JP3156762B2 - Indoor air cleaning method and apparatus - Google Patents

Indoor air cleaning method and apparatus

Info

Publication number
JP3156762B2
JP3156762B2 JP21177097A JP21177097A JP3156762B2 JP 3156762 B2 JP3156762 B2 JP 3156762B2 JP 21177097 A JP21177097 A JP 21177097A JP 21177097 A JP21177097 A JP 21177097A JP 3156762 B2 JP3156762 B2 JP 3156762B2
Authority
JP
Japan
Prior art keywords
water tank
water
indoor air
air
room
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21177097A
Other languages
Japanese (ja)
Other versions
JPH1147545A (en
Inventor
茂樹 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP21177097A priority Critical patent/JP3156762B2/en
Publication of JPH1147545A publication Critical patent/JPH1147545A/en
Application granted granted Critical
Publication of JP3156762B2 publication Critical patent/JP3156762B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、室内空気清浄方法
及びその装置に係わり、詳しくは、水を用いて室内の汚
染ガスを吸収除去する空気清浄方法及びその装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for purifying indoor air, and more particularly, to a method and apparatus for purifying air by absorbing contaminant gas in a room using water.

【0002】[0002]

【従来の技術】 従来、使用されている室内空気清浄方
法及びその装置としては、イオン化や吸着材により粒
子、分子状物質を吸着除去するものがほとんどで、その
他に光触媒を利用したものがある。
2. Description of the Related Art Conventionally, most of indoor air purifying methods and apparatuses used for adsorbing and removing particles and molecular substances by ionization and adsorbents, and others using a photocatalyst.

【0003】[0003]

【発明が解決しようとする課題】上述したイオンや吸着
材や光触媒を利用した空気清浄器は粉塵にはかなり有効
であるが、有機物ガスに関しては成分によっては除去性
能があまり十分ではなく、無機ガスの一種である炭酸ガ
スに関してはほとんど効果がない。
The above-mentioned air purifiers utilizing ions, adsorbents and photocatalysts are quite effective for dusting. However, organic gas is not sufficiently removed depending on the components, and inorganic gas is not sufficiently removed. It has little effect on carbon dioxide, which is a type of carbon dioxide.

【0004】そのため、換気が少ない室内に多数の人が
存在する場合やファンヒータなどの燃焼型暖房機を長時
間動作させた場合には、従来の空気清浄器を動作させて
いても、室内の空気中の炭酸ガスなどは除去できないた
め高濃度になり、気分が悪くなる場合が生じる。一方、
空気中に含まれる炭酸ガスの一般的な分離、除去方法と
しては、アミン吸着法や圧力法などが実用化の域にある
が、一般的にそれらの装置は大型であり、家庭やビルな
どでの使用は困難である。また、膜分離法なども検討さ
れているが、性能が十分でない。
For this reason, when a large number of people are present in a room with little ventilation or when a combustion type heater such as a fan heater is operated for a long time, even if the conventional air purifier is operated, the indoor Since carbon dioxide and the like in the air cannot be removed, the concentration becomes high, which may cause a bad mood. on the other hand,
As a general method for separating and removing carbon dioxide contained in the air, an amine adsorption method and a pressure method are in the range of practical use.However, such devices are generally large, and are generally used in homes and buildings. Is difficult to use. Further, a membrane separation method and the like have been studied, but the performance is not sufficient.

【0005】そこで、本発明は、室内の空気中の汚染物
質である有機物ガスや無機ガスの一部を簡単な方法で除
去できる室内空気清浄方法およびその装置を提供するこ
とを課題とする。
Accordingly, an object of the present invention is to provide a method and an apparatus for cleaning indoor air which can remove a part of organic gas and inorganic gas which are pollutants in indoor air by a simple method.

【0006】[0006]

【課題を解決するための手段】冷却された水槽の水に室
内の空気をバブリングして、従来の空気清浄器で除去で
きないような水に溶解性のある有機物ガスや無機ガスを
吸収した後、室温より高温に設定された別の水槽の方に
その水をポンプで移動させて、放出できるガス(炭酸ガ
スなど)は戸外に放出させ、放出できない成分に関して
は循環させて、一定の濃度に達した時に下水に排水とし
て除去することにより、室内の空気を清浄化し、上記の
課題を解決する。また、2つの水槽の内壁面に光触媒を
設け、紫外線を照射できる構造を取ることにより、水槽
中の水質を良好に保ち、微生物などの発生を抑えること
ができるとともに、水中に吸収された有機物などをある
程度分解除去できる。
Means for Solving the Problems After indoor air is bubbled into cooled water in a water tank to absorb water-soluble organic and inorganic gases which cannot be removed by a conventional air purifier, The water is pumped to another water tank set at a temperature higher than room temperature, and gas that can be released (carbon dioxide gas, etc.) is released outdoors, and components that cannot be released are circulated to reach a certain concentration. Then, by removing the wastewater as wastewater, the indoor air is purified and the above-mentioned problem is solved. In addition, by providing a photocatalyst on the inner wall surface of the two water tanks and adopting a structure that can irradiate ultraviolet rays, the water quality in the water tank can be kept good, the generation of microorganisms can be suppressed, and organic substances absorbed in the water Can be decomposed and removed to some extent.

【0007】本発明によれば、室内の空気の温度や湿度
をほとんど変化させることなく、室内の空気中の汚染物
質である有機物ガスや無機ガスの一部を簡単な方法およ
び装置で室内から排出除去でき、また、従来の空気清浄
器と組み合わせることにより室内の空気を長時間清浄な
状態を維持できる。
According to the present invention, a part of organic or inorganic gas, which is a pollutant in indoor air, is exhausted from the indoor by a simple method and apparatus without substantially changing the temperature and humidity of indoor air. It can be removed and the room air can be kept clean for a long time by combining with a conventional air purifier.

【0008】[0008]

【発明の実施の形態】次に、本発明による室内空気清浄
方法及びその装置の実施の形態について図面を参照して
説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, an embodiment of a method and an apparatus for cleaning indoor air according to the present invention will be described with reference to the drawings.

【0009】図1は、本発明による室内空気清浄装置の
全体構成図である。同図に示すように、室内の空気中の
汚染物質を水に吸収させるための水槽llが室内に、戸
外へガスの放出あるいは排水を行なうための水槽l2が
戸外に設置されている。水槽llの方は室温より低温に
保たれるように冷却器15が設けられており、水槽l2
の方は室温より高い温度に保たれるように加熱器16が
設けられている。冷却器15で排出される熱は熱排出パ
イプ35を通って水槽l2の保温に用いられる。水槽l
lと水槽l2の水は、パイプ23,24を通して水循環
用ポンプシステム20により循環できるようになってい
る。なお、前記冷却器15として、電子クーラ、ガス冷
却器等を用いる。
FIG. 1 is an overall configuration diagram of an indoor air cleaning device according to the present invention. As shown in the figure, a water tank 11 for absorbing contaminants in the air in the room into water is provided indoors, and a water tank 12 for discharging gas to the outside or draining the water outdoors is installed outdoors. The water tank 11 is provided with a cooler 15 so as to be maintained at a temperature lower than room temperature.
Is provided with a heater 16 so as to be maintained at a temperature higher than room temperature. The heat discharged from the cooler 15 passes through the heat discharge pipe 35 and is used for keeping the water tank 12 warm. Water tank
1 and the water in the water tank 12 can be circulated by the water circulation pump system 20 through the pipes 23 and 24. Note that an electronic cooler, a gas cooler, or the like is used as the cooler 15.

【0010】室内の汚染された空気は、室内空気取り入
れ口21からエアポンプ13によってパイプ22を通し
て、冷却器15で冷却された水槽ll内に設けられた空
気バブリング用多孔質体17に導人され、非常に細かい
泡となって水の中を通過し、その際、汚染物質が水中へ
吸収される。なお、前記多孔質体17には微細な細孔を
有するセラミック(ガラスを含む)あるいはプラスチッ
ク等を用いる。汚染物質が水に吸収されて清浄化された
空気は、パイプ32に設けられたガス温度調整器19に
よってほぼ室温とされ、室内へと戻される。
[0010] The contaminated air in the room is guided from the indoor air intake 21 through a pipe 22 by an air pump 13 to a porous body 17 for air bubbling provided in a water bath 11 cooled by a cooler 15. Very fine bubbles pass through the water as the pollutants are absorbed into the water. The porous body 17 is made of ceramic (including glass) or plastic having fine pores. The air that has been cleaned by the contaminants being absorbed by the water is brought to approximately room temperature by the gas temperature controller 19 provided on the pipe 32 and returned to the room.

【0011】汚染物質を吸収した水は、水循環用ポンプ
システム20により水槽l2へ送られる。外気は、外気
取り入れ口28からエアポンプ14によってパイプ27
を通して、加熱器16で加熱された水槽l2内に設けら
れた空気バブリング用多孔質体18に導人され、非常に
細かい泡となって水の中を通過する。その際、水槽l2
では水の温度が高くなるように設定されているので、水
に吸収されていた汚染物質のうち、放出できるものはそ
の時点で外気の細かい泡によってより効率良くガス放出
口31から排出される。ガスとして放出できないものは
そのままとし、その水を再び水槽llの方へと戻す。そ
の循環の繰り返しを行い、水から放出できない成分に関
しては常時水槽l2で水質を水質モニタ34で監視して
おき、濃度が水質モニタ34における設定値以上になっ
た時点でバルブ25を開いてパイプ26を通して水を排
出し、新しい水を給水口30からパイプ33に設けられ
たパルブ29を通して補給する。
The water having absorbed the contaminants is sent to a water tank 12 by a water circulation pump system 20. The outside air is supplied from the outside air intake 28 to the pipe 27 by the air pump 14.
Is guided to the porous body 18 for air bubbling provided in the water tank 12 heated by the heater 16 and passes through the water as very fine bubbles. At that time, water tank 12
Since the temperature of the water is set to be high, among the contaminants absorbed in the water, those that can be released are more efficiently discharged from the gas discharge port 31 by the fine bubbles of the outside air at that time. Those that cannot be released as gas are left as they are, and the water is returned to the water tank 11 again. The circulation is repeated, and the water quality of the components that cannot be released from the water is constantly monitored in the water tank 12 by the water quality monitor 34, and when the concentration becomes equal to or higher than the set value in the water quality monitor 34, the valve 25 is opened and the pipe 26 is opened. And fresh water is supplied from a water supply port 30 through a valve 29 provided in a pipe 33.

【0012】図2は水槽ll及び水槽12の内部を示す
図である。水槽11,12の内側には光触媒38が塗布
されている。また、防水型の蛍光ランプ37が壁に光を
照射できるように配置されている。そのため、光触媒効
果により水中の有機物などをある程度分解除去でき、菌
類の繁殖なども低減できるので、より長時間メンテナン
スせずに本発明による装置を作動させることができる。
また、水槽11,12の外面には保温材36が取り付け
られている。
FIG. 2 is a view showing the inside of the water tank 11 and the water tank 12. As shown in FIG. The photocatalyst 38 is applied inside the water tanks 11 and 12. In addition, a waterproof fluorescent lamp 37 is arranged so as to irradiate the wall with light. Therefore, the organic matter in water can be decomposed and removed to some extent by the photocatalytic effect, and the propagation of fungi can be reduced, so that the apparatus according to the present invention can be operated without maintenance for a longer time.
A heat insulating material 36 is attached to the outer surfaces of the water tanks 11 and 12.

【0013】上述した室内空気清浄装置と従来のイオン
若しくは吸着材又は光触媒を利用した他の空気空気清浄
器と併用することにより室内の空気をより長時間清浄な
状態に維持することができる。
By using the above-described indoor air purifying apparatus in combination with another conventional air or air purifier using an ion or adsorbent or a photocatalyst, the indoor air can be maintained in a clean state for a longer time.

【0014】[0014]

【実施例】次に、本発明の実施例について説明する。Next, an embodiment of the present invention will be described.

【0015】(実施例1)図1に示した装置における空
気清浄の原理を確認するために、空気中に含まれる汚染
物の一つである炭酸ガスの水への溶解度を調ベたとこ
ろ、図3に示すような結果が得られた。この結果によ
り、5℃と30℃で溶解度が大きく異なり、低温で多量
に吸収されたガスは高温では放出されることがわかる。
勿論、この装置は、水への溶解度が高い他の成分におい
て有効である。
Example 1 In order to confirm the principle of air purification in the apparatus shown in FIG. 1, the solubility of carbon dioxide, one of the contaminants contained in the air, in water was measured. The result as shown in FIG. 3 was obtained. From these results, it can be seen that the solubility differs greatly between 5 ° C. and 30 ° C., and that a large amount of gas absorbed at low temperature is released at high temperature.
Of course, this device is effective for other components having high solubility in water.

【0016】模擬的な室内を実現するために約2m四方
の密閉空間を準備し、そこから図1に示した装置へ空気
が循環できるようにした。模擬室内の温度は標準温度で
ある20℃に設定した。2つの水槽の大きさは約50c
m四方で、冷却する水槽の方を冷却器として電子クーラ
ーを用いて約5℃に設定し、加熱する方の水槽を約30
℃に設定した。空気バブリング用多孔質体として約10
μm程度の穴があるアルミナセラミックス体を用いた。
水槽の内側の壁にはディップ塗布法により酸化チタン光
触媒を形成し、光を照射できるよう2本の蛍光ランプを
設けた。エアポンプの流量は約1L/min程度に設定
した。模擬室内に汚染物として1200ppmの炭酸ガ
スを導入して、装置を作動させる試験を行なった。この
時、排出側(外気で開放系)の炭酸ガス濃度は約300
ppmであった。試験の結果、約10分後には模擬室内
の炭酸ガス濃度は外気と同じ300ppm程度になって
いた。また1時間おきに1200ppmの濃度の炭酸ガ
スを模擬室内に導入し、8時間動作させたところ、導入
直後は濃度は高いが、数分後には外気とほぼ同じ炭酸ガ
ス濃度になることが確認できた。
To realize a simulated room, a closed space of about 2 m square was prepared, from which air could be circulated to the apparatus shown in FIG. The temperature in the simulation room was set to 20 ° C., which is the standard temperature. The size of the two tanks is about 50c
m, the water tank to be cooled is set to about 5 ° C. using an electronic cooler as a cooler, and the water tank to be heated is set to about 30 ° C.
Set to ° C. About 10 as porous body for air bubbling
An alumina ceramic body having a hole of about μm was used.
A titanium oxide photocatalyst was formed on the inner wall of the water tank by a dip coating method, and two fluorescent lamps were provided so that light could be irradiated. The flow rate of the air pump was set to about 1 L / min. A test was conducted in which 1200 ppm of carbon dioxide gas was introduced as a contaminant into the simulation chamber to operate the apparatus. At this time, the concentration of carbon dioxide on the discharge side (open system with outside air) is about 300
ppm. As a result of the test, after about 10 minutes, the concentration of carbon dioxide in the simulation chamber was about 300 ppm, which is the same as the outside air. In addition, when a carbon dioxide gas having a concentration of 1200 ppm was introduced into the simulated chamber every other hour and operated for 8 hours, the concentration was high immediately after the introduction, but after several minutes, it was confirmed that the carbon dioxide concentration was almost the same as the outside air. Was.

【0017】(実施例2)模擬的な室内を実現するため
に約3m四方の密閉空間を準備し、そこから図1に示し
た装置へ空気が循環できるようにした。模擬室内の温度
は標準温度である20℃に設定した。2つの水槽の大き
さは約75cm四方で、冷却する水槽の方を冷却器とし
てガス冷却器を用いて約5℃に設定し、加熱する方の水
槽を約30℃に設定した。空気バブリング用多孔質体と
して約10μm程度の穴があるテフロン体を用いた。水
槽の内側の壁にはディップ塗布法により酸化チタン光触
媒を形成し、光を照射できるよう2本の蛍光ランプを設
けた。エアポンプの流量は約3L/min程度に設定し
た。模擬室内に汚染物として1200ppmの炭酸ガス
を導入して、装置を作動させる試験を行なった。この
時、排出側(外気で開放系)の炭酸ガス濃度は約300
ppmであった。試験の結果、約10分後には模擬室内
の炭酸ガス濃度は外気と同じ300ppm程度になっ
た。また1時間おきに1200ppmの濃度の炭酸ガス
を模擬室内に導入し、8時間動作させたところ、導入直
後は濃度は高くなるが、数分後には外気とほぼ同じ炭酸
ガス濃度になることが確認できた。
(Example 2) In order to realize a simulated room, a closed space of about 3 m square was prepared, from which air could be circulated to the apparatus shown in FIG. The temperature in the simulation room was set to 20 ° C., which is the standard temperature. The size of the two water tanks was about 75 cm square, the water tank to be cooled was set to about 5 ° C. using a gas cooler as a cooler, and the water tank to be heated was set to about 30 ° C. A Teflon body having a hole of about 10 μm was used as a porous body for air bubbling. A titanium oxide photocatalyst was formed on the inner wall of the water tank by a dip coating method, and two fluorescent lamps were provided so that light could be irradiated. The flow rate of the air pump was set to about 3 L / min. A test was conducted in which 1200 ppm of carbon dioxide gas was introduced as a contaminant into the simulation chamber to operate the apparatus. At this time, the concentration of carbon dioxide on the discharge side (open system with outside air) is about 300
ppm. As a result of the test, after about 10 minutes, the carbon dioxide gas concentration in the simulated chamber was about 300 ppm, which is the same as the outside air. In addition, when a carbon dioxide gas having a concentration of 1200 ppm was introduced into the simulation chamber every one hour and operated for 8 hours, the concentration became high immediately after the introduction, but after several minutes, it was confirmed that the carbon dioxide concentration became almost the same as the outside air. did it.

【0018】(実施例3)模擬的な室内を実現するため
に約2m四方の密閉空間を準備し、そこから図lに示し
た装置へ空気が循環できるようにした。模擬室内の温度
は標準温度である20℃に設定した。2つの水槽の大き
さは約50cm四方で、冷却する水槽の方を冷却器とし
て電子クーラを用いて約5℃に設定し、加熱する方の水
槽を約30℃に設定した。空気バブリング用多孔質体と
して約10μm程度の穴があるシリカ多孔質体を用い
た。水槽の内側の壁にはディップ塗布法により酸化チタ
ン光触媒を形成し、光を照射できるよう2本の蛍光ラン
プを設けた。エアポンプの流量は約1L/min程度に設
定した。模擬室内に汚染物として1200ppmの炭酸
ガスと10ppmのアンモニアとl0ppmのアセトア
ルデヒドを導入して、装置を作動させる試験を行なっ
た。この時、排出側(外気で開放系)の炭酸ガス濃度は
約300ppmで、アンモニアとアセトアルデヒドは検
出できないレベルあった。試験の結果、約10分後には
模擬室内の炭酸ガス濃度は外気と同じ300ppm程度
になり、アンモニアとアセトアルデヒドは検出できない
レベルになった。また1時間おきに同じ濃度の3種のガ
スを模擬室内に導入し、8時間動作させたところ、導入
直後は濃度は高いが、数分後には外気とほぼ同じ濃度に
なることが確認できた。その条件での水槽中のアンモニ
アとアセトアルデヒドの濃度は水質モニタに検出できな
い程度であった。
Example 3 In order to realize a simulated room, a closed space of about 2 m square was prepared, from which air could be circulated to the apparatus shown in FIG. The temperature in the simulation room was set to 20 ° C., which is the standard temperature. The size of the two water tanks was about 50 cm square, the water tank to be cooled was set to about 5 ° C. using an electronic cooler as a cooler, and the water tank to be heated was set to about 30 ° C. A porous silica material having holes of about 10 μm was used as a porous material for air bubbling. A titanium oxide photocatalyst was formed on the inner wall of the water tank by a dip coating method, and two fluorescent lamps were provided so that light could be irradiated. The flow rate of the air pump was set to about 1 L / min. A test was conducted in which 1200 ppm of carbon dioxide, 10 ppm of ammonia, and 10 ppm of acetaldehyde were introduced as contaminants into the simulated chamber to operate the apparatus. At this time, the concentration of carbon dioxide on the discharge side (open system with outside air) was about 300 ppm, and the levels of ammonia and acetaldehyde could not be detected. As a result of the test, after about 10 minutes, the concentration of carbon dioxide in the simulated chamber became about 300 ppm, which is the same as that of the outside air, and the levels of ammonia and acetaldehyde could not be detected. In addition, when three kinds of gases having the same concentration were introduced into the simulated chamber every other hour and operated for 8 hours, it was confirmed that the concentration was high immediately after the introduction, but became almost the same as the outside air several minutes later. . Under these conditions, the concentrations of ammonia and acetaldehyde in the aquarium could not be detected by the water quality monitor.

【0019】(実施例4)模擬的な室内を実現するため
に約2m四方の密閉空間を準備し、そこから図1に示し
た装置へ空気が循環できるようにした。模擬室内空間に
イオンと吸着材を利用する市販の室内空気清浄器を設置
した。模擬室内の温度は標準温度である20℃に設定し
た。2つの水槽の大きさは約50cm四方で、冷却する
水槽の方を冷却器として電子クーラーを用いて約5℃に
設定し、加熱する方の水槽を約30℃に設定した。空気
バブリング用多孔質体として約10μm程度の穴がある
シリカ多孔質体を用いた。水槽の内側の壁にはディップ
塗布法により酸化チタン光触媒を形成し、光を照射でき
るよう2本の蛍光ランプを設けた。エアポンプの流量は
約1L/min程度に設定した。模擬室内に汚染物とし
て1000ppmの炭酸ガスと10ppmのアンモニア
と1ppmのホルムアルデヒドと1ppmのトリメチル
アミンを導入して、本発明による装置と模擬室内に設置
した空気清浄器を作動させる試験を行なった。この時、
排出側(外気で開放系)の炭酸ガス濃度は約300pp
mで、アンモニアとホルムアルデヒドとトリメチルアミ
ンは検出できないレベルあった。試験の結果、約10分
後には模擬室内の炭酸ガス濃度は外気と同じ300pp
m程度になり、アンモニアとホルムアルデヒドとトリメ
チルアミンは検出できないレベルになった。比較例とし
て、同じ条件で模擬室内の空気清浄器の動作を止めた実
験を行なったところ、水への溶解度が低いトリメチルア
ミンのみがわずかの減少にとどまり、その他の成分はす
べて除去(外気と同じレベル)できた。また、比較例と
して、同じ条件で本発明による装置を止め、模擬室内に
設置した市販の空気清浄器のみを動作させたところ、ホ
ルムアルデヒドやトリメチルアミンはほぼ完全に除去で
きたが、炭酸ガスは減少せず、アンモニアは若干残留す
ることがわかった。
(Example 4) In order to realize a simulated room, a closed space of about 2 m square was prepared, from which air could be circulated to the apparatus shown in FIG. A commercial indoor air purifier using ions and adsorbent was installed in the simulated indoor space. The temperature in the simulation room was set to 20 ° C., which is the standard temperature. The size of the two water tanks was about 50 cm square. The water tank to be cooled was set to about 5 ° C. using an electronic cooler as a cooler, and the water tank to be heated was set to about 30 ° C. A porous silica material having holes of about 10 μm was used as a porous material for air bubbling. A titanium oxide photocatalyst was formed on the inner wall of the water tank by a dip coating method, and two fluorescent lamps were provided so that light could be irradiated. The flow rate of the air pump was set to about 1 L / min. A test was conducted in which 1000 ppm of carbon dioxide gas, 10 ppm of ammonia, 1 ppm of formaldehyde and 1 ppm of trimethylamine were introduced as contaminants into the simulation chamber, and the apparatus according to the present invention and the air purifier installed in the simulation chamber were operated. At this time,
The concentration of carbon dioxide on the discharge side (open air system) is about 300pp
At m, ammonia, formaldehyde and trimethylamine were at undetectable levels. As a result of the test, after about 10 minutes, the carbon dioxide concentration in the simulated chamber was 300 pp, the same as that of the outside air.
m, and ammonia, formaldehyde and trimethylamine were at undetectable levels. As a comparative example, an experiment was conducted in which the operation of the air purifier in the simulated room was stopped under the same conditions. Only trimethylamine, which has low solubility in water, was reduced only slightly, and all other components were removed (at the same level as outside air). )did it. As a comparative example, when the apparatus according to the present invention was stopped under the same conditions and only a commercially available air purifier installed in the simulated room was operated, formaldehyde and trimethylamine were almost completely removed, but carbon dioxide gas was reduced. It was found that some ammonia remained.

【0020】[0020]

【発明の効果】以上のように、本発明によれば室内の空
気の温度をほとんど変化させることなく、室内の空気中
の汚染物質である有機物ガスや無機ガスの一部を簡単な
方法で室内から排出除去でき、また、従来のイオン若し
くは吸着材又は光触媒を利用した空気清浄器と組み合わ
せることにより室内の空気をより長時間清浄な状態を維
持できる。
As described above, according to the present invention, a part of the organic gas and the inorganic gas, which are pollutants in the indoor air, can be partially removed by a simple method without substantially changing the temperature of the indoor air. In addition, by combining with an air cleaner using a conventional ion or adsorbent or a photocatalyst, the indoor air can be kept clean for a longer time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による室内空気清浄装置の全体構成図で
ある。
FIG. 1 is an overall configuration diagram of an indoor air cleaning device according to the present invention.

【図2】図1に示した水槽の内部を示す図である。FIG. 2 is a view showing the inside of the water tank shown in FIG.

【図3】水中に溶解できる炭酸ガスの量を示した図であ
る。
FIG. 3 is a diagram showing the amount of carbon dioxide gas that can be dissolved in water.

【符号の説明】[Explanation of symbols]

11 水槽 12 水槽 13、14 エアポンプ 15 冷却器 16 加熱器 17、18 空気バブリング用多孔質体 19 ガス温度調節器 20 水循環用ポンプシステム 21 室内空気取り入れ口 22、23、24、26、27、32、33 パイプ 25、29 バルブ 28 外気取り入れ口 30 給水口 31 ガス放出口 34 水質モニタ 35 熱排出パイプ 36 保温材 37 蛍光ランプ 38 光触媒 DESCRIPTION OF SYMBOLS 11 Water tank 12 Water tank 13, 14 Air pump 15 Cooler 16 Heater 17, 18 Porous body for air bubbling 19 Gas temperature controller 20 Water circulation pump system 21 Indoor air intake 22, 23, 24, 26, 27, 32, 33 pipe 25, 29 valve 28 outside air intake 30 water supply port 31 gas discharge port 34 water quality monitor 35 heat discharge pipe 36 heat insulating material 37 fluorescent lamp 38 photocatalyst

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) B01D 53/34 B01D 53/77 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int. Cl. 7 , DB name) B01D 53/34 B01D 53/77

Claims (10)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 冷却した水槽中の水に室内の空気中の汚
染物質を吸収させて、別の水槽にその水を移動して循環
し、該水槽より汚染物質を戸外へ除去することを特徴と
する室内空気清浄方法。
1. The water in a cooled water tank absorbs pollutants in the indoor air, and the water is transferred to another water tank and circulated.
And removing contaminants from the water tank to the outdoors.
【請求項2】 室内の空気中の汚染物質のうち水に溶解
する成分に関しては、冷却した水槽中の水に室内の空気
をバブリングして吸収させた後、別の水槽にその水を移
動して加熱し、ガスとして戸外へ除去することを特徴と
する請求項1記載の室内空気清浄方法。
2. Among the pollutants in the indoor air that dissolve in water, after bubbling and absorbing the indoor air into the water in the cooled water tank, the water is moved to another water tank. The indoor air cleaning method according to claim 1, wherein the air is heated and removed as a gas outside the room.
【請求項3】 加熱してもガスとして戸外へ除去できな
い成分に関しては、一定の濃度以上になった時点で、排
水として除去することを特徴とする請求項2記載の室内
空気清浄方法。
3. The indoor air cleaning method according to claim 2, wherein components that cannot be removed outside as a gas even when heated are removed as wastewater when the concentration reaches a certain level or more.
【請求項4】 室内に設置され室温より低温に保たれた
水槽と、戸外に設置され室温より高温に保たれた水槽
と、両水槽の水を循環するポンプシステムとから構成さ
れ、室内に配置された水槽内には室内の空気を、戸外に
配置された水槽内には戸外の空気をバブリングできる空
気バブリング装置を設置したことを特徴とする室内空気
清浄装置。
4. A water tank installed indoors and kept at a temperature lower than room temperature, a water tank installed outdoors and kept at a temperature higher than room temperature, and a pump system for circulating water in both water tanks, which are arranged indoors. An indoor air purifying apparatus characterized in that an air bubbling device capable of bubbling indoor air is provided in a water tank provided and an outdoor air is provided in a water tank arranged outdoors.
【請求項5】 前記バブリング装置は、空気を水槽に送
るポンプと配管の先に取り付けられた細孔を有する多孔
体を有することを特徴とする請求項4記載の室内空気清
浄装置。
5. The indoor air cleaning device according to claim 4, wherein the bubbling device includes a pump for sending air to a water tank and a porous body having pores attached to a pipe.
【請求項6】 前記室内に設置され水槽のバブリング装
置には、水槽から室内に清浄化された空気を戻す配管が
設けられ、該配管には温度調節装置が備えられているこ
とを特徴とする請求項4記載の室内空気清浄装置。
6. The bubbling device for a water tank installed in the room is provided with a pipe for returning purified air from the water tank into the room, and the pipe is provided with a temperature control device. The indoor air cleaning device according to claim 4.
【請求項7】 前記室内に設置された水槽には水を冷却
する冷却器を設け、冷却器から排出される熱を前記戸外
に設置された水槽の保温に用いることを特徴とする請求
項4記載の室内空気清浄装置。
7. The water tank installed in the room is provided with a cooler for cooling water, and heat discharged from the cooler is used for keeping the temperature of the water tank installed outdoors. The indoor air purifying device as described in the above.
【請求項8】 前記戸外に設置された水槽には水質モニ
タを設けたことを特徴とする請求項4記載の室内空気清
浄装置。
8. The indoor air cleaning apparatus according to claim 4, wherein a water quality monitor is provided in the water tank installed outdoors.
【請求項9】 前記室内と戸外に設置された水槽の内壁
面に光触媒を設け、該内壁面に光を照射できる紫外線を
発する光源を水槽内に設けたことを特徴とする請求項4
記載の室内空気清浄装置。
9. A photocatalyst is provided on an inner wall surface of the water tank installed indoors and outdoors, and a light source for emitting ultraviolet light capable of irradiating the inner wall surface is provided in the water tank.
The indoor air purifying device as described in the above.
【請求項10】 請求項4記載の空気清浄装置と、他の
空気清浄器とを併用することを特徴とする室内空気清浄
装置。
10. An indoor air purifying apparatus characterized by using the air purifying apparatus according to claim 4 together with another air purifier.
JP21177097A 1997-08-06 1997-08-06 Indoor air cleaning method and apparatus Expired - Fee Related JP3156762B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21177097A JP3156762B2 (en) 1997-08-06 1997-08-06 Indoor air cleaning method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21177097A JP3156762B2 (en) 1997-08-06 1997-08-06 Indoor air cleaning method and apparatus

Publications (2)

Publication Number Publication Date
JPH1147545A JPH1147545A (en) 1999-02-23
JP3156762B2 true JP3156762B2 (en) 2001-04-16

Family

ID=16611308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21177097A Expired - Fee Related JP3156762B2 (en) 1997-08-06 1997-08-06 Indoor air cleaning method and apparatus

Country Status (1)

Country Link
JP (1) JP3156762B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000036695A (en) * 2000-03-25 2000-07-05 임한진 Wet appartus use of removed the smell using the photocatalysis
KR100876364B1 (en) 2008-05-23 2008-12-29 고려공업검사 주식회사 Particulate, ionic radioactive materials and hazardous materials and fine particles removal fluidized bed -catalyst-membrane hybrid system
JP2010036148A (en) * 2008-08-07 2010-02-18 Techno Ryowa Ltd Removal system for volatile organic compound by gas absorption tower
CN117258521B (en) * 2023-11-23 2024-01-30 山西晟景规划设计工程咨询有限公司 Energy-saving and environment-friendly biomass fuel pyrolysis device

Also Published As

Publication number Publication date
JPH1147545A (en) 1999-02-23

Similar Documents

Publication Publication Date Title
US8883083B2 (en) Air cleaner filter system capable of nano-confined catalytic oxidation
ES2661740T3 (en) Method and device for cleaning air
US10046266B2 (en) Systems and methods of cleaning cabin air in a transportation vehicle
JP5614559B2 (en) Methods and devices for disinfecting and deodorizing toilets
KR101437632B1 (en) Air cleaning apparatus
CN101778804A (en) Use ozone and sorbent material and/or particulate filter cleansing fluid
KR20170003286A (en) Bus shelter wiht an air purification device
JP2006255529A (en) Photocatalyst filter, photocatalyst filter unit, clean room, air purifier, manufacturing apparatus and air purifying method
KR20080013585A (en) Ventilation unit with washing type air cleaner
KR101971176B1 (en) Apparatus for Treating Waste Gas comprising VOCs From Pretreatment system
JP3156762B2 (en) Indoor air cleaning method and apparatus
KR20060102871A (en) An apparatus for indoor air clean soaking outdoor air
CN106225203A (en) A kind of compound air purifier
JP2006281025A (en) Air cleaner
JPH11207136A (en) Exhaust emission control device
KR20110115193A (en) Multiple purpose heat storage type ventilating apparatus
JP2010025384A (en) Humidity controller
KR101431673B1 (en) Deodorizer Odor
KR100531080B1 (en) Humidifying and air purifying system
JP2002165869A (en) Filtration equipment and air conditioner
KR200255178Y1 (en) A filter for air conditioner
KR20070121396A (en) Air purification combind with sub sterilization device
CN218544775U (en) Indoor air purification device
RU2773150C1 (en) Method and device for air purification using a regenerated co2 absorber
CN212548832U (en) Air self-cleaning device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees