JP3155299B2 - Anion exchanger - Google Patents

Anion exchanger

Info

Publication number
JP3155299B2
JP3155299B2 JP18863091A JP18863091A JP3155299B2 JP 3155299 B2 JP3155299 B2 JP 3155299B2 JP 18863091 A JP18863091 A JP 18863091A JP 18863091 A JP18863091 A JP 18863091A JP 3155299 B2 JP3155299 B2 JP 3155299B2
Authority
JP
Japan
Prior art keywords
anion
ion
resin
anion exchange
nitrate ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18863091A
Other languages
Japanese (ja)
Other versions
JPH0531373A (en
Inventor
俊勝 佐田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP18863091A priority Critical patent/JP3155299B2/en
Publication of JPH0531373A publication Critical patent/JPH0531373A/en
Application granted granted Critical
Publication of JP3155299B2 publication Critical patent/JP3155299B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、特に硝酸イオンの選択
的吸着に有効な陰イオン交換体に関する。
The present invention relates to an anion exchanger which is particularly effective for selectively adsorbing nitrate ions.

【0002】[0002]

【従来技術】硝酸イオンは、飲料水中に含まれていると
人体に有害なイオン種である。特に近年、産業排気ガス
に基づく酸性雨の問題、雨の少ない地域における農業用
肥料あるいは家畜類の排せつ物に基づく地下水中に含ま
れる硝酸イオンの増大が深刻な問題となっている。特に
降雨量の少ないヨーロッパにおいては、その現象が顕著
となっている。また、硝酸イオンを含んだ産業廃棄物が
増加しており、これも地球の環境保護の観点から重要な
問題である。
2. Description of the Related Art Nitrate ions are harmful to the human body when contained in drinking water. Particularly in recent years, the problem of acid rain based on industrial exhaust gas, and the increase of nitrate ions contained in groundwater based on agricultural fertilizer or livestock excreta in areas with little rain have become serious problems. This phenomenon is particularly noticeable in Europe where rainfall is low. Further, industrial waste containing nitrate ions is increasing, which is also an important problem from the viewpoint of environmental protection of the earth.

【0003】従来、これらの硝酸イオンを除去するため
に各種の方法が知られている。例えば、硝酸イオンのN
3 - をN2 とO2 に分解してしまう方法、イオン交換
樹脂によって吸着除去する方法、嫌気性醗酵により分解
する方法、そのほか多くの技術が開発されている。ま
た、分離膜を用いる方法としては、例えば逆浸透膜法、
イオン交換膜による電気透析法などがあり、それぞれ目
的によって使い別けられ、工業化されている重要な技術
である。
Conventionally, various methods have been known for removing these nitrate ions. For example, the nitrate ion N
A number of techniques have been developed, including a method of decomposing O 3 - into N 2 and O 2 , a method of adsorbing and removing by an ion exchange resin, a method of decomposing by anaerobic fermentation, and many others. As a method using a separation membrane, for example, a reverse osmosis membrane method,
There is an electrodialysis method using an ion-exchange membrane, which is used separately according to the purpose and is an important industrialized technology.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記し
たような従来技術により地下水のような希薄な塩溶液中
に存在する硝酸イオンを除去するには、それぞれ解決す
べき問題を有する。例えばイオン交換樹脂による吸着除
去において、通常の陰イオン交換樹脂では硫酸イオンが
選択的に吸着され、硝酸イオンに対する選択吸着性がな
い。また、膜分離法は、再生の必要がなく、連続的に操
作できる点で微量の硝酸イオンを除去するために極めて
有用であるが、硝酸イオンだけを選択的に膜透過させる
ことが極めて困難である。即ち、逆浸透膜法において
は、硝酸イオンに対する選択透過性がない。電気透析法
においては、通常の陰イオン交換膜を用いると、多価イ
オンである硫酸イオンが先ず選択的に膜透過し、また塩
素イオンと硝酸イオンの間の選択透過性も殆んどない。
従って、イオン交換膜による電気透析法は、通常の陰イ
オン交換膜を使う限り、いわゆる脱イオンには適してい
るが、ミネラル成分として必要なイオン種を残し、硝酸
イオンだけ膜透過させることができなかった。
However, the removal of nitrate ions present in a dilute salt solution such as groundwater by the above-mentioned prior art has problems to be solved. For example, in adsorption removal by an ion exchange resin, a sulfate ion is selectively adsorbed by a normal anion exchange resin, and there is no selective adsorption property to a nitrate ion. Further, the membrane separation method is extremely useful for removing a small amount of nitrate ions in that it can be operated continuously without the need for regeneration, but it is extremely difficult to selectively allow only nitrate ions to permeate the membrane. is there. That is, in the reverse osmosis membrane method, there is no selective permeability to nitrate ions. In the electrodialysis method, when a normal anion exchange membrane is used, sulfate ions, which are polyvalent ions, first selectively permeate the membrane, and there is almost no selective permeability between chloride ions and nitrate ions.
Therefore, the electrodialysis method using an ion-exchange membrane is suitable for so-called deionization as long as a normal anion-exchange membrane is used, but only the nitrate ions can be permeated through the membrane while leaving the necessary ionic species as a mineral component. Did not.

【0005】[0005]

【課題を解決するための手段】本発明者らは、上記した
陰イオン交換樹脂による硝酸イオンの吸着除去について
鋭意研究の結果、硝酸イオンを選択的に吸着する陰イオ
ン交換樹脂を見出し、本発明を提供するに至った。即
ち、本発明は、炭素数4以上の炭化水素鎖が結合した陰
イオン交換基を有する、硝酸イオンの選択的イオン交換
吸着に用いることを特徴とする陰イオン交換体である。
Means for Solving the Problems The present inventors have conducted intensive studies on the adsorption and removal of nitrate ions by the above-mentioned anion exchange resin, and have found an anion exchange resin which selectively adsorbs nitrate ions. Came to offer. That is, the present invention is an anion exchanger having an anion exchange group to which a hydrocarbon chain having 4 or more carbon atoms is bonded, which is used for selective ion exchange adsorption of nitrate ions.

【0006】本発明の陰イオン交換体において、炭素数
4以上の炭化水素鎖が結合した陰イオン交換基として
は、例えば、ブチル、アミル、さらにはオクチル、オク
タデシルなど一般に炭素数が18までの直鎖状あるいは
分岐状の炭化水素鎖、脂環式の炭化水素鎖、芳香族系の
炭化水素基、それらにエーテル結合を有する炭化水素
鎖、一部反応に関与しないハロゲン基が置換された炭化
水素鎖などが少なくとも陰イオン交換基に結合している
もので、例えば、ベンジルジメチルベンジルアンモニウ
ム塩基、N−ドデシルピリジニウム塩基、ベンジルジブ
チルアミン塩基、ベンジルオクチルアミン塩基などが挙
げられる。
In the anion exchanger of the present invention, examples of the anion exchange group to which a hydrocarbon chain having 4 or more carbon atoms is bonded include butyl, amyl, octyl, octadecyl and the like. Linear or branched hydrocarbon chains, alicyclic hydrocarbon chains, aromatic hydrocarbon groups, hydrocarbon chains having an ether bond to them, and hydrocarbons in which some halogen groups that do not participate in the reaction are substituted A chain or the like bonded to at least an anion exchange group, for example, benzyldimethylbenzylammonium base, N-dodecylpyridinium base, benzyldibutylamine base, benzyloctylamine base and the like.

【0007】また、炭素数4以上の炭化水素基を結合し
た陰イオン交換基とともに、強あるいは弱塩基性の炭素
数1であるメチル基が結合した陰イオン交換基が結合し
ていてもよい。即ち、本発明の陰イオン交換体におい
て、全イオン交換容量に対する炭素数4以上の炭化水素
鎖を結合した陰イオン交換基の割合は50%以上、特に
70%以上であることが好ましい。このような本発明の
陰イオン交換体における陰イオン交換基そのものとして
は、強塩基性陰イオン交換基であっても、弱塩基陰イオ
ン交換基であってもよい。具体的に強塩基性の陰イオン
交換基そのものとしては、第四級アンモニウム塩基、第
三級スルホニウム塩基、第四級ホスホニウム塩基、アル
ソニウム塩基、ゴバルチシニウム塩基など溶液のpHに
関係なく正の電荷を有する陰イオン交換性を示す基であ
れば特に制限されないが、一般に第四級アンモニウム塩
基が好ましく用いられる。また弱塩基性陰イオン交換基
としては第一級、第二級、第三級アミンが用いられる。
これらの弱塩基性アミノ基は、イオン交換反応を実施す
るために解離した状態で使用する必要がある。
Further, an anion exchange group to which a strongly or weakly basic methyl group having 1 carbon atom is bonded may be bonded together with an anion exchange group to which a hydrocarbon group having 4 or more carbon atoms is bonded. That is, in the anion exchanger of the present invention, the ratio of the anion exchange group having a hydrocarbon chain having 4 or more carbon atoms bonded to the total ion exchange capacity is preferably 50% or more, particularly preferably 70% or more. The anion exchange group itself in such an anion exchanger of the present invention may be a strongly basic anion exchange group or a weakly basic anion exchange group. Specifically, the strongly basic anion exchange group itself has a positive charge irrespective of the pH of the solution such as a quaternary ammonium base, a tertiary sulfonium base, a quaternary phosphonium base, an arsonium base, and a gobalticinium base. The group is not particularly limited as long as it is a group exhibiting anion exchangeability. In general, a quaternary ammonium base is preferably used. Primary, secondary and tertiary amines are used as the weakly basic anion exchange groups.
These weakly basic amino groups need to be used in a dissociated state in order to carry out an ion exchange reaction.

【0008】本発明の陰イオン交換体は、炭素数4以上
の炭化水素鎖が結合した陰イオン交換基を有していれ
ば、その形状、製法において特に限定されるものではな
く、従来公知のイオン交換樹脂の一般的な製法を用いて
製造することが出来る。即ち、上記した陰イオン交換基
が結合する高分子を基体とするが、結合系高分子、重合
系高分子、架橋性高分子の区別なくいづれも用いること
が出来る。好ましくは架橋構造を有する重合系高分子
に、上記の陰イオン交換基が結合した場合である。樹脂
構造としては通常のゲル構造を有する球状樹脂、共重合
体に対する貧溶媒の存在下に重合して得られる多孔質球
状樹脂などが何ら制限なく用いられるが、特に樹脂の機
械的強度およびイオン交換速度の早さから多孔質球状樹
脂が好ましい。また球状樹脂のみでなく、繊維状のイオ
ン交換体、球状でなく破砕した粒状物、織布、不織布、
膜状等の形状を有する陰イオン交換体であっても好適に
用いられる。
The anion exchanger of the present invention is not particularly limited in its shape and production method as long as it has an anion exchange group to which a hydrocarbon chain having 4 or more carbon atoms is bonded. It can be manufactured using a general manufacturing method of an ion exchange resin. That is, the polymer to which the above-described anion exchange group is bonded is used as the base, but any of a bonding polymer, a polymer polymer, and a crosslinkable polymer can be used without distinction. Preferably, the above-mentioned anion exchange group is bonded to a polymer having a crosslinked structure. As the resin structure, a spherical resin having a normal gel structure, a porous spherical resin obtained by polymerizing in the presence of a poor solvent for the copolymer, and the like are used without any limitation, but in particular, the mechanical strength of the resin and ion exchange A porous spherical resin is preferred because of its high speed. Not only spherical resins, but also fibrous ion exchangers, not spherical but crushed granular materials, woven fabrics, nonwoven fabrics,
Anion exchangers having a membrane shape or the like are also preferably used.

【0009】本発明の陰イオン交換体におけるイオン交
換容量は一般に1.0〜6m当量/g(乾燥体)の範囲
が好ましい。即ち、このイオン交換容量があまりに低い
と単位体積あたりに吸着する硝酸イオンの量が少なくな
るため大量のイオン交換体を必要として経済的ではな
い。また、あまりイオン交換容量が大きいとイオン交換
体の機械的強度が弱くなるため使用中に樹脂の破損など
による損失が大きい。勿論、この場合に陰イオン交換体
としてベルト状の膜状イオン交換体を用いて、処理液中
に連続的に浸漬して再生を行うことも工業的に実施でき
る。また、膜状だけでなく、前記したように繊維状のイ
オン交換体も有効に用いることが出来る。
The ion exchange capacity of the anion exchanger of the present invention is generally preferably in the range of 1.0 to 6 meq / g (dry). That is, if the ion exchange capacity is too low, the amount of nitrate ions adsorbed per unit volume becomes small, so that a large amount of ion exchanger is required, which is not economical. On the other hand, if the ion exchange capacity is too large, the mechanical strength of the ion exchanger becomes weak, so that loss due to breakage of the resin during use is large. Needless to say, in this case, it is also industrially possible to use a belt-like membrane ion exchanger as the anion exchanger and continuously immerse it in the treatment liquid to perform regeneration. In addition, not only a membrane but also a fibrous ion exchanger can be effectively used as described above.

【0010】本発明の陰イオン交換体を用いて処理され
る硝酸イオンを含んだ液は、一般に1%以下、好ましく
は0.1%以下の硝酸イオンを含んだ水溶液が他の陰イ
オンが同時に含まれている場合が多い。特に本発明の陰
イオン交換体は、一般に飲料水に適する塩濃度の水から
硝酸イオンを選択的に除去する場合に適している。この
ような硝酸イオンは、当然に対イオンとして陽イオンを
水溶液中で有しており、これの除去も同時にすることが
好ましい。従って、本発明の陰イオン交換体と同時に陽
イオン交換体が用いられる。これら陰イオン交換体と陽
イオン交換体と使用態様は、従来公知の混床式でもよく
複床式でもよく、その目的に応じ、また処理水の量に応
じて選択される。
The solution containing nitrate ions to be treated with the anion exchanger of the present invention generally contains an aqueous solution containing not more than 1%, preferably not more than 0.1% of nitrate ions, simultaneously with other anions. Often included. In particular, the anion exchanger of the present invention is generally suitable for selectively removing nitrate ions from water having a salt concentration suitable for drinking water. Such a nitrate ion naturally has a cation as a counter ion in the aqueous solution, and it is preferable to remove the cation at the same time. Therefore, a cation exchanger is used simultaneously with the anion exchanger of the present invention. These anion exchangers and cation exchangers and the manner of use may be of a conventionally known mixed-bed type or double-bed type, and are selected according to the purpose and the amount of treated water.

【0011】なお、本発明の陰イオン交換体を用いると
き、強塩基性陰イオン交換基にはOH- をイオン交換し
た状態で通常用いられるが、弱塩基性の陰イオン交換基
が存在するときは塩酸塩、硫酸塩などに解離さして用い
られる。
When the anion exchanger of the present invention is used, the strongly basic anion exchange group is usually used in the state where OH - is ion-exchanged, but when a weakly basic anion exchange group is present. Is used after being dissociated into hydrochloride, sulfate and the like.

【0012】また、本発明の陰イオン交換体に硝酸イオ
ンが充分に吸着したあとは、苛性ソーダ、アンモニア水
などの塩基性水溶液で処理するか、食塩水、硫酸ソーダ
などで再生して用いられる。
After the nitrate ion is sufficiently adsorbed on the anion exchanger of the present invention, it is treated with a basic aqueous solution such as caustic soda or ammonia water or regenerated with a saline solution or sodium sulfate.

【0013】[0013]

【作用及び効果】本発明の陰イオン交換体は、特に雑多
な陰イオンと同時に硝酸イオンが混在する比較的希薄な
溶液から、硝酸イオンを選択的に吸着除去することがで
きる。
The anion exchanger of the present invention can selectively adsorb and remove nitrate ions from a relatively dilute solution in which nitrate ions are mixed together with various anions.

【0014】本発明の陰イオン交換体における特異な陰
イオン交換基が硝酸イオンを選択的にイオン交換吸着す
る機構については明確でないが、陰イオン交換基そのも
のに疎水性の基が結合していることによって交換体内に
おける水の構造に変化が生じ、その結果により硝酸イオ
ンの水和状態との関係から、硝酸イオンが選択的に本発
明の陰イオン交換体に吸着したものと思われる。
The mechanism by which the specific anion exchange group in the anion exchanger of the present invention selectively adsorbs nitrate ions by ion exchange is not clear, but a hydrophobic group is bonded to the anion exchange group itself. This causes a change in the structure of water in the exchanger, and as a result, from the relationship with the hydration state of nitrate ions, it is considered that nitrate ions were selectively adsorbed to the anion exchanger of the present invention.

【0015】[0015]

【実施例】以下、本発明の内容を具体的に実施例によっ
て説明するが、本発明はこれらの実施例だけに制限され
るものではない。
EXAMPLES The contents of the present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.

【0016】なお、本発明における硝酸イオンの吸着実
験は、NaCl,Na2 SO4 ,NaHCO3 ,NaN
3 がそれぞれ2.5mmol/lとなるように含まれ
た液1lの中に、本発明の陰イオン交換体を浸漬し、攪
拌して平衡状態にしたのちに、イオン交換体をとり出し
水洗後、沃化ナトリウムで溶出し、該溶出液中の各々の
陰イオンの分析をした。SO4 2- ,NO3 - ,Cl-
それぞれイオンクロマトグラフィーにより分析し、HC
3 - はメチルオレンジを指示薬として0.1規定塩酸
で滴定して求めた。
In the experiment of adsorbing nitrate ions in the present invention, NaCl, Na 2 SO 4 , NaHCO 3 , NaN
The anion exchanger of the present invention was immersed in 1 liter of a liquid containing O 3 at a concentration of 2.5 mmol / l, and the mixture was stirred to be in an equilibrium state. Thereafter, the eluate was eluted with sodium iodide, and each anion in the eluate was analyzed. SO 4 2-, NO 3 -, Cl - were respectively analyzed by ion chromatography, HC
O 3 - was determined by titration with 0.1 N hydrochloric acid using methyl orange as an indicator.

【0017】実施例1 クロルメチルスチレン90部および純度55%のジビニ
ルベンゼン10部をポリビニルアルコールを分散剤とし
て、水1lに分散した。これにベンゾイルパーオキサイ
ド3部を添加して、80℃に加熱し、水中に分散したス
チレン−ジビニルベンゼンを重合して粒状の樹脂を得
た。次いで、これをヘキサン60部およびトリブチルア
ミン40部の混合液に60℃で48時間浸漬した。次い
で、この樹脂をヘキサンで充分に洗条したのち、10%
トリメチルアミン水溶液中に浸漬して、未反応のクロル
メチル基に反応させた。トリブチルアミンを反応後得ら
れた陰イオン交換体の陰イオン交換容量は3.5m当量
/g(乾燥樹脂)であったが、トリメチルアミンの反応
後は4.2m当量/g(乾燥樹脂)となった。
Example 1 90 parts of chloromethylstyrene and 10 parts of divinylbenzene having a purity of 55% were dispersed in 1 liter of water using polyvinyl alcohol as a dispersant. To this, 3 parts of benzoyl peroxide was added and heated to 80 ° C. to polymerize styrene-divinylbenzene dispersed in water to obtain a granular resin. Next, this was immersed in a mixed solution of 60 parts of hexane and 40 parts of tributylamine at 60 ° C. for 48 hours. Next, the resin was thoroughly washed with hexane, and then 10%
It was immersed in an aqueous solution of trimethylamine to react with unreacted chloromethyl groups. The anion exchanger obtained after the reaction with tributylamine had an anion exchange capacity of 3.5 meq / g (dry resin), but after the reaction of trimethylamine became 4.2 meq / g (dry resin). Was.

【0018】上記の得られた陰イオン交換樹脂を前記し
た混合電解質溶液において平衡にしたところ、イオン交
換樹脂内のそれぞれの陰イオンはNO3 - 82%,C
- 12%,SO4 2- 7%,HCO3 - 1%以下で
あった。
[0018] was equilibrated in the mixed electrolyte solution of the obtained anion exchange resin described above with the above, the respective anion in the ion exchange resin is NO 3 - 82%, C
l - 12%, SO 4 2- 7%, HCO 3 - was 1% or less.

【0019】他方、上記のクロルメチルスチレン−ジビ
ニルベンゼン共重合体をトリメチルアミン水溶液に浸漬
してアミノ化処理を実施した。この得られた陰イオン交
換樹脂についても、同様に混合塩溶液に浸漬して平衡に
し、次いで溶出をして、樹脂内における陰イオンのそれ
ぞれを分析をした。その結果、NO3 - 33%,SO4
2- 42%,Cl- 22%,HCO3 は3%であっ
た。
On the other hand, the chloromethylstyrene-divinylbenzene copolymer was immersed in an aqueous solution of trimethylamine to carry out an amination treatment. The obtained anion exchange resin was similarly immersed in a mixed salt solution to equilibrate, then eluted, and each anion in the resin was analyzed. As a result, NO 3 - 33%, SO 4
2-42 %, Cl - 22%, HCO 3 was 3%.

【0020】実施例2 4−ビニルピリジン 90部および純度55%のジビニ
ルベンゼンを実施例1と同様にして水中に分散して、重
合させて球状粒子を得た。これをブチルブロマイドの3
0%メタノール溶液中に浸漬してピリジン環をアルキル
化した。次いで、これを塩酸で洗浄して臭素を除いて塩
素イオン型としたのち、これを硝酸ソーダで溶出して陰
イオン交換容量を測定したところ5.3m当量/g(乾
燥樹脂)であった。さらに、これをpH10に調整した
0.5規定の食塩水に平衡にした後、同様にイオン交換
樹脂中のCl- を分析したところ、4.5m当量/g
(乾燥樹脂)であった。この得られた弱塩基性陰イオン
交換基と強塩基性陰イオン交換基が共存する陰イオン交
換樹脂を実施例1と同様にしてNaCl,Na2
4 ,NaHCO3 ,NaNO3の混合溶液に平衡にし
たのち、樹脂内の各々の陰イオンを溶出し分析したとこ
ろ、NO3 - は86%,Cl- は8%,SO4 2- は6%
で、HCO3 - は殆んど検出できなかった。
Example 2 90 parts of 4-vinylpyridine and 55% pure divinylbenzene were dispersed in water and polymerized in the same manner as in Example 1 to obtain spherical particles. This is butyl bromide 3
The pyridine ring was alkylated by immersion in a 0% methanol solution. Next, this was washed with hydrochloric acid to remove bromine to form a chloride ion form, and then eluted with sodium nitrate to measure an anion exchange capacity. As a result, it was 5.3 meq / g (dry resin). Furthermore, after this equilibrium 0.5N saline adjusted to pH 10, similarly Cl ion exchange resin - was analyzed, 4.5 m eq / g
(Dry resin). The obtained anion exchange resin having a weakly basic anion exchange group and a strongly basic anion exchange group coexist with NaCl, Na 2 S in the same manner as in Example 1.
After equilibrating to a mixed solution of O 4 , NaHCO 3 , and NaNO 3 , each anion in the resin was eluted and analyzed. As a result, 86% of NO 3 , 8% of Cl , and 6% of SO 4 2− were analyzed. %
In, HCO 3 - was not throat detection N殆.

【0021】他方、上記で得た4−ビニルピリジン−ジ
ビニルベンゼン共重合体樹脂をヘキサン/沃化メチル=
4/6(重量比)の溶液に浸漬してピリジン環をN−メ
チル化した。得られた陰イオン交換樹脂のイオン交換容
量は5.4m当量/g(乾燥樹脂)であった。上と同様
に混合電解質溶液に平衡にして樹脂内の各陰イオンの分
析をしたところ、NO3 - は34%,SO4 2- 48
%,Cl- 17%,HCO3 - は1%であった。
On the other hand, the 4-vinylpyridine-divinylbenzene copolymer resin obtained above is treated with hexane / methyl iodide
The pyridine ring was N-methylated by immersion in a 4/6 (weight ratio) solution. The ion exchange capacity of the obtained anion exchange resin was 5.4 meq / g (dry resin). When the mixed electrolyte solution was equilibrated and the anions in the resin were analyzed in the same manner as above, NO 3 was 34%, and SO 4 2−48 was analyzed.
%, Cl - 17% and HCO 3 - were 1%.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】炭素数4以上の炭化水素鎖が結合した陰イ
オン交換基を有する、硝酸イオンの選択的イオン交換吸
着に用いることを特徴とする陰イオン交換体。
1. An anion exchanger having an anion exchange group to which a hydrocarbon chain having 4 or more carbon atoms is bonded, which is used for selective ion exchange adsorption of nitrate ion.
JP18863091A 1991-07-29 1991-07-29 Anion exchanger Expired - Fee Related JP3155299B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18863091A JP3155299B2 (en) 1991-07-29 1991-07-29 Anion exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18863091A JP3155299B2 (en) 1991-07-29 1991-07-29 Anion exchanger

Publications (2)

Publication Number Publication Date
JPH0531373A JPH0531373A (en) 1993-02-09
JP3155299B2 true JP3155299B2 (en) 2001-04-09

Family

ID=16227065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18863091A Expired - Fee Related JP3155299B2 (en) 1991-07-29 1991-07-29 Anion exchanger

Country Status (1)

Country Link
JP (1) JP3155299B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003094045A (en) * 2001-09-27 2003-04-02 Lapur:Kk Water purifier
JP5919894B2 (en) * 2012-03-06 2016-05-18 栗田エンジニアリング株式会社 Method for regenerating anion exchange resin and method for regenerating amine liquid

Also Published As

Publication number Publication date
JPH0531373A (en) 1993-02-09

Similar Documents

Publication Publication Date Title
SenGupta Ion exchange in environmental processes: Fundamentals, applications and sustainable technology
US4479877A (en) Removal of nitrate from water supplies using a tributyl amine strong base anion exchange resin
Ayoob et al. A conceptual overview on sustainable technologies for the defluoridation of drinking water
Wen et al. application of zeolite in removing salinity/sodicity from wastewater: A review of mechanisms, challenges and opportunities
CA2528750C (en) Boron separation and recovery
Fu et al. Removing aquatic organic substances by anion exchange resins
Kabay et al. Removal and recovery of boron from geothermal wastewater by selective ion exchange resins. I. Laboratory tests
Awual et al. Rapid column-mode removal of arsenate from water by crosslinked poly (allylamine) resin
Nasef et al. Introduction to ion exchange processes
Bodzek The removal of boron from the aquatic environment–state of the art
Kabay et al. Removal of boron from aqueous solutions by a hybrid ion exchange–membrane process
Hatch et al. Preparation and use of snake-cage polyelectrolytes
Egawa et al. Preparation of macroreticular chelating resins containing dihydroxyphosphino and/or phosphono groups and their adsorption ability for uranium
US20050156136A1 (en) Method of manufacture and use of hybrid anion exchanger for selective removal of contaminating ligands from fluids
US20180273401A1 (en) Contaminants Removal with Simultaneous Desalination Using Carbon Dioxide Regenerated Hybrid Ion Exchanger Nanomaterials
US4724082A (en) Ion exchange process having increased flow rates
AU2012241177A1 (en) Enhanced staged elution of loaded resin
Li et al. Performance evaluation of magnetic anion exchange resin removing fluoride
Calmon Recent developments in water treatment by ion exchange
JP3155299B2 (en) Anion exchanger
US3458440A (en) Demineralization of polar liquids
US4154801A (en) Process for purifying alkali metal hydroxide or carbonate solutions
US20190055140A1 (en) Compositions and methods for selenium removal
Kabay et al. Removal of boron and arsenic from geothermal water by ion-exchange
Rajca The use of chitosan and pressure-driven membrane processes to remove natural organic matter from regenerative brine recovery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees