジタルビート信号のデータをメモリ手段に一時記憶させ
ておき、振幅が他のレベルよりも大きい区間に対してそ
の区間の振幅がゼロもしくはゼロに近い小さい振幅とな
るようデータを変更するノイズ抑圧処理手段を設けたこ
とを特徴とする。
According to a first aspect of the present invention, there is provided a signal processing apparatus for an FM-CW radar, wherein data of a digital beat signal is temporarily stored in a memory means, and the amplitude of the digital beat signal is changed to another level. Noise suppression processing means is provided for changing data so that the amplitude of a section larger than that of the section becomes zero or a small amplitude close to zero.

【0006】請求項2に係るFM−CWレーダの信号処
理装置は、ノイズ抑圧処理手段として、解析対象期間内
のデジタルビート信号の振幅密度を求める振幅密度演算
手段と、求めた振幅密度に基づいてノイズ判定しきい値
を設定するノイズ判定しきい値設定手段と、このノイズ
判定しきい値を越える振幅の区間に対してその区間の振
幅がゼロもしくはゼロに近い小さい振幅となるようデー
タを変更するノイズ振幅抑圧手段を備えたことを特徴と
する。
According to a second aspect of the present invention, there is provided a signal processing apparatus for an FM-CW radar, wherein the noise suppression processing means includes an amplitude density calculating means for obtaining an amplitude density of a digital beat signal within a period to be analyzed, and Noise determination threshold value setting means for setting a noise determination threshold value, and changing data so that the amplitude of the section having an amplitude exceeding the noise determination threshold value is zero or a small amplitude close to zero. It is characterized by comprising noise amplitude suppression means.

【0007】なお、ノイズ抑圧処理手段には、振幅を抑
圧した区間の両側に減衰区間を設定し、非抑圧信号と抑
圧信号とがなめらかにつながるよう減衰区間内のデジタ
ル信号のデータを補正する信号波形補正手段を設ける構
成としてもよい。
In the noise suppression processing means, an attenuation section is set on both sides of the section in which the amplitude is suppressed, and a signal for correcting data of the digital signal in the attenuation section so that the non-suppression signal and the suppression signal are smoothly connected. A configuration in which a waveform correction unit is provided may be used.

【0008】[0008]

【作用】請求項1に係るFM−CWレーダの信号処理装
置は、振幅が他のレベルよりも大きい区間に対してその
区間の振幅がゼロもしくはゼロに近い小さい振幅となる
ようデータを変更するノイズ抑圧処理手段を備えたの
で、突発性ノイズを除去もしくは抑圧することができ
る。よって、突発性ノイズを除去もしくは抑圧したデジ
タルビート信号に対して高速フーリエ変換等のデジタル
演算処理を施して、その周波数解析結果から距離を求め
ることで、ノイズの影響を軽減しより確実な距離測定が
可能となる。
According to a first aspect of the present invention, there is provided a signal processing apparatus for an FM-CW radar, wherein a noise for changing data so that the amplitude of the section becomes zero or a small amplitude close to zero for a section whose amplitude is larger than another level. The provision of the suppression processing means makes it possible to remove or suppress sudden noise. Therefore, the digital beat signal from which sudden noise has been removed or suppressed is subjected to digital arithmetic processing such as fast Fourier transform, and the distance is obtained from the frequency analysis result. Becomes possible.

【0009】請求項2に係るFM−CWレーダの信号処
理装置のノイズ抑圧処理手段は、まず振幅密度演算手段
で解析対象期間内のデジタルビート信号の振幅密度を求
め、ついで、ノイズ判定しきい値設定手段は、振幅密度
の高い部分はビート信号であるものとし、それよりも所
定値高い振幅値をノイズ判定しきい値として設定する。
ノイズ振幅抑圧手段は、ノイズ判定しきい値を越える区
間に対してその区間の振幅がゼロもしくはゼロの近い小
さな振幅のデータに変更する。これにより、デジタルビ
ート信号の振幅に応じてノイズ判定レベルを可変するこ
とができ、ビート信号のレベルの大小に拘わらず突発性
ノイズを効果的に除去もしくは減衰させることができ
る。所定値以上の信号対雑音比を確保することができる
ので、より確実な距離測定が可能となる。
The noise suppression processing means of the signal processing device for an FM-CW radar according to claim 2 first obtains the amplitude density of the digital beat signal within the analysis target period by the amplitude density calculation means, and then obtains a noise determination threshold value. The setting means determines that the portion having a high amplitude density is a beat signal, and sets an amplitude value higher than the beat signal by a predetermined value as a noise determination threshold value.
The noise amplitude suppressing means changes the amplitude of the section in the section exceeding the noise determination threshold to data of a small amplitude close to zero or near zero. Thus, the noise determination level can be varied according to the amplitude of the digital beat signal, and sudden noise can be effectively removed or attenuated regardless of the level of the beat signal. Since a signal-to-noise ratio equal to or higher than a predetermined value can be ensured, more reliable distance measurement can be performed.

【0010】なお、信号波形補正手段を設けて、非抑圧
信号と抑圧信号とがなめらかにつながるよう抑圧区間の
両側の信号波形を補正することで、突発性ノイズの初頭
部ならびに波尾部に振幅の小さい部分がある場合でも、
それを抑圧することができる。また、ビート信号の振幅
が変動している場合等を含めて、ビート信号のピーク部
分を抑圧しないようにノイズ判定しきい値をかなり高め
に設定しても、ノイズ抑圧区間の前後の振幅を減衰させ
るので、ノイズ成分を効果的に抑圧することができる。
A signal waveform correcting means is provided to correct the signal waveforms on both sides of the suppression section so that the non-suppression signal and the suppression signal are smoothly connected, so that the amplitude of the sudden noise at the beginning and at the tail can be reduced. Even if there are small parts,
It can be suppressed. Even if the amplitude of the beat signal fluctuates, the noise before and after the noise suppression section is attenuated even if the noise judgment threshold value is set to be rather high so as not to suppress the peak portion of the beat signal. Therefore, the noise component can be effectively suppressed.

【0011】[0011]

【実施例】以下この発明の実施例を添付図面に基づいて
説明する。図1はこの発明に係る信号処理装置の機能ブ
ロック構成図、図2は同信号処理装置を備えたFM−C
Wレーダ装置の全体ブロック構成図である。
Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a functional block diagram of a signal processing device according to the present invention, and FIG. 2 is an FM-C equipped with the signal processing device.
FIG. 2 is an overall block configuration diagram of a W radar device.

【0012】図2に示すFM−CWレーダ装置1は、基
本周波数を掃引したFM信号2aを発生するFM信号発
生回路2と、FM信号2aを送信信号TSと局部信号L
Sに分配する電力分配器3と、送信信号TSをアンテナ
4へ供給するとともにアンテナ4で受信した受信信号R
Sを効率よく取り出すサーキュレータ5と、受信信号R
Sと局部信号LSとを混合してビート信号BSを生じさ
せるミキサ6と、信号処理装置7、および、対象物まで
の距離に関する情報を表示するディスプレイ装置8とか
らなる。FM信号2aの掃引は、信号処理装置7から供
給される掃引指令信号7aに基づいてなされる。
An FM-CW radar device 1 shown in FIG. 2 generates an FM signal 2a which sweeps a fundamental frequency, generates an FM signal 2a, and transmits the FM signal 2a to a transmission signal TS and a local signal L.
S, a power divider 3 for distributing the received signal R to the antenna 4 and a transmission signal TS to the antenna 4 and a reception signal R received by the antenna 4
Circulator 5 for efficiently extracting S, and receiving signal R
It comprises a mixer 6 for mixing S and the local signal LS to generate a beat signal BS, a signal processing device 7, and a display device 8 for displaying information on the distance to the object. The FM signal 2a is swept based on a sweep command signal 7a supplied from the signal processing device 7.

【0013】図1に示すように信号処理装置7は、ビー
ト信号BSを標本化量子化して対応するデジタルビート
信号DSへ変換するA/D変換器11と、デジタルビー
ト信号DSのデータを時系列との対応を付けて記憶する
ためのRAM等のメモリ手段12と、デジタルビート信
号BSに対して例えば高速フーリエ変換(FFT)等の
デジタル演算処理を施して周波数解析を行ない、その周
波数解析結果から対象物までの距離を求めるデジタル演
算手段13と、この発明に係るノイズ抑圧処理手段14
とを備える。
As shown in FIG. 1, a signal processing device 7 includes an A / D converter 11 that samples and quantizes a beat signal BS and converts it into a corresponding digital beat signal DS, and converts the data of the digital beat signal DS in time series. And a memory means 12 such as a RAM for storing the digital beat signal BS. The digital beat signal BS is subjected to digital arithmetic processing such as fast Fourier transform (FFT) and frequency analysis is performed. Digital operation means 13 for obtaining the distance to the object, and noise suppression processing means 14 according to the present invention
And

【0014】ノイズ抑圧処理手段14は、全体動作制御
手段21、振幅密度演算手段22、ノイズ判定しきい値
設定手段23、ノイズ振幅抑圧手段24と、信号波形補
正手段25とを備える。各手段21〜25は、マイクロ
コンピュータシステムを用い予め作成した制御プログラ
ムに基づいて動作するよう構成している。
The noise suppression processing means 14 includes an overall operation control means 21, an amplitude density calculation means 22, a noise determination threshold value setting means 23, a noise amplitude suppression means 24, and a signal waveform correction means 25. Each means 21 to 25 is configured to operate based on a control program created in advance using a microcomputer system.

【0015】全体動作制御手段21は、掃引指令信号7
aに基づいてFM信号発生回路2の掃引ならびに掃引停
止を制御するとともに、掃引中はA/D変換指令21a
を出力してA/D変換器11を動作状態にする。また、
アドレス情報21bならびに書き込み指令21cを出力
して、A/D変換器11から順次出力されるデジタルビ
ート信号DSのデータをメモリ手段12へ書き込ませる
とともに、振幅密度演算指令21eを出力して振幅密度
演算手段22を動作状態とし、メモリ手段12へ書き込
むデータの振幅密度の演算を行なわせる。
The overall operation control means 21 is provided with a sweep command signal 7
a, the sweep of the FM signal generation circuit 2 and the stop of the sweep are controlled, and during the sweep, the A / D conversion command 21a
To put the A / D converter 11 into an operating state. Also,
The address information 21b and the write command 21c are output to write the data of the digital beat signal DS sequentially output from the A / D converter 11 to the memory means 12, and the amplitude density calculation command 21e is output to output the amplitude density calculation command 21e. The means 22 is set in the operating state, and the calculation of the amplitude density of the data to be written to the memory means 12 is performed.

【0016】振幅密度演算手段22は、A/D変換器1
1から順次出力されるサンプリングデータDSに基づい
てビート信号BSの振幅を求めるとともに、振幅とその
発生回数との関係を示す振幅密度を求め、振幅密度が最
大となった振幅LMAXと密度の拡がり(分散)δのデ
ータをノイズ判定しきい値設定手段23へ供給する。
The amplitude density calculating means 22 includes an A / D converter 1
The amplitude of the beat signal BS is determined based on the sampling data DS sequentially output from 1 and the amplitude density indicating the relationship between the amplitude and the number of occurrences is determined. The amplitude LMAX having the maximum amplitude density and the spread of the density ( The data of (variance) δ is supplied to the noise determination threshold value setting means 23.

【0017】図3は振幅の求め方の一例を示す説明図で
ある。本来のビート信号BSの振幅の中心となるレベル
に基準レベルKを設定する。振幅密度演算手段22は、
A/D変換器11から出力されたデータDSと基準レベ
ルKとを比較し、データDSが基準レベルKを交叉した
時(基準レベルKと一致した時を含む)から次に交叉す
るまでの半サイクルの区間毎に最大もしくは最小データ
UM1,UL1,UM2,UL2,…を求め、各半サイ
クルの始点にあたるアドレス情報21bとその半サイク
ル期間の最大データもしくは最小データとを対応つけて
ノイズ振幅抑圧手段24内に設けたメモリ24Mに書き
込ませるよう構成している。また、振幅密度演算手段2
2は、予め設定した振幅区分毎に発生回数をカウントす
るよう構成している。
FIG. 3 is an explanatory diagram showing an example of a method of obtaining the amplitude. The reference level K is set to a level that is the center of the amplitude of the original beat signal BS. The amplitude density calculating means 22
The data DS output from the A / D converter 11 is compared with the reference level K, and half the time from when the data DS crosses the reference level K (including when the data DS coincides with the reference level K) to when the data DS crosses next is half. The maximum or minimum data UM1, UL1, UM2, UL2,... Are determined for each cycle section, and the noise information suppressing means is provided by associating the address information 21b at the start of each half cycle with the maximum or minimum data in the half cycle period. 24 is configured to be written into a memory 24M provided therein. Further, the amplitude density calculating means 2
2 is configured to count the number of occurrences for each preset amplitude section.

【0018】例えば、時刻t1でデジタルビート信号の
データDS(t1)が基準レベルLを下から上へ交叉し
た場合、振幅密度演算手段22はその時のデータDSが
メモリ手段12に書き込まれるアドレス情報21bをデ
ータ信号線(データバス)22aを介してノイズ振幅抑
圧手段24内のメモリ24Mのデータ入力端子(図示し
ない)へ供給するとともに、書き込み指令22bを出力
してそのアドレス情報21bをメモリ24Mの例えばア
ドレス0番地へ書き込ませる。ノイズ振幅抑圧手段24
内には、アドレスカウンタ手段(図示しない)を設けて
おり、このアドレスカウンタ手段は書き込み指令22b
に書き込みが終了する毎に、メモリ24Mの書き込むア
ドレスを歩進させるよう構成している。
For example, when the data DS (t1) of the digital beat signal crosses the reference level L from bottom to top at time t1, the amplitude density calculating means 22 outputs the address information 21b at which the data DS at that time is written to the memory means 12. Is supplied to a data input terminal (not shown) of the memory 24M in the noise amplitude suppression means 24 via the data signal line (data bus) 22a, and a write command 22b is output to output the address information 21b of the memory 24M, for example. Write to address 0. Noise amplitude suppression means 24
Is provided with an address counter means (not shown).
Each time the writing is completed, the write address of the memory 24M is incremented.

【0019】振幅密度演算手段22は、データDSが基
準レベルKを下から上へ交叉したことに基づいて、上側
の半サイクル期間に入ったことを判断し、データの最大
値を検出する処理を行う。例えば、基準レベルKを交叉
した時のデータを一時記憶するとともに、A/D変換器
11から出力される次のデータと一時記憶したデータと
を比較し、値の大きい方のデータを一時記憶する。これ
をデータDSが次に基準レベルKを交叉するまで繰り返
し、基準レベルKを交叉した時点(時刻t2)で一時記
憶したデータDSをその半サイクル期間の最大データU
M1としてデータ信号線22aを介してメモリ24Mへ
供給するとともに、書き込み指令22bを出力して最大
データUM1をメモリ24Mの例えばアドレス1番地へ
書き込ませる。
The amplitude density calculating means 22 determines that the data DS has entered the upper half cycle period based on the fact that the data DS crosses the reference level K from below to above, and performs processing for detecting the maximum value of the data. Do. For example, while temporarily storing the data when the reference level K is crossed, the next data output from the A / D converter 11 is compared with the temporarily stored data, and the data having the larger value is temporarily stored. . This is repeated until the data DS crosses the reference level K next time, and the data DS temporarily stored at the time when the reference level K crosses (time t2) is the maximum data U of the half cycle period.
M1 is supplied to the memory 24M via the data signal line 22a, and a write command 22b is output to write the maximum data UM1 to, for example, address 1 of the memory 24M.

【0020】さらに、振幅密度演算手段22は、その最
大データUM1と基準レベルKとの差データを求め、求
めた差データをその半サイクル期間内の最大振幅データ
KU1として、そのデータKU1が予め設定した振幅区
分のどれに属するかの判定を行ない、属する振幅区分の
発生回数を1回に設定する。また、最大データUM1を
メモリ24Mへ書き込ませた後は、時刻t2におけるメ
モリ手段12のアドレス情報21bをデータ信号線22
aを介してメモリ24Mへ供給するとともに、書き込み
指令22bを発生して次の半サイクルの始点(今の半サ
イクル終点)となるメモリ手段12のアドレス21bを
メモリ24Mの例えばアドレス3番地へ書き込ませる。
Further, the amplitude density calculating means 22 calculates difference data between the maximum data UM1 and the reference level K, sets the obtained difference data as the maximum amplitude data KU1 within the half cycle period, and sets the data KU1 in advance. It is determined which of the amplitude sections belongs to, and the number of occurrences of the belonging amplitude section is set to one. After writing the maximum data UM1 to the memory 24M, the address information 21b of the memory means 12 at time t2 is transferred to the data signal line 22.
a to the memory 24M, and generates a write command 22b to write the address 21b of the memory means 12, which is the start point of the next half cycle (the current half cycle end point), to, for example, address 3 of the memory 24M. .

【0021】時刻t2でデータDSが基準レベルKを上
から下へ交叉したことに基づいて、振幅密度演算手段2
2は下側の半サイクル期間に入ったことを判断し、A/
D変換器11から順次出力されるデータDSの中から最
小のデータを一時記憶し、次に基準レベルKを交叉した
時点(時刻t3)で最小レベルのデータLM1をメモリ
24Mの例えばアドレス4番地へ書き込ませる。また、
振幅密度演算手段22は最小レベルのデータLM1と基
準レベルKとの差データ(下側の最大振幅LM1)が振
幅区分のどれに属するかの判定を行なって、属する振幅
区分の発生回数を+1(インクリメント)する。
Based on the fact that the data DS crosses the reference level K from top to bottom at time t2, the amplitude density calculating means 2
2 judges that the lower half cycle period has been entered, and A /
The minimum data among the data DS sequentially output from the D converter 11 is temporarily stored, and at the time when the reference level K is crossed (time t3), the minimum level data LM1 is transferred to, for example, address 4 of the memory 24M. Write. Also,
The amplitude density calculating means 22 determines which of the amplitude sections the difference data (lower maximum amplitude LM1) between the minimum level data LM1 and the reference level K belongs to, and increases the number of occurrences of the amplitude section to which it belongs by +1 ( Increment).

【0022】このような動作を解析対象期間内の全ての
振幅について繰り返すことによって、メモリ24Mのア
ドレスの例えば奇数番地には各半サイクルの始点にあた
るメモリ手段12のアドレス情報21bが、アドレスの
例えば偶数番地にはその半サイクル期間の最大データU
M1,UM2,…もしくは最小データUL1,UL2,
…が格納される。また、予め設定した各振幅区分毎の発
生分布が得られる。
By repeating such an operation for all the amplitudes within the analysis target period, the address information 21b of the memory means 12 corresponding to the start point of each half cycle is stored at, for example, an odd address of the address of the memory 24M. The address contains the maximum data U for the half cycle period.
M1, UM2,... Or minimum data UL1, UL2,
... are stored. In addition, a predetermined distribution of occurrence for each amplitude section can be obtained.

【0023】なお、振幅密度演算手段22は、上側の半
サイクルと下側の半サイクルとをグループ分けして振幅
密度をそれぞれ求め、ノイズ判定しきい値設定手段23
側で基準レベルKより上側のノイズ判定しきい値と下側
のノイズ判定しきい値とを個別に設定できるようにして
もよい。
The amplitude density calculating means 22 divides the upper half cycle and the lower half cycle into groups to obtain the amplitude densities, respectively.
The noise determination threshold above the reference level K and the noise determination threshold below the reference level K may be individually set.

【0024】一連の掃引が終了し振幅密度演算指令21
eの出力が停止されると、振幅密度演算手段22は、指
定された解析対象期間内で振幅密度(発生回数)が最大
となった振幅LMAXと密度の拡がり(分散)δのデー
タを求め、それをノイズ判定しきい値設定手段23へ供
給する。ノイズ判定しきい値設定手段23は、ノイズ判
定しきい値(ノイズと判定する振幅データ)LTHを設
定し、設定した振幅データLTHをノイズ振幅抑圧手段
24へ供給する。なお、上下の各半サイクル毎に振幅密
度が演算されている場合は、それぞれについてのノイズ
判定しきい値LTH(+),LTH(−)を設定する。
ノイズ判定しきい値LTHの設定は、振幅密度が最大と
なった振幅LMAXの定数倍(例えば1.2倍)として
もよいし、振幅密度が最大となった振幅LMAXに対し
てその拡がり(分散)δの定数倍(定数は1でもよい)
を加算した値としてもよい。
A series of sweeps is completed and an amplitude density calculation command 21 is issued.
When the output of e is stopped, the amplitude density calculating means 22 obtains the data of the amplitude LMAX at which the amplitude density (the number of occurrences) becomes maximum and the spread (variance) δ of the density within the designated analysis target period, It is supplied to the noise determination threshold value setting means 23. The noise determination threshold value setting means 23 sets a noise determination threshold value (amplitude data determined as noise) LTH, and supplies the set amplitude data LTH to the noise amplitude suppression means 24. When the amplitude density is calculated for each of the upper and lower half cycles, the noise determination thresholds LTH (+) and LTH (-) are set for each.
The setting of the noise determination threshold LTH may be a constant multiple (for example, 1.2 times) of the amplitude LMAX at which the amplitude density is maximum, or may be spread (variance) with respect to the amplitude LMAX at which the amplitude density is maximum. ) A constant multiple of δ (constant may be 1)
May be added.

【0025】ノイズ判定しきい値LTHが与えられると
ノイズ振幅抑圧手段24は、基準レベルKに対してノイ
ズ判定しきい値LTHを加算し許容上限値を算出すると
ともに、基準レベルKに対してノイズ判定しきい値LT
Hを減算して許容下限値を算出する。なお、上下の各半
サイクル毎にノイズ判定しきい値LTH(+),LTH
(−)が与えられた場合は、それぞれに対応して許容上
限値と許容下限値を設定する。そして、ノイズ振幅抑圧
手段24内のメモリ24M内の例えば偶数番地のアドレ
スに格納されている各半サイクル期間毎の最大もしくは
最小データUM1,UL1,UM2,UL2,…と、許
容上限値ならびに許容下限値とを比較して、ノイズ判定
しきい値LTHを越えている振幅の波形がある場合は、
データ変更要求24aを全体動作制御手段21へ供給す
るとともに、該当する振幅の区間の始点アドレス24b
(許容上限値もしくは許容下限値を越えているデータの
アドレスの1番地前のアドレス)と終了アドレス(次の
区間の始点アドレス、すなわち、許容上限値もしくは許
容下限値を越えているデータのアドレスの1番地後のア
ドレス)24cを全体制御手段21へ供給し、基準レベ
ルKに相当するデータ24dをメモリ手段12へ供給す
る。
When the noise determination threshold value LTH is given, the noise amplitude suppression means 24 calculates the allowable upper limit by adding the noise determination threshold value LTH to the reference level K, Determination threshold LT
H is subtracted to calculate an allowable lower limit. Note that the noise determination thresholds LTH (+), LTH
When (-) is given, an allowable upper limit and an allowable lower limit are set correspondingly. The maximum or minimum data UM1, UL1, UM2, UL2,... For each half cycle period stored in, for example, the address of the even address in the memory 24M in the noise amplitude suppression means 24, and the allowable upper limit value and the allowable lower limit value If there is a waveform having an amplitude exceeding the noise determination threshold LTH,
The data change request 24a is supplied to the overall operation control means 21, and the start point address 24b of the corresponding amplitude section is provided.
(The address before the address of the data exceeding the allowable upper limit value or the allowable lower limit value) and the end address (the start address of the next section, that is, the address of the data exceeding the allowable upper limit value or the allowable lower limit value) The address 24c after the first address) is supplied to the overall control means 21, and data 24d corresponding to the reference level K is supplied to the memory means 12.

【0026】全体制御手段21は、指定された始点アド
レス24bから終了アドレス24cに亘って順次アドレ
ス情報21bを発生するとともに、書き込み信号21c
を発生して該当する区間のデータを基準レベルKに相当
するデータ24dに更新する。これにより、ノイズと判
定された区間のデータの振幅の抑圧がなされる。
The general control means 21 sequentially generates address information 21b from the designated start address 24b to the end address 24c, and generates a write signal 21c.
Is generated and the data of the corresponding section is updated to the data 24d corresponding to the reference level K. As a result, the amplitude of the data in the section determined to be noise is suppressed.

【0027】信号波形補正手段25は、該当する振幅の
区間の始点アドレス24bと終了アドレス24cとに基
づいて振幅を抑圧した区間長を認識するとともに、振幅
を抑圧した区間長に応じた減衰区間を抑圧区間の前後に
設定する。減衰区間の長さは、抑圧区間の例えば1/3
〜1/2としている。これは、抑圧区間の前後にノイズ
成分が含まれているとしても、突発性ノイズは通常その
信号波形の立上りならびに立下りが鋭いので、比較的短
い時間の範囲を対象とすればその減衰が行なえるためで
ある。なお、波尾部が長い突発性ノイズ等を除去対象と
する場合はその波形の特徴に応じて減衰区間を適宜設定
するのが好ましい。そして、信号波形補正手段25は、
減衰区間に対応するアドレス範囲を設定するとともに、
それらのアドレス範囲に係る情報25aを全体制御手段
21へ供給して減衰区間のデータ12bをメモリ手段1
2から読み出すとともに、読み出したデータに対して補
正を施したデータ25bを出力し、データ更新要求25
cを全体制御手段21へ供給し、補正したデータ25b
をメモリ手段12へ書き込ませる。
The signal waveform correcting means 25 recognizes the section length in which the amplitude is suppressed based on the start address 24b and the end address 24c of the section of the corresponding amplitude, and determines the attenuation section corresponding to the section length in which the amplitude is suppressed. Set before and after the suppression section. The length of the attenuation section is, for example, 1/3 of the suppression section.
〜. This is because even if a noise component is included before and after the suppression section, sudden noise has a sharp rise and fall in its signal waveform, so that it can be attenuated over a relatively short time range. That's because. When sudden noise having a long wave tail is to be removed, it is preferable to appropriately set the attenuation section according to the characteristics of the waveform. Then, the signal waveform correction means 25
While setting the address range corresponding to the attenuation section,
The information 25a relating to those address ranges is supplied to the overall control means 21 and the data 12b of the attenuation section is stored in the memory means 1.
2, and outputs data 25 b obtained by correcting the read data.
c is supplied to the overall control means 21 and the corrected data 25b
Is written into the memory means 12.

【0028】上記の減衰補正は、本来のビート信号とノ
イズと判断して抑圧した信号とのつながりが図4(a)
に示すようになめらかになる形であればよく、例えば、
図4(b)に示すように単純減少(抑圧区間の前部)も
しくは単純増加特性(抑圧区間の後部)でもよいし、図
4(c)に示す指数関数的な減少もしくは増加特性とし
てもよい。
In the above-described attenuation correction, the connection between the original beat signal and the signal determined as noise and suppressed is shown in FIG.
As long as it is smooth as shown in the figure, for example,
As shown in FIG. 4B, a simple decrease (the front part of the suppression section) or a simple increase characteristic (the rear part of the suppression section) may be used, or an exponential decrease or increase characteristic shown in FIG. 4C may be used. .

【0029】そして、ノイズ除去のための一連のデータ
処理が終了すると、全体動作制御手段21は、デジタル
演算処理要求21fをデジタル演算処理手段13へ与え
るとともに、メモリ手段12からデータ修正後のデジタ
ルビート信号のデータ12bの読み出しを行なう。デジ
タル演算処理手段13は、データ修正後のデータ12b
に基づいて周波数分析ならびに測定物までの距離の算出
を行ない、測定結果13aをディスプレイ装置8に表示
させる。
When a series of data processing for noise removal is completed, the overall operation control means 21 sends a digital operation processing request 21f to the digital operation processing means 13 and, at the same time, sends a digital beat after data correction from the memory means 12. The signal data 12b is read. The digital operation processing means 13 outputs the corrected data 12b
, The frequency analysis and the calculation of the distance to the object are performed, and the measurement result 13a is displayed on the display device 8.

【0030】図5はノイズ抑圧処理手段の動作を示す説
明図である。まず、ステップS1でビート信号のサンプ
リングが行なわれ、デジタルビート信号データDSがメ
モリ手段12へ記憶される。ついで、ステップS2で、
振幅密度演算手段22によって振幅密度が演算される。
ビート信号BSの振幅波形が図5(イ)に示すように突
発性ノイズNを含む場合、その信号の振幅密度は図5
(ロ)に示すようになる。図5(ロ)において横軸は振
幅レベル、縦軸は各振幅の発生回数を全振幅の発生回数
で正規化した振幅密度である。図5(イ)に示す信号の
場合、突発性ノイズNの発生期間は解析対象期間内にの
極く短い期間であるので、本来のビート信号の振幅レベ
ルが密度分布のピークとなる。図5(ロ)において密度
分布の山の広がりが密度の広がりを示し、この場合は振
幅の大きいノイズNが含まれているので、密度のピーク
部よりも振幅の大きい方の広がりが大きくなっている。
FIG. 5 is an explanatory diagram showing the operation of the noise suppression processing means. First, the beat signal is sampled in step S1, and the digital beat signal data DS is stored in the memory means 12. Then, in step S2,
The amplitude density is calculated by the amplitude density calculating means 22.
When the amplitude waveform of the beat signal BS includes the sudden noise N as shown in FIG.
(B). In FIG. 5B, the horizontal axis represents the amplitude level, and the vertical axis represents the amplitude density obtained by normalizing the number of occurrences of each amplitude by the number of occurrences of all amplitudes. In the case of the signal shown in FIG. 5A, the occurrence period of the sudden noise N is a very short period within the analysis target period, and therefore the amplitude level of the original beat signal becomes the peak of the density distribution. In FIG. 5B, the spread of the peaks of the density distribution indicates the spread of the density. In this case, since the noise N having a large amplitude is included, the spread of the larger amplitude is larger than the peak portion of the density. I have.

【0031】振幅密度が求まると、ステップS3でノイ
ズ判定しきい値設定手段23は、図5(ハ)に示すしき
い値振幅を算出し、許容上限値と許容下限値を設定す
る。ステップS4でノイズ振幅抑圧手段24は、許容値
範囲を超えているデータを振幅ゼロに相当するデータに
変更する。さらに、信号波形補正手段25は振幅をゼロ
に相当するデータに変更した前後の区間を減衰区間と
し、この減衰区間のデータに対して本来のビート信号と
振幅ゼロに変更した部分とがなめらかにつながるようデ
ータを補正する。この結果、図5(ニ)に示す信号波形
に相当するデジタルビート信号データがメモリ手段12
内に格納されたことになる。
When the amplitude density is obtained, in step S3, the noise determination threshold value setting means 23 calculates the threshold amplitude shown in FIG. 5C and sets the allowable upper limit value and the allowable lower limit value. In step S4, the noise amplitude suppression unit 24 changes data exceeding the allowable value range to data corresponding to zero amplitude. Further, the signal waveform correcting means 25 sets the section before and after the amplitude is changed to data equivalent to zero as an attenuation section, and the original beat signal and the part whose amplitude is changed to zero are smoothly connected to the data in this attenuation section. Correct the data as follows. As a result, the digital beat signal data corresponding to the signal waveform shown in FIG.
Will be stored in

【0032】そして、ステップS5で全体動作制御手段
21は、デジタル演算処理手段13を起動し、図5
(ニ)に示す信号波形に相当するデジタルビート信号デ
ータをデジタル演算処理手段13へ供給するので、突発
性ノイズNを除去もしくは軽減させた信号データに基づ
いて高速フーリエ変換(FFT)等のデジタル信号処理
がなされ、その周波数解析結果に基づいて対象物までの
距離が求められ、表示装置に表示される。
Then, in step S5, the overall operation control means 21 activates the digital operation processing means 13 and
Since the digital beat signal data corresponding to the signal waveform shown in (d) is supplied to the digital arithmetic processing means 13, the digital signal such as the fast Fourier transform (FFT) is obtained based on the signal data from which the sudden noise N has been removed or reduced. The processing is performed, the distance to the object is obtained based on the frequency analysis result, and the distance is displayed on the display device.

【0033】なお、図1では、解析対象期間内のデジタ
ルビート信号の振幅密度を求める振幅密度演算手段22
と、求めた振幅密度に基づいてノイズ判定しきい値を設
定するノイズ判定しきい値設定手段23と、ノイズ判定
しきい値を越える振幅の区間のデジタル信号のデータを
振幅がゼロもしくはゼロに近い小さな振幅となるようデ
ジタルビート信号のデータを変更するノイズ振幅抑圧手
段24と、信号波形補正手段25とを備えたノイズ抑圧
処理手段14を示したが、ノイズ抑圧処理手段は、図6
に示すように信号波形の包絡線を求めて、包絡線がノイ
ズ判定しきい値VTHを越えている区間の信号を抑圧す
る構成としてもよい。また、振幅密度を求めずに解析対
象期間内の各振幅波形の平均値を求め、その平均値より
も所定量大きい振幅の区間に対して、振幅をゼロにもし
くは振幅を抑圧する処理を行なってもよい。さらに、そ
の抑圧区間の前後に減衰区間を設けるようにしていもよ
い。
In FIG. 1, the amplitude density calculating means 22 for obtaining the amplitude density of the digital beat signal within the period to be analyzed is shown.
And a noise determination threshold value setting means 23 for setting a noise determination threshold value based on the obtained amplitude density. The digital signal data of the section of the amplitude exceeding the noise determination threshold value has an amplitude of zero or close to zero. Although the noise suppression processing means 14 including the noise amplitude suppression means 24 for changing the data of the digital beat signal so as to have a small amplitude and the signal waveform correction means 25 is shown, the noise suppression processing means is shown in FIG.
As shown in (1), a configuration may be adopted in which the envelope of the signal waveform is obtained, and the signal in the section where the envelope exceeds the noise determination threshold value VTH is suppressed. Further, the average value of each amplitude waveform within the analysis target period is obtained without obtaining the amplitude density, and a process of reducing the amplitude to zero or suppressing the amplitude is performed for a section having an amplitude larger than the average value by a predetermined amount. Is also good. Further, an attenuation section may be provided before and after the suppression section.

【0034】また、サンプリング信号DSのメモリ手段
12への書き込みと、振幅密度の演算を同時行なう構成
を示したが、距離測定までに時間的余裕がある場合は、
メモリ手段12へ格納されたデータに対して振幅密度の
演算を行なう構成としてもよい。ノイズ振幅抑圧手段2
4内にメモリ24Mを設けずに、ノイズ判定しきい値L
THが設定された後にメモリ手段12から再度データを
読み出し、各波形の振幅を再度演算しながら、しきい値
LTHを越えている区間を検出するようにしてもよい。
Also, the configuration has been described in which the writing of the sampling signal DS to the memory means 12 and the calculation of the amplitude density are performed simultaneously. However, if there is a time margin before the distance measurement,
An arrangement may be made wherein the amplitude density is calculated for the data stored in the memory means 12. Noise amplitude suppression means 2
4 without providing the memory 24M, the noise determination threshold L
After the TH is set, data may be read again from the memory unit 12 and the section exceeding the threshold LTH may be detected while calculating the amplitude of each waveform again.

【0035】この実施例では、抑圧区間ならびに減衰区
間のデータも含めて時間的に継続する全てのデータをデ
ジタル演算処理装置13へ供給する構成を示したが、測
定精度よりも距離測定の時間を優先する場合は、全体動
作制御手段21内に抑圧区間ならびに減衰区間のアドレ
ス情報を記憶する手段を設け、抑圧区間を除いたデータ
もしくは抑圧区間と減衰区間を除いたデータをデジタル
演算処理手段13へ供給するようにしてもよい。このよ
うなノイズ混入区間のデータを除去する構成の場合は、
メモリ手段12内のデータを更新する必要がないので、
ノイズ抑圧処理手段14の構成が簡単になるとともに、
データ更新の処理が不要であるから距離測定に要する時
間を短縮することができる。
In this embodiment, all data that continues in time including the data in the suppression section and the attenuation section are supplied to the digital arithmetic processing unit 13, but the time for distance measurement is shorter than the measurement accuracy. If priority is given, a means for storing the address information of the suppression section and the attenuation section is provided in the overall operation control means 21, and the data excluding the suppression section or the data excluding the suppression section and the attenuation section are sent to the digital arithmetic processing means 13. You may make it supply. In the case of a configuration that removes data in such a noise mixed section,
Since there is no need to update the data in the memory means 12,
While the configuration of the noise suppression processing means 14 is simplified,
Since the data update process is not required, the time required for distance measurement can be reduced.

【0036】次にこの発明に係るノイズ抑圧処理手段の
効果を具体例を参照に説明する。図7は振幅の大きなノ
イズが一定区間に加わった場合の信号波形図である。こ
の信号波形を高速フーリエ変換(FFT)によって周波
数スペクトラムを求めると、図8に示すように、本来の
信号(対象物までの距離に比例した周波数成分)以外に
ノイズの周波数成分が現れ、距離測定の精度が低下す
る。そこで、図1に示したノイズ抑圧処理手段14を用
いて、ノイズ部分を抑圧するとともに、その抑圧区間の
前後に減衰処理を施して、図9に示す信号波形を得て、
この信号波形に係るサンプリングデータをデジタル演算
処理手段13で高速フーリエ変換(FFT)すると、図
10に示すように、本来の信号(対象物までの距離に比
例した周波数成分)が顕著に現れる。よって、精度の高
い距離測定が可能となる。
Next, the effects of the noise suppression processing means according to the present invention will be described with reference to specific examples. FIG. 7 is a signal waveform diagram in the case where noise having a large amplitude is added to a certain section. When a frequency spectrum is obtained from this signal waveform by fast Fourier transform (FFT), noise frequency components appear in addition to the original signal (frequency components proportional to the distance to the object) as shown in FIG. The accuracy of is reduced. Thus, the noise portion is suppressed using the noise suppression processing means 14 shown in FIG. 1 and attenuation processing is performed before and after the suppression section to obtain a signal waveform shown in FIG.
When the sampling data relating to the signal waveform is subjected to fast Fourier transform (FFT) by the digital arithmetic processing means 13, an original signal (a frequency component proportional to the distance to the object) appears remarkably, as shown in FIG. Therefore, highly accurate distance measurement becomes possible.

【0037】[0037]

【発明の効果】以上説明したように請求項1に係るFM
−CWレーダの信号処理装置は、振幅が他のレベルより
も大きい区間に対してその区間の振幅がゼロもしくはゼ
ロに近い小さい振幅となるようデータを変更するノイズ
抑圧処理手段を備えたので、突発性ノイズを除去もしく
は抑圧することができる。よって、突発性ノイズを除去
もしくは抑圧したデジタルビート信号に対して高速フー
リエ変換等のデジタル演算処理を施して、その周波数解
析結果から距離を求めることで、ノイズの影響を軽減し
より確実な距離測定が可能となる。
As described above, the FM according to claim 1 is used.
-The signal processing device of the CW radar includes noise suppression processing means for changing data so that the amplitude of the section becomes zero or a small amplitude close to zero in the section where the amplitude is larger than the other levels. Sexual noise can be removed or suppressed. Therefore, the digital beat signal from which sudden noise has been removed or suppressed is subjected to digital arithmetic processing such as fast Fourier transform, and the distance is obtained from the frequency analysis result. Becomes possible.

【0038】請求項2に係るFM−CWレーダの信号処
理装置のノイズ抑圧処理手段は、振幅密度に基づいてノ
イズ判定しきい値を設定し、設定したノイズ判定しきい
値を越える区間に対してその区間の振幅をゼロもしくは
ゼロに近い小さな振幅のデータに変更する構成としたの
で、ビート信号の振幅に応じてノイズ判定レベルを可変
することができ、ビート信号のレベルの大小に拘わらず
突発性ノイズを効果的に除去もしくは減衰させることが
できる。所定値以上の信号対雑音比を確保することがで
きるので、より確実な距離測定が可能となる。
[0038] The noise suppression processing means of the signal processing device of the FM-CW radar according to claim 2 sets a noise determination threshold value based on the amplitude density, and sets a noise determination threshold value for a section exceeding the set noise determination threshold value. Because the amplitude of the section is changed to zero or data of small amplitude close to zero, the noise judgment level can be changed according to the amplitude of the beat signal, and suddenness can occur regardless of the level of the beat signal. Noise can be effectively removed or attenuated. Since a signal-to-noise ratio equal to or higher than a predetermined value can be ensured, more reliable distance measurement can be performed.

【0039】なお、信号波形補正手段を設け、非抑圧信
号と抑圧信号とがなめらかにつながるよう抑圧区間の両
側の信号波形を補正することで、突発性ノイズの初頭部
ならびに後尾部に振幅の小さい部分がある場合でも、そ
れを抑圧することができる。また、ビート信号の振幅が
変動している場合等を含めて、ビート信号のピーク部分
を抑圧しないようにノイズ判定しきい値をかなり高めに
設定しても、ノイズ抑圧区間の前後の振幅を減衰させる
ので、ノイズ成分を効果的に抑圧することができる。
A signal waveform correcting means is provided to correct the signal waveforms on both sides of the suppression section so that the non-suppression signal and the suppression signal are smoothly connected to each other, so that the initial noise and the tail of the sudden noise have small amplitudes. Even if there is a part, it can be suppressed. Even if the amplitude of the beat signal fluctuates, the noise before and after the noise suppression section is attenuated even if the noise judgment threshold value is set to be rather high so as not to suppress the peak portion of the beat signal. Therefore, the noise component can be effectively suppressed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明に係るFM−CWレーダの信号処理装
置の機能ブロック構成図
FIG. 1 is a functional block configuration diagram of a signal processing device of an FM-CW radar according to the present invention.

【図2】同信号処理装置を備えたFM−CWレーダ装置
の全体ブロック構成図
FIG. 2 is an overall block configuration diagram of an FM-CW radar device including the signal processing device.

【図3】振幅の求め方の一例を示す説明図FIG. 3 is an explanatory diagram showing an example of a method of obtaining an amplitude.

【図4】減衰区間の信号波形ならびに減衰特性の具体例
を示す説明図
FIG. 4 is an explanatory diagram showing a specific example of a signal waveform and an attenuation characteristic in an attenuation section.

【図5】ノイズ抑圧処理手段の動作を示す説明図FIG. 5 is an explanatory diagram showing an operation of a noise suppression processing unit.

【図6】ノイズ抑圧処理手段の他の構成例の作用を示す
説明図
FIG. 6 is an explanatory diagram showing the operation of another configuration example of the noise suppression processing means.

【図7】振幅の大きなノイズが一定区間に加わった場合
の信号波形図
FIG. 7 is a signal waveform diagram when a large amplitude noise is added to a certain section.

【図8】図7に示す信号波形の周波数スペクトラムを示
す説明図
8 is an explanatory diagram showing a frequency spectrum of the signal waveform shown in FIG. 7;

【図9】ノイズ抑圧処理手段でノイズを抑圧しその前後
の減衰区間に減衰処理を施した信号波形図
FIG. 9 is a signal waveform diagram in which noise is suppressed by noise suppression processing means and attenuation processing is performed on attenuation sections before and after the noise.

【図10】図9に示した信号波形の周波数スペクトラム
を示す説明図
FIG. 10 is an explanatory diagram showing a frequency spectrum of the signal waveform shown in FIG. 9;

【符号の説明】[Explanation of symbols]

1 FM−CWレーダ装置 7 信号処理装置 11 A/D変換器 12 メモリ手段 13 デジタル演算処理手段 14 ノイズ抑圧処理手段 21 全体動作制御手段 22 振幅密度演算手段 23 ノイズ判定しきい値設定手段 24 ノイズ振幅抑圧手段 25 信号波形補正手段 REFERENCE SIGNS LIST 1 FM-CW radar device 7 signal processing device 11 A / D converter 12 memory means 13 digital calculation processing means 14 noise suppression processing means 21 overall operation control means 22 amplitude density calculation means 23 noise determination threshold setting means 24 noise amplitude Suppression means 25 Signal waveform correction means

フロントページの続き (56)参考文献 特開 平5−249233(JP,A) 特開 平3−175389(JP,A) 特開 平4−142486(JP,A) 特開 平4−348292(JP,A) 特開 平4−265882(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01S 13/32 - 13/48 G01S 13/88 - 13/95 Continuation of the front page (56) References JP-A-5-249233 (JP, A) JP-A-3-175389 (JP, A) JP-A-4-142486 (JP, A) JP-A-4-348292 (JP) (A) JP-A-4-265882 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G01S 13/32-13/48 G01S 13/88-13/95

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 送信信号と受信信号を混合することによ
り得られるビート信号を標本化量子化して得たデジタル
ビート信号に対してデジタル演算処理を施して周波数解
析を行ないその周波数解析結果に基づいて対象物までの
距離を求めるFM−CWレーダの信号処理装置におい
て、 前記デジタルビート信号のデータを一時記憶するメモリ
手段と、 このメモリ手段に記憶されたデータの中で、振幅が他の
レベルよりも大きい区間に対してその区間の振幅がゼロ
もしくはゼロに近い小さい振幅となるようデータを変更
するノイズ抑圧処理手段を備えたことを特徴とするFM
−CWレーダの信号処理装置。
1. A digital signal processing device performs digital arithmetic processing on a digital beat signal obtained by sampling and quantizing a beat signal obtained by mixing a transmission signal and a reception signal, and performs frequency analysis based on the frequency analysis result. In a signal processing device of an FM-CW radar for obtaining a distance to an object, a memory means for temporarily storing the data of the digital beat signal, and the amplitude of the data stored in the memory means is higher than other levels. An FM comprising noise suppression processing means for changing data so that the amplitude of a large section becomes zero or a small amplitude close to zero.
A signal processing device for a CW radar.
【請求項2】 前記ノイズ抑圧処理手段は、 解析対象期間内のデジタルビート信号の振幅密度を求め
る振幅密度演算手段と、 求めた振幅密度に基づいてノイズ判定しきい値を設定す
るノイズ判定しきい値設定手段と、 このノイズ判定しきい値を越える振幅の区間のデジタル
信号のデータを振幅がゼロもしくはゼロに近い小さい振
幅となるようデータを変更するノイズ振幅抑圧手段とを
備えたことを特徴とする請求項1記載のFM−CWレー
ダの信号処理装置。
2. The noise suppression processing means according to claim 1, wherein said noise suppression processing means calculates an amplitude density of the digital beat signal within a period to be analyzed, and a noise determination threshold for setting a noise determination threshold based on the determined amplitude density. Value setting means, and noise amplitude suppressing means for changing data of the digital signal in the section of the amplitude exceeding the noise determination threshold so that the amplitude becomes zero or a small amplitude close to zero. The signal processing device for an FM-CW radar according to claim 1.
【請求項3】 前記ノイズ抑圧処理手段は、振幅がゼロ
もしくはゼロに近い小さい振幅となるようデータを変更
した区間の両側に減衰区間を設定し、非抑圧信号と抑圧
信号とがなめらかにつながるよう前記減衰区間内のデジ
タル信号のデータを補正する信号波形補正手段を備えた
ことを特徴とする請求項1記載のFM−CWレーダの信
号処理装置。
3. The noise suppression processing means sets attenuation sections on both sides of a section where data is changed so that the amplitude becomes zero or a small amplitude close to zero, so that the non-suppression signal and the suppression signal are smoothly connected. 2. The signal processing device for an FM-CW radar according to claim 1, further comprising a signal waveform correction unit configured to correct data of the digital signal in the attenuation section.
JP25318393A 1993-10-08 1993-10-08 FM-CW radar signal processing device Expired - Fee Related JP3156815B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25318393A JP3156815B2 (en) 1993-10-08 1993-10-08 FM-CW radar signal processing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25318393A JP3156815B2 (en) 1993-10-08 1993-10-08 FM-CW radar signal processing device

Publications (2)

Publication Number Publication Date
JPH07110373A JPH07110373A (en) 1995-04-25
JP3156815B2 true JP3156815B2 (en) 2001-04-16

Family

ID=17247704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25318393A Expired - Fee Related JP3156815B2 (en) 1993-10-08 1993-10-08 FM-CW radar signal processing device

Country Status (1)

Country Link
JP (1) JP3156815B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101848086B1 (en) 2016-07-28 2018-04-11 정영호 Apparatus for Opening and Closing Sliding Door

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3784327B2 (en) * 2002-01-18 2006-06-07 三菱電機株式会社 Ranging radar equipment
EP1881344A4 (en) * 2005-05-13 2011-03-09 Murata Manufacturing Co Radar
WO2006123499A1 (en) * 2005-05-16 2006-11-23 Murata Manufacturing Co., Ltd. Radar
JP2010014488A (en) * 2008-07-02 2010-01-21 Fujitsu Ltd Signal processing device for fmcw radar device, signal processing method for the fmcw radar device, and the fmcw radar device
WO2018163677A1 (en) 2017-03-06 2018-09-13 日立オートモティブシステムズ株式会社 Radar device
JP6690593B2 (en) * 2017-04-10 2020-04-28 株式会社デンソー Perimeter monitoring radar device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101848086B1 (en) 2016-07-28 2018-04-11 정영호 Apparatus for Opening and Closing Sliding Door

Also Published As

Publication number Publication date
JPH07110373A (en) 1995-04-25

Similar Documents

Publication Publication Date Title
DE10196047B4 (en) Jitter estimator
CN102985843B (en) digital receiver technology in radar detector
US4607216A (en) Apparatus for measurement by digital spectrum analyzer
CN206400092U (en) Multifunctional comprehensive signal simulator
JP3156815B2 (en) FM-CW radar signal processing device
JP2001137243A (en) Method and apparatus for adaptive wall filtering process in spectrum doppler ultrasonic imaging
CN107884649B (en) Stray spectrum analysis system and analysis method based on vector network analyzer
GB1458883A (en) Method and apparatus for validity-testing the results of analysis apparatus
DE112018007500T5 (en) Radar device
CN109061584B (en) Dynamic test method and system for radar receiving system
JP2001141764A (en) Signal analyzer
CN111600619B (en) Rowland C signal generation method, device, equipment and storage medium
JP2005009886A (en) Fm-cw radar device
CN110441746B (en) Time domain gate transformation method and device
EP0054982A1 (en) Threshold circuit for radar video data
JP3809880B2 (en) Method and apparatus for acquiring transfer function within a short time in vibration control system
JP4149883B2 (en) Radar signal processing device
US4475166A (en) Digital signal processing apparatus with improved display
EP0225704A2 (en) Method and apparatus for waveform analysis
US4716373A (en) Method and circuit arrangement for increasing the signal-to-noise ratio of a periodical electrical signal
CN110261834B (en) Method for improving quality of hybrid radar signal
CN115840197B (en) Vehicle-mounted radar MIMO array phase drying phase error correction method and device
JP7462852B2 (en) Radar device and interference detection method for radar device
CN116148780A (en) Radio frequency signal simulation control method
CN101061651B (en) Instrument for measuring characteristics of tuner

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010124

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080209

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090209

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees