JP3154827B2 - Backscattered electron detectors such as scanning electron microscopes - Google Patents

Backscattered electron detectors such as scanning electron microscopes

Info

Publication number
JP3154827B2
JP3154827B2 JP21919292A JP21919292A JP3154827B2 JP 3154827 B2 JP3154827 B2 JP 3154827B2 JP 21919292 A JP21919292 A JP 21919292A JP 21919292 A JP21919292 A JP 21919292A JP 3154827 B2 JP3154827 B2 JP 3154827B2
Authority
JP
Japan
Prior art keywords
sample
detector
electron
layer
backscattered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21919292A
Other languages
Japanese (ja)
Other versions
JPH0668831A (en
Inventor
正彦 木元
健一 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP21919292A priority Critical patent/JP3154827B2/en
Publication of JPH0668831A publication Critical patent/JPH0668831A/en
Application granted granted Critical
Publication of JP3154827B2 publication Critical patent/JP3154827B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、走査電子顕微鏡などの
反射電子検出器に関し、特に、PIN型の半導体の反射
電子検出器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a backscattered electron detector such as a scanning electron microscope, and more particularly to a backscattered electron detector of a PIN type semiconductor.

【0002】[0002]

【従来の技術】走査電子顕微鏡などに用いられる反射電
子検出器は、シンチレータ形と半導体形に大きく分類さ
れる。図1(a),(b)はシンチレータ形の反射電子
検出器を示しており、図1(a)において、1は走査電
子顕微鏡の対物レンズ、2は試料台、3は試料台2上に
載せられた試料である。対物レンズ1と試料3との間の
空間の光軸から離された部分にシンチレータ形反射電子
検出器4が配置されている。この検出器4は、アクリル
製チップの上にP47などの蛍光体を塗布し、更にその
上からアルミニウムなどの金属を蒸着したシンチレータ
5とシンチレータで発光した光を導くライトガイド6な
どが含まれている。なお、シンチレータ5には二次電子
検出器として使用する場合には、10kV程度の電圧が
印加されているが、反射電子検出器として使用する場合
には前記印加電圧を切る。また、図1(b)の反射電子
検出器はロビンソン形検出器と呼ばれるもので、ライド
ガイド6部分が対物レンズ1と試料3との間にまで延ば
されており、入射電子ビームEBの通過開口7がライト
ガイド6に穿たれている。そして、ライトガイド6の試
料3に対向した表面にはフィルム状のシンチレータ8が
設けられている。この図1(a),(b)に示した検出
器では、試料3への電子ビームEBの照射によって発生
した反射電子がシンチレータ5に入射して発光させる。
この光はライトガイド6によって光電子増倍管(図示せ
ず)に導かれ、電気信号に変換される。
2. Description of the Related Art Backscattered electron detectors used in scanning electron microscopes and the like are broadly classified into scintillator type and semiconductor type. 1A and 1B show a scintillator-type backscattered electron detector. In FIG. 1A, reference numeral 1 denotes an objective lens of a scanning electron microscope, 2 denotes a sample stage, and 3 denotes a sample stage. This is the sample placed. A scintillator-type backscattered electron detector 4 is arranged at a portion of the space between the objective lens 1 and the sample 3 which is separated from the optical axis. The detector 4 includes a scintillator 5 in which a phosphor such as P47 is applied on an acrylic chip, and a metal such as aluminum is deposited thereon, and a light guide 6 for guiding light emitted by the scintillator. I have. When the scintillator 5 is used as a secondary electron detector, a voltage of about 10 kV is applied. When the scintillator 5 is used as a backscattered electron detector, the applied voltage is cut off. The backscattered electron detector shown in FIG. 1B is called a Robinson-type detector, and the portion of the light guide 6 is extended between the objective lens 1 and the sample 3 so that the incident electron beam EB can pass therethrough. An opening 7 is formed in the light guide 6. A film-shaped scintillator 8 is provided on the surface of the light guide 6 facing the sample 3. In the detector shown in FIGS. 1A and 1B, reflected electrons generated by the irradiation of the sample 3 with the electron beam EB are incident on the scintillator 5 to emit light.
This light is guided to a photomultiplier tube (not shown) by the light guide 6, and is converted into an electric signal.

【0003】図1(c)は半導体形反射電子検出器を用
いた走査電子顕微鏡を示しており、対物レンズ1と試料
3との間の空間に、入射電子ビームEBを通過させるた
めの穴が穿たれたドーナツ状のPIN型半導体検出器9
が配置される。図2はその詳細を示しており、半導体検
出器9は反射電子の受光面となるP形半導体(P)層
10、真性領域のI層11、N形半導体(N)層12
より成り、PIN形フォトダイオードを構成している。
すなわち、P層10は、シリコンにボロン(B)など
の不純物が拡散されており、また、N層12にはリン
(P)などの不純物が拡散されている。この構成で、N
層12は接地され、P層10から入射電子に応じた
強度の信号が取り出される。
FIG. 1C shows a scanning electron microscope using a semiconductor type backscattered electron detector. A hole for passing an incident electron beam EB is provided in a space between an objective lens 1 and a sample 3. Drilled donut-shaped PIN semiconductor detector 9
Is arranged. FIG. 2 shows the details thereof. The semiconductor detector 9 includes a P-type semiconductor (P + ) layer 10 serving as a light-receiving surface of reflected electrons, an I layer 11 in an intrinsic region, and an N-type semiconductor (N + ) layer 12.
And constitutes a PIN photodiode.
That is, in the P + layer 10, impurities such as boron (B) are diffused in silicon, and in the N + layer 12, impurities such as phosphorus (P) are diffused. With this configuration, N
The + layer 12 is grounded, and a signal having an intensity corresponding to incident electrons is extracted from the P + layer 10.

【0004】[0004]

【発明が解決しようとする課題】一般に、反射電子検出
器の感度は、試料表面から検出器の受光面までの距離に
依存し、その距離(間隔)が短いほど感度が向上するこ
とが知られている。しかしながら、図1(a),(b)
に示したシンチレータ形検出器は、大きな試料を傾斜さ
せると試料が検出器4に接触する危険があるため、試料
3と検出器4との間の距離を短くすることには限度があ
る。一方、図1(c)や図2に示した半導体検出器9
は、薄板構造のため、検出器9に試料3を限りなく近づ
けることができるので、シンチレータ形に比べて感度の
面で有利となる。
Generally, the sensitivity of a backscattered electron detector depends on the distance from the sample surface to the light receiving surface of the detector, and it is known that the shorter the distance (interval), the higher the sensitivity. ing. However, FIGS. 1 (a) and 1 (b)
In the scintillator-type detector shown in (1), there is a risk that the sample may come into contact with the detector 4 when the large sample is tilted. Therefore, there is a limit to shortening the distance between the sample 3 and the detector 4. On the other hand, the semiconductor detector 9 shown in FIG.
Since the sample 3 has a thin plate structure, the sample 3 can be brought as close to the detector 9 as possible, which is advantageous in terms of sensitivity as compared with the scintillator type.

【0005】しかし、従来の受光面をP形半導体とする
検出器は、例えば、入射電子ビームEBの加速電圧が
0.5kV〜35kVの範囲のとき、その加速された電
子が試料3に入射すると、試料との相互作用によって一
次入射電子が試料表面および試料内部から反射し、検出
器のP層に入射する。この時、P層に入射する反射
電子のエネルギーは、試料の構成元素や形状、検出器と
試料間の距離、試料室内の真空度およびガス雰囲気など
によって異なるが、入射電子のエネルギーの相当部分を
有している。このように、0.5kV〜35kVで加速
された電子が試料に照射されると、試料表面から発生す
る反射電子に対してPIN層間に形成される空間電荷
(図7(a)に示すドナーイオンとアクセプタイオン)
による電界Eが逆方向に作用している。このため、加速
電圧が低い時の反射電子ほどP層の多数キャリアであ
る正孔と結合し、電界Eの壁を乗り越えられなくなる。
電界Eの壁を乗り越えた極くわずかの反射電子が有感層
であるI層の格子(電子・正孔対)を励起し、I層の電
子・正孔対はそれぞれ自由電子と自由正孔に分離され
る。
However, a conventional detector having a light receiving surface of a P-type semiconductor, for example, when the accelerated voltage of the incident electron beam EB is in the range of 0.5 kV to 35 kV, when the accelerated electrons enter the sample 3. The primary incident electrons are reflected from the sample surface and the inside of the sample by the interaction with the sample, and are incident on the P + layer of the detector. At this time, the energy of the reflected electrons incident on the P + layer varies depending on the constituent elements and shape of the sample, the distance between the detector and the sample, the degree of vacuum in the sample chamber, the gas atmosphere, and the like. have. As described above, when the sample is irradiated with the electrons accelerated at 0.5 kV to 35 kV, the space charge formed between the PIN layers against the reflected electrons generated from the sample surface (the donor ion shown in FIG. And acceptor ion)
Is acting in the opposite direction. For this reason, the reflected electrons when the acceleration voltage is lower are combined with the holes which are the majority carriers in the P + layer, so that the reflected electrons cannot cross the wall of the electric field E.
Very few backscattered electrons that have passed over the wall of the electric field E excite the lattice (electron-hole pairs) of the I layer, which is the sensitive layer, and the electron and hole pairs of the I layer are free electrons and free holes, respectively. Is separated into

【0006】分離された自由電子は、電界Eの作用を受
けてN層に移動する。また、自由正孔は電界Eの作用
を受けてP層に移動する。このように自由電子と自由
正孔の移動によって電流iは、N層からP層へ流れ
る。この電流は、極めて微弱なため、電気回路によって
増幅しても加速電圧が0.5kV〜35kVの走査電子
顕微鏡などにおいて、高倍率で像観察する場合には決し
て十分な信号量とはならなかった。
[0006] The separated free electrons move to the N + layer under the action of the electric field E. The free holes move to the P + layer under the action of the electric field E. As described above, the current i flows from the N + layer to the P + layer due to the movement of free electrons and free holes. Since this current is extremely weak, even if it is amplified by an electric circuit, the amount of signal never becomes sufficient when observing an image at a high magnification with a scanning electron microscope having an acceleration voltage of 0.5 kV to 35 kV. .

【0007】本発明は、このような点に鑑みてなされた
もので、その目的は、反射電子の検出感度に優れ、十分
な検出電流量を得ることができる走査電子顕微鏡などの
反射電子検出器を実現するにある。
The present invention has been made in view of the above circumstances, and has as its object to provide a backscattered electron detector such as a scanning electron microscope which is excellent in the detection sensitivity of backscattered electrons and can obtain a sufficient amount of detected current. It is to realize.

【0008】[0008]

【課題を解決するための手段】本発明に基づく走査電子
顕微鏡などの反射電子検出器は、試料へ電子ビームを照
射し、試料からの反射電子を検出するPIN型半導体検
出器であって、試料に対向した反射電子の受光面をN型
半導体とした反射電子検出器を複数設け、これら反射電
子検出器を直列接続したことを特徴としている。他の本
発明に基づく走査電子顕微鏡などの反射電子検出器は、
電子ビーム光軸に対称に設けられ、試料に対向した反射
電子の受光面をN型半導体とした第1と第2の反射電子
検出器と、試料から反射された反射電子を低い角度で検
出するための第3の反射電子検出器とを備えたことを特
徴としている。
A backscattered electron detector such as a scanning electron microscope according to the present invention is a PIN type semiconductor detector for irradiating a sample with an electron beam and detecting backscattered electrons from the sample. A plurality of backscattered electron detectors having an N-type semiconductor as the light receiving surface of the backscattered electrons facing the
It is characterized in that child detectors are connected in series . Other books
A backscattered electron detector, such as a scanning electron microscope according to the invention,
Reflection provided symmetrically to the electron beam optical axis and facing the sample
First and second reflected electrons having an electron receiving surface as an N-type semiconductor
The detector and the reflected electrons reflected from the sample are detected at a low angle.
And a third backscattered electron detector for emitting light.
It is a sign.

【0009】[0009]

【作用】本発明に基づく走査電子顕微鏡などの反射電子
検出器は、試料からの反射電子を検出するPIN型半導
体検出器の試料に対向した反射電子の受光面をN型半導
体とし、検出感度を向上させる。
According to the backscattered electron detector such as a scanning electron microscope of the present invention, the light receiving surface of the backscattered electrons facing the sample of the PIN type semiconductor detector for detecting the backscattered electrons from the sample is made of an N-type semiconductor, and the detection sensitivity is improved. Improve.

【0010】[0010]

【実施例】以下、図面を参照して本発明の実施例を詳細
に説明する。図3は、本発明の一実施例を示しており、
図2の従来装置と同一部分には同一番号が付されてい
る。この実施例では、半導体検出器9の試料3に対向し
た受光面をN形半導体(N)層12で形成し、他方の
面をP形半導体(P)層10で形成している。すなわ
ち、シリコン(Si)半導体のPIN層間に形成される
空間電荷による電界の方向に注目し、この電界が電子と
正孔の移動に対して順方向に作用するように反射電子の
受光面をN層とした。このような構成とした場合の動
作原理を次に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 3 shows an embodiment of the present invention.
The same parts as those of the conventional apparatus of FIG. 2 are denoted by the same reference numerals. In this embodiment, the light-receiving surface of the semiconductor detector 9 facing the sample 3 is formed by an N-type semiconductor (N + ) layer 12, and the other surface is formed by a P-type semiconductor (P + ) layer 10. That is, attention is paid to the direction of the electric field due to the space charge formed between the PIN layers of the silicon (Si) semiconductor, and the light receiving surface of the reflected electrons is set to N so that the electric field acts on the movement of electrons and holes in the forward direction. + Layer. The operation principle of such a configuration will be described below.

【0011】図示しない電子線の発生源からの電子ビー
ムEBが反射電子検出器9の電子ビーム通過穴13を通
して試料台2に載せられた試料3に入射すると、反射電
子が発生し、その反射電子はSi半導体検出器9のN
層12に入射する。電子が多数キャリアであるN層1
2の表層部は、マイナス電荷を有する反射電子で充満さ
れ、電子密度が上昇し、電子がI層11に流れ込む。こ
の時、反射電子に対してPIN層間に形成される空間電
荷(図7(b)に示すドナーイオンとアクセプタイオ
ン)による電界EがN層12からI層11に流れ込む
電子を加速する方向に作用する。このため、加速電圧が
低い時の反射電子でも容易に有感層であるI層に到達す
ることが可能となりI層の格子(電子・正孔対)を励起
する。その結果、従来(受光面がP層)よりも多くの
自由電子と自由正孔を得ることができる。この自由電子
は、電界Eの作用を受けてN層に移動し、自由正孔は
電界Eの作用を受けてP層に移動する。このように数
多くの自由電子と自由正孔が移動することによって得ら
れる電流iは、従来(受光面がP層)よりも大きくな
る。すなわち、電流量はI層で分離される自由電子と自
由正孔の数に依存する。また、別の言い方をすると、上
記した現象は、反射電子のエネルギー損失が受光面をP
層とするよりもN層としたほうが少なかったためで
はないかと思われる。
When an electron beam EB from a source of an electron beam (not shown) enters the sample 3 placed on the sample stage 2 through the electron beam passage hole 13 of the reflected electron detector 9, reflected electrons are generated, and the reflected electrons are generated. Is N + of the Si semiconductor detector 9
Light is incident on the layer 12. N + layer 1 in which electrons are majority carriers
The surface layer portion of No. 2 is filled with reflected electrons having negative charges, the electron density increases, and the electrons flow into the I layer 11. At this time, an electric field E due to space charges (donor ions and acceptor ions shown in FIG. 7B) formed between the PIN layers with respect to the reflected electrons accelerates the electrons flowing from the N + layer 12 into the I layer 11. Works. For this reason, even when the acceleration voltage is low, even the reflected electrons can easily reach the I layer, which is the sensitive layer, and excite the lattice (electron-hole pairs) of the I layer. As a result, more free electrons and free holes can be obtained than in the conventional case (the light receiving surface is a P + layer). The free electrons move to the N + layer under the action of the electric field E, and the free holes move to the P + layer under the action of the electric field E. The current i obtained by moving a large number of free electrons and free holes in this way is larger than in the conventional case (the light receiving surface is a P + layer). That is, the amount of current depends on the number of free electrons and free holes separated in the I layer. In other words, the above-mentioned phenomenon is that the energy loss of the reflected electrons causes P
This is probably because the number of N + layers was smaller than that of N + layers.

【0012】図4は本発明のより具体的な実施例を示し
ており、図4(a)はSi半導体検出器15の平面図、
図4(b)は検出器をフォトダイオードと見なした際の
模式図である。この実施例で用いられている検出器は、
反射電子の受光面がN層のカソード、裏側のP層が
アノードとなる検出器15a,15bの2分割1対形の
検出器である。なお、図中Hは電子ビームの通過開口で
ある。この2分割とする理由は、2つの検出器の出力信
号の演算を行うことによって試料の組成信号と凹凸信号
の分離を可能ならしめるためるものです。すなわち、検
出器15aと15bの両出力信号を加算すると試料の組
成に基づいた信号のみとなり、加算信号を一次電子ビー
ムの走査信号が供給されている陰極線管に輝度信号とし
て供給すれば、組成像を表示することができる。一方、
検出器15aと15bの出力信号を減算すると、試料の
凹凸に基づいた信号のみとなり、減算信号を陰極線管に
供給することにより、試料の凹凸像を表示することがで
きる。
FIG. 4 shows a more specific embodiment of the present invention. FIG. 4 (a) is a plan view of a Si semiconductor detector 15,
FIG. 4B is a schematic diagram when the detector is regarded as a photodiode. The detector used in this example is
The light receiving surface of the reflected electrons is an N + layer cathode, and the back P + layer is an anode. In the figure, H is an aperture through which the electron beam passes. The reason for dividing into two is to enable the separation of the composition signal of the sample and the uneven signal by calculating the output signals of the two detectors. That is, when the output signals of the detectors 15a and 15b are added, only a signal based on the composition of the sample is obtained. If the added signal is supplied as a luminance signal to a cathode ray tube to which a scanning signal of a primary electron beam is supplied, a composition image is obtained. Can be displayed. on the other hand,
When the output signals of the detectors 15a and 15b are subtracted, only a signal based on the unevenness of the sample is obtained. By supplying the subtracted signal to the cathode ray tube, an uneven image of the sample can be displayed.

【0013】図5は本発明の他の実施例を示しており、
図5(a)はSi半導体検出器16の平面図、図5
(b)は検出器をフォトダイオードと見なした際の模式
図である。反射電子の受光面がN層のカソード、裏側
のP層がアノードとなる検出器16a〜16hの8分
割形の検出器である。4つの検出器16a〜16dを電
気的に4個直列接続となるようにリード線で結び、実質
的に単一の検出器としている。また、他の4つの検出器
16e〜16hも電気的に4個直列接続となるようにリ
ード線で結び、実質的に単一の検出器としている。この
実施例のように、多数の検出器(N個)を直列接続する
と、PIN層間の寄性容量(浮遊容量ともいう)が1/
Nとなり、電気的応答速度が早くなる利点を有する。
FIG. 5 shows another embodiment of the present invention.
FIG. 5A is a plan view of the Si semiconductor detector 16, and FIG.
(B) is a schematic diagram when the detector is regarded as a photodiode. The light receiving surface of the reflected electrons is an N + layer cathode, and the back side P + layer is an anode. The four detectors 16a to 16d are electrically connected by a lead wire so as to be electrically connected in series to form a substantially single detector. The other four detectors 16e to 16h are also connected by lead wires so as to be electrically connected in series to form a single detector. When a large number of detectors (N) are connected in series as in this embodiment, the parasitic capacitance (also called stray capacitance) between the PIN layers becomes 1 /
N, which has the advantage of increasing the electrical response speed.

【0014】図6は本発明の他の実施例を示している。
この実施例では、2分割一対形の検出器17a,17b
の他に独立した検出器17cを備えている。各検出器1
7a〜17cの検出信号を前置増幅器で増幅し、演算増
幅器に導くわけであるが、検出器17cの信号を電気的
にオフとし、検出器17a,17bの両信号を加算すれ
ば、組成像のための信号が得られ、両信号の差信号を得
れば、凹凸像のための信号が得られる。ここまでは、図
4の実施例で述べた通りである。この実施例では、検出
器17aと17bの加算信号に、更に検出器17cの出
力信号を加算すれば、組成信号と凹凸信号の混合した立
体感に富む像を形成することができる。なお、この実施
例では、検出器17cによって斜め方向から試料の観察
領域を望むように、すなわち、試料から反射された反射
電子を低い角度で受光できるように、検出器17cを電
子ビーム光軸から一定距離以上離して配置することによ
り、立体感をより強く出すことができる。
FIG. 6 shows another embodiment of the present invention.
In this embodiment, a pair of two-part detectors 17a and 17b are used.
And an independent detector 17c. Each detector 1
The detection signals of 7a to 17c are amplified by the preamplifier and guided to the operational amplifier. If the signal of the detector 17c is turned off electrically and both signals of the detectors 17a and 17b are added, the composition image can be obtained. If a difference signal between the two signals is obtained, a signal for a concavo-convex image is obtained. Up to this point, it is as described in the embodiment of FIG. In this embodiment, if the output signal of the detector 17c is further added to the addition signal of the detectors 17a and 17b, a rich three-dimensional image in which the composition signal and the concavo-convex signal are mixed can be formed. In this embodiment, the detector 17c is moved from the electron beam optical axis so that the observation region of the sample is obliquely viewed by the detector 17c, that is, so that the reflected electrons reflected from the sample can be received at a low angle. By arranging them at a certain distance or more, a three-dimensional effect can be enhanced.

【0015】[0015]

【発明の効果】以上説明したように、本発明に基づく走
査電子顕微鏡などの反射電子検出器は、試料からの反射
電子を検出するPIN型半導体検出器の試料に対向した
反射電子の受光面をN型半導体としたので、反射電子の
検出感度を向上させ、十分な検出電流量を得ることがで
きる。加えて、請求項1記載の発明では、複数の検出器
(N個)を直列接続したので、PIN層間の寄性容量
(浮遊容量)を1/Nにでき、電気的応答速度を早くで
きる。 さらに、請求項2記載の発明では、受光面をN型
半導体とした第1と第2の反射電子検出器と、試料から
反射された反射電子を低い角度で検出するための第3の
反射電子検出器とを備えているので、第1と第2の反射
電子検出器の加算信号に、第3の反射電子検出器の出力
信号を加算すれば、組成信号と凹凸信号の混合した立体
感に富む像を形成することができる。
As described above, a backscattered electron detector such as a scanning electron microscope according to the present invention uses a PIN-type semiconductor detector that detects backscattered electrons from a sample to detect the reflected light receiving surface facing the sample. Since an N-type semiconductor is used, the detection sensitivity of reflected electrons can be improved, and a sufficient amount of detected current can be obtained. In addition, according to the first aspect of the present invention, a plurality of detectors are provided.
(N) are connected in series, so the parasitic capacitance between PIN layers
(Stray capacitance) can be reduced to 1 / N, and the electric response speed is fast.
Wear. Further, according to the second aspect of the present invention, the light receiving surface is N-type.
From the first and second backscattered electron detectors as semiconductors and the sample
A third method for detecting reflected backscattered electrons at a low angle
A backscattered electron detector so that the first and second reflections
The output of the third backscattered electron detector is added to the sum signal of the electron detector.
If the signals are added, a three-dimensional mixture of the composition signal and the uneven signal
An image with a rich feeling can be formed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来の反射電子検出器を示す図である。FIG. 1 is a diagram showing a conventional backscattered electron detector.

【図2】従来の半導体形反射電子検出器を示す図であ
る。
FIG. 2 is a diagram showing a conventional semiconductor backscattered electron detector.

【図3】本発明の一実施例である反射電子検出器を示す
図である。
FIG. 3 is a diagram showing a backscattered electron detector according to one embodiment of the present invention.

【図4】本発明の具体的な実施例を示す図である。FIG. 4 is a diagram showing a specific example of the present invention.

【図5】本発明の具体的な実施例を示す図である。FIG. 5 is a diagram showing a specific example of the present invention.

【図6】本発明の具体的な実施例を示す図である。FIG. 6 is a diagram showing a specific example of the present invention.

【図7】従来形と本発明との対比を説明するための図で
ある。
FIG. 7 is a diagram for explaining a comparison between a conventional type and the present invention.

【符号の説明】[Explanation of symbols]

1 対物レンズ 2 試料台 3 試料 9 半導体形検出器 10 P層 11 I層 12 NDESCRIPTION OF SYMBOLS 1 Objective lens 2 Sample stand 3 Sample 9 Semiconductor type detector 10 P + layer 11 I layer 12 N + layer

フロントページの続き (56)参考文献 特公 平1−27549(JP,B2) 実公 昭44−26474(JP,Y1) (58)調査した分野(Int.Cl.7,DB名) H01J 37/244 G01T 1/24 G01T 1/28 H01J 37/28 Continuation of the front page (56) References Tokiko 1-27549 (JP, B2) Jikken 44-44,474 (JP, Y1) (58) Fields investigated (Int. Cl. 7 , DB name) H01J 37 / 244 G01T 1/24 G01T 1/28 H01J 37/28

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 試料へ電子ビームを照射し、試料からの
反射電子を検出するPIN型半導体検出器であって、試
料に対向した反射電子の受光面をN型半導体とした反射
電子検出器を複数設け、これら反射電子検出器を直列接
続したことを特徴とする走査電子顕微鏡などの反射電子
検出器。
1. A irradiated with an electron beam to a sample, a PIN type semiconductor detector for detecting the reflected electrons from the sample, reflecting the light receiving surface of the reflected electrons facing the sample is N-type semiconductor
A plurality of electron detectors are provided, and these reflected electron detectors are connected in series.
Backscattered electron detectors such as a scanning electron microscope, characterized in that connection was.
【請求項2】 試料へ電子ビームを照射し、試料からの
反射電子を検出するPIN型半導体検出器であって、
子ビーム光軸に対称に設けられ、試料に対向した反射電
子の受光面をN型半導体とした第1と第2の反射電子検
出器と、試料から反射された反射電子を低い角度で検出
するための第3の反射電子検出器とを備えたことを特徴
とする走査電子顕微鏡などの反射電子検出器。
2. A irradiated with an electron beam to a sample, a PIN type semiconductor detector for detecting the reflected electrons from the sample, electrostatic
Reflection currents are provided symmetrically with respect to the optical axis of the
1st and 2nd backscattered electron detection using an N-type semiconductor
Detector and reflected electrons reflected from the sample at a low angle
And a third backscattered electron detector for performing
A backscattered electron detector such as a scanning electron microscope.
JP21919292A 1992-08-18 1992-08-18 Backscattered electron detectors such as scanning electron microscopes Expired - Fee Related JP3154827B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21919292A JP3154827B2 (en) 1992-08-18 1992-08-18 Backscattered electron detectors such as scanning electron microscopes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21919292A JP3154827B2 (en) 1992-08-18 1992-08-18 Backscattered electron detectors such as scanning electron microscopes

Publications (2)

Publication Number Publication Date
JPH0668831A JPH0668831A (en) 1994-03-11
JP3154827B2 true JP3154827B2 (en) 2001-04-09

Family

ID=16731655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21919292A Expired - Fee Related JP3154827B2 (en) 1992-08-18 1992-08-18 Backscattered electron detectors such as scanning electron microscopes

Country Status (1)

Country Link
JP (1) JP3154827B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009105037A (en) * 2007-10-04 2009-05-14 Jeol Ltd Pin type detector, charged particle beam device provided with pin type detector

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6661015B2 (en) * 2000-09-15 2003-12-09 Ims-Ionen Mikrofabrikations Systeme Gmbh Pattern lock system
JP2002141015A (en) * 2000-10-13 2002-05-17 Applied Materials Inc Substrate inspection device and inspection method of the same
WO2018225563A1 (en) * 2017-06-05 2018-12-13 フォンダチオーネ ブルーノ ケスラー Radiation detector and radiation detection device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009105037A (en) * 2007-10-04 2009-05-14 Jeol Ltd Pin type detector, charged particle beam device provided with pin type detector

Also Published As

Publication number Publication date
JPH0668831A (en) 1994-03-11

Similar Documents

Publication Publication Date Title
JP5102580B2 (en) Charged particle beam application equipment
JP4069624B2 (en) Scanning electron microscope
JP5386596B2 (en) Charged particle beam equipment
US9341585B2 (en) X-ray detector including integrated electron detector
US5990483A (en) Particle detection and particle detector devices
US6667476B2 (en) Scanning electron microscope
US8334512B2 (en) Detector system for use with transmission electron microscope spectroscopy
US6236053B1 (en) Charged particle detector
US10515778B2 (en) Secondary particle detection system of scanning electron microscope
CN1404617A (en) Objective lens for a charged particle beam device
US10236155B2 (en) Detection assembly, system and method
JP4613405B2 (en) Scanning electron microscope
US5491339A (en) Charged particle detection device and charged particle radiation apparatus
JPWO2019064496A1 (en) Scanning electron microscope
TW201611072A (en) High resolution high quantum efficiency electron bombarded CCD or CMOS imaging sensor
JP3154827B2 (en) Backscattered electron detectors such as scanning electron microscopes
US4868380A (en) Optical waveguide photocathode
JP3432091B2 (en) Scanning electron microscope
US6633034B1 (en) Method and apparatus for imaging a specimen using low profile electron detector for charged particle beam imaging apparatus including electrostatic mirrors
US4463253A (en) Time dispersion sensor tube
WO1999026273A1 (en) Secondary particle detector
JPH03295141A (en) Detector
KR100711198B1 (en) Scanning electron microscope
JP7474372B2 (en) Electronic Detection Device
SU1191979A1 (en) Sensor tube for measuring high-speed light processes

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010116

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100202

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110202

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110202

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120202

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees