JP3153651B2 - Electrophotographic photoreceptor - Google Patents

Electrophotographic photoreceptor

Info

Publication number
JP3153651B2
JP3153651B2 JP29618292A JP29618292A JP3153651B2 JP 3153651 B2 JP3153651 B2 JP 3153651B2 JP 29618292 A JP29618292 A JP 29618292A JP 29618292 A JP29618292 A JP 29618292A JP 3153651 B2 JP3153651 B2 JP 3153651B2
Authority
JP
Japan
Prior art keywords
undercoat layer
layer
resin
electric field
compounds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP29618292A
Other languages
Japanese (ja)
Other versions
JPH06148923A (en
Inventor
要 中谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Document Solutions Inc
Original Assignee
Kyocera Mita Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=17830231&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3153651(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Kyocera Mita Corp filed Critical Kyocera Mita Corp
Priority to JP29618292A priority Critical patent/JP3153651B2/en
Publication of JPH06148923A publication Critical patent/JPH06148923A/en
Application granted granted Critical
Publication of JP3153651B2 publication Critical patent/JP3153651B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、複写機、レーザプリン
タ等に使用される電子写真感光体に関するもので、より
詳細には、安定したコロナ帯電特性と良好な光減衰特性
とが両立した電子写真感光体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrophotographic photosensitive member used for a copying machine, a laser printer, and the like. More specifically, the present invention relates to an electronic device having both stable corona charging characteristics and good light attenuation characteristics. It relates to a photoreceptor.

【0002】[0002]

【従来の技術】電子写真感光体の一種として、導電性基
体と感光層との間に下引き層を設けたものが知られてい
る。例えば、特開昭58−86556号公報には、かか
る感光体の下引き層として、(メタ)アクリル酸エステ
ルの重合体または共重合体と導電性ポリマーとを含有す
るものを用いることが記載されている。また、特開昭6
3−85754号公報には、有機感光体の基板表面に、
塩化ビニリデン−アクリロニトリル共重合体等のガスバ
リヤー性樹脂を設けることが記載されている。
2. Description of the Related Art As one type of electrophotographic photoreceptor, an electrophotographic photoreceptor having an undercoat layer between a conductive substrate and a photosensitive layer is known. For example, Japanese Patent Application Laid-Open No. 58-86556 describes that a material containing a polymer or copolymer of a (meth) acrylate and a conductive polymer is used as the undercoat layer of the photoreceptor. ing. In addition, Japanese Unexamined Patent Publication
JP-A-3-85754 discloses that an organic photoreceptor substrate surface
It is described that a gas barrier resin such as a vinylidene chloride-acrylonitrile copolymer is provided.

【0003】下引き層に導電性を付与することも既に提
案されており、特開昭55−25030号公報には、下
引き層として導電性粒子層を設けること、特開昭56−
80048号公報には、下引き層として導電性材料粒子
を分散させたポリマーエマルジョンの乾燥皮膜を設ける
こと及び特開昭64−73352 号公報には、下引き層中に
酸化マグネシウム、酸化カルシウム、酸化ベリリウム及
び酸化ランタンから選ばれた少なくとも1種の金属酸化
物を含有させることが夫々記載されている。
It has already been proposed to impart conductivity to the undercoat layer. Japanese Patent Application Laid-Open No. 55-30030 discloses the provision of a conductive particle layer as an undercoat layer.
Japanese Patent No. 80048 discloses that an undercoat layer is provided with a dry film of a polymer emulsion in which conductive material particles are dispersed, and Japanese Patent Application Laid-Open No. 64-73352 discloses that an undercoat layer contains magnesium oxide, calcium oxide, It is described that at least one metal oxide selected from beryllium and lanthanum oxide is contained.

【0004】[0004]

【発明が解決しようとする問題点】一般的に、電子写真
感光体における下引き層は表面コロナ電荷の反対電荷が
導電性基体から注入されるのを阻止するというブロッキ
ング層として用いられる。この場合の下引き層の使用目
的は、安定したコロナ帯電特性を得ることにある。他の
目的として、導電性基体と感光層との接着性改良、感光
層の塗工性改良、導電性基体上の欠陥の被覆、導電性基
体の電気的腐食の防止など、最終的には画像上欠陥の発
生防止を目的として検討されている。
Generally, an undercoat layer in an electrophotographic photoreceptor is used as a blocking layer for preventing charges opposite to surface corona charges from being injected from a conductive substrate. The purpose of using the undercoat layer in this case is to obtain stable corona charging characteristics. Other purposes include improving the adhesion between the conductive substrate and the photosensitive layer, improving the coating properties of the photosensitive layer, covering defects on the conductive substrate, preventing electrical corrosion of the conductive substrate, and so on. It is being studied for the purpose of preventing the occurrence of upper defects.

【0005】しかしながら、従来の下引き層では、安定
したコロナ帯電特性と良好な光減衰特性とを両立させる
ことが困難であるという問題がある。つまり、コロナ帯
電性を確保するために、下引き層を厚くしたり或いはそ
の電気抵抗を高めると、光照射時に高い残留電位を生じ
て、カブリの原因となる。また、逆に光減衰特性を良好
なものとするため、下引き層を薄くしたり或いはその電
気抵抗を低くすると、コロナ帯電時に基体から反対電荷
が注入されて、帯電電位が低下したり或いは不安定にな
るという問題を生じる。また、下引き層を薄くすると、
導電性基体の表面欠陥が感光層に影響を与えて、この部
位に画像上の欠陥をひき起こすという問題もある。
However, the conventional undercoat layer has a problem that it is difficult to achieve both stable corona charging characteristics and good light attenuation characteristics. That is, if the undercoat layer is thickened or its electric resistance is increased in order to secure corona charging property, a high residual potential is generated upon light irradiation, which causes fogging. On the other hand, if the undercoat layer is made thinner or its electric resistance is lowered to improve the light attenuation characteristics, the opposite charge is injected from the substrate during corona charging, and the charging potential is reduced or becomes unusable. The problem of becoming stable arises. Also, when the undercoat layer is thinned,
There is also a problem that a surface defect of the conductive substrate affects the photosensitive layer and causes a defect on an image at this portion.

【0006】本発明者等は、導電性基体と感光層との間
に介在させる下引き層として、バリスタ型の非線形の導
電特性を有するものを用いることにより、上記問題点が
解決されることを見出した。
The present inventors have solved the above problem by using a varistor type non-linear conductive property as an undercoat layer interposed between a conductive substrate and a photosensitive layer. I found it.

【0007】即ち、本発明の目的は、安定したコロナ帯
電特性と良好な光減衰特性とが両立した電子写真感光体
を提供するにある。
That is, an object of the present invention is to provide an electrophotographic photosensitive member having both stable corona charging characteristics and good light attenuation characteristics.

【0008】本発明の他の目的は、従来の下引き層より
も厚く設けることができ、これにより導電性基体表面の
欠陥による画像上欠陥の発生をも有効に防止しうる電子
写真感光体を提供するにある。
Another object of the present invention is to provide an electrophotographic photoreceptor which can be provided thicker than a conventional undercoat layer, thereby effectively preventing image defects due to defects on the surface of the conductive substrate. To offer.

【0009】[0009]

【問題点を解決するための手段】本発明によれば、導電
性基体と感光層との間に下引き層を設けた電子写真感光
体において、前記下引き層がバリスタ型の非線形の導電
特性と0.5乃至10μmの膜厚(Lu)とを有し、前
記感光層が5乃至50μmの膜厚(Lp)を有し、且つ
前記感光層と下引き層との膜厚の比(Lp/Lu)が1
乃至500の範囲にあることを特徴とする電子写真感光
体が提供される。
According to the present invention, in an electrophotographic photosensitive member having an undercoat layer between a conductive substrate and a photosensitive layer, the undercoat layer is a varistor-type non-linear conductive layer.
Characteristics and a film thickness (Lu) of 0.5 to 10 μm,
The photosensitive layer has a thickness (Lp) of 5 to 50 μm, and
The thickness ratio (Lp / Lu) of the photosensitive layer and the undercoat layer is 1
And an electrophotographic photoreceptor having a range of from 500 to 500 .

【0010】本発明に用いる下引き層は、バリスタ型の
非線形の導電特性を有することが顕著な特徴であるが、
下記式:
The undercoat layer used in the present invention is notable for having a varistor-type non-linear conductive property.
The following formula:

【0011】[0011]

【数1】I=a*Vb 式中、Iは電流であり、Vは電圧であり、aは比例定数
であり、bは電圧非直線性係数である。で定義される電
圧非直線性係数(b)が3以上、特に5乃至50の範囲
にあるのがよい。更に、しきい値よりも低い電界におい
て1013Ω・cm以上の体積抵抗率を有していることが
望ましい。
## EQU1 I = a * V b formula, I is a current, V is voltage, a is a proportional constant, b is the voltage nonlinearity coefficient. It is preferable that the voltage nonlinearity coefficient (b) defined by the above is in the range of 3 or more, particularly 5 to 50. Further, it is desirable to have a volume resistivity of 10 13 Ω · cm or more in an electric field lower than the threshold value.

【0012】本発明に用いる下引き層は、上述したバリ
スタ型の非線形導電特性を示すものであれば特に制限な
く使用できるがアンチモン含有酸化スズまたは二硫化モ
リブデンと樹脂との分散組成物が下引き層としての導電
特性に特に優れていることがわかった。
The undercoat layer used in the present invention can be used without any particular limitation as long as it exhibits the above-mentioned varistor-type non-linear conductive characteristics. However, a dispersion composition of antimony-containing tin oxide or molybdenum disulfide and a resin is used. It was found that the conductive properties of the layer were particularly excellent.

【0013】[0013]

【作用】本発明では、バリスタ型の非線形導電特性を示
すものを下引き層として選択使用することにより、帯電
時には高抵抗であって、基体からの反対電荷の注入を抑
制して高帯電が可能となり、一方光照射時の高電界下で
は低抵抗となって、電荷の移動による電圧低下が可能と
なり、高いコロナ帯電特性と良好な光減衰(感度)特性
とを両立させることが可能となる。
According to the present invention, by selecting and using a varistor-type non-linear conductive material as the undercoat layer, it has a high resistance at the time of charging, and suppresses the injection of opposite charges from the substrate to achieve high charging. On the other hand, the resistance becomes low under a high electric field at the time of light irradiation, so that the voltage can be reduced due to the movement of electric charges, and both high corona charging characteristics and good light attenuation (sensitivity) characteristics can be achieved.

【0014】また、光減衰特性に悪影響を与えることな
しに下引き層を厚く設けることができるので、導電性基
体の表面欠陥を隠蔽して、これが感光層に与える影響を
なくし、導電性基体に起因する画像上欠陥の発生を有効
に防止することができる。本明細書において、バリスタ
(Varistor)とは、電圧の変化に敏感な非直線抵抗体と
して定義される。すなわち、ある臨界電圧以下では非常
に抵抗が高く、ほとんど電流は流れないが、この臨界電
圧を越えると、急激に抵抗が低くなり、電流を流すよう
な素子である。
Further, since the undercoat layer can be provided thick without adversely affecting the light attenuation characteristics, surface defects of the conductive substrate are concealed, and the influence of the surface defects on the photosensitive layer is eliminated. It is possible to effectively prevent the occurrence of a defect on the image caused by the image. As used herein, a varistor is defined as a non-linear resistor that is sensitive to voltage changes. That is, the resistance is extremely high below a certain critical voltage, and almost no current flows, but when the critical voltage is exceeded, the resistance rapidly decreases and a current flows.

【0015】添付図面図1は、本発明に用いる下引き層
の一例(詳細は後述する実施例1参照)について印加電
圧(V)と電流密度(A/cm2 )との関係をプロット
したものである。図1によると、印加電圧が臨界(しき
い値)電圧Vcr迄は殆んど電流が流れないが、この臨界
電圧を越えて印加電圧が増大するにつれて、電流は指数
函数的に増大することが明らかとなる。
FIG. 1 is a plot of the relationship between applied voltage (V) and current density (A / cm 2 ) for an example of an undercoat layer used in the present invention (for details, see Example 1 described later). It is. According to FIG. 1, almost no current flows until the applied voltage reaches a critical (threshold) voltage Vcr, but as the applied voltage increases beyond this critical voltage, the current may increase exponentially. It becomes clear.

【0016】本発明の感光体を用いる電子写真法では、
感光層と基体との間にバリスタ型下引き層を有する感光
体を使用し、この下引き層の電界がしきい値電界以下で
ある条件下に帯電を行ない、且つ下引き層の電界がその
しきい値電界を越える条件下に露光除電を行うことが顕
著な他の特徴である。
In the electrophotographic method using the photoreceptor of the present invention,
A photoreceptor having a varistor-type undercoating layer between the photosensitive layer and the substrate is used, and charging is performed under the condition that the electric field of the undercoating layer is equal to or less than a threshold electric field, and the electric field of the undercoating layer is set to It is another remarkable feature that the exposure charge elimination is performed under the condition exceeding the threshold electric field.

【0017】即ち、暗時に感光体に印加される電圧で
は、感光層は高抵抗であり、従って下引き層にかかる電
界はしきい値電界よりも低く、高抵抗に維持されるの
で、感光層表面は安定にしかも高電位に帯電するが、光
照射時(露光除電時)には、感光層内で光生成するキャ
リアにより感光層が通電性となり、従って下引き層にか
かる電界はしきい値電界よりも高く、下引き層の電気抵
抗が低下して、感光層と導電性基体との間で下引き層を
通して電荷の移動が行われ、高感度の増大とコントラス
トの増大とがもたらされるのである。
That is, at a voltage applied to the photoreceptor in the dark, the photosensitive layer has a high resistance, and the electric field applied to the undercoat layer is lower than the threshold electric field and is maintained at a high resistance. The surface is stably charged to a high potential, but during light irradiation (during exposure to static elimination), the photoconductive layer becomes conductive due to photo-generated carriers in the photoconductive layer. Since the electric resistance of the undercoat layer is higher than the electric field and the electric resistance of the undercoat layer is lowered, the charge is transferred between the photosensitive layer and the conductive substrate through the undercoat layer, thereby increasing the sensitivity and the contrast. is there.

【0018】本発明の感光体及びこれを用いる電子写真
法の原理を説明する図2において、Aは帯電工程、Bは
光照射工程を示す。この感光体1は、導電性基板2、こ
の基板上に設けられた下引き層3、及びこの下引き層上
に設けられた感光層4から成っており、下引き層3はバ
リスタ型の非線形導電特性を示すものから成る。
In FIG. 2, which illustrates the photoreceptor of the present invention and the principle of electrophotography using the same, A shows a charging step, and B shows a light irradiation step. The photoreceptor 1 comprises a conductive substrate 2, an undercoat layer 3 provided on the substrate, and a photosensitive layer 4 provided on the undercoat layer. Consisting of conductive properties.

【0019】帯電工程Aにおいて、この感光体表面を正
コロナ帯電機構5により正帯電する。これにより、感光
層4の表面には、飽和帯電電位と暗減衰率とに応じて一
定電圧Vs の正帯電が行われる。本発明では、この帯電
をバリスタ型下引き層5の電界Eがそのしきい値電界E
cr以下であるように行う。この関係は、感光層の厚みを
Lp バリスタ型下引き層の厚みをLuとしたとき、下引
き層に加わる電界強度Eoは近似的に式
In the charging step A, the photoreceptor surface is positively charged by the positive corona charging mechanism 5. Thus, the surface of the photosensitive layer 4 is positively charged at a constant voltage Vs according to the saturation charging potential and the dark decay rate. In the present invention, the electric field E of the varistor-type undercoat layer 5 is determined by the threshold electric field E
Perform as if it were cr or less. This relationship is expressed as follows: When the thickness of the photosensitive layer is Lp and the thickness of the varistor type undercoat layer is Lu, the electric field intensity Eo applied to the undercoat layer is approximately expressed by the following equation

【0020】[0020]

【数2】 の関係で表わされる。(Equation 2) It is expressed by the following relationship.

【0021】次いで、光照射工程において、帯電後の感
光体を画像露光機構6を介して画像露光する。この画像
露光により感光層4の明部Lでは光生成した電荷のうち
電子は速やかに表面電荷(正)と中和するが、正孔は下
引き層3との境界に過渡的に滞留して、下引き層3に加
わる電界強度E1 は近似的に式
Next, in the light irradiation step, the charged photoreceptor is exposed to an image through the image exposure mechanism 6. In the light portion L of the photosensitive layer 4 due to this image exposure, electrons out of the photo-generated charges quickly neutralize to surface charges (positive), but holes transiently stay at the boundary with the undercoat layer 3. , The electric field intensity E 1 applied to the undercoat layer 3 is approximately calculated by the equation

【0022】[0022]

【数3】 の関係で表わされる。(Equation 3) It is expressed by the following relationship.

【0023】下引き層の厚みLu は、感光層と下引き層
との合計厚みLp+Luに比べればかなり小さいので、式
The thickness Lu of the undercoat layer is considerably smaller than the total thickness Lp + Lu of the photosensitive layer and the undercoat layer.

【0024】[0024]

【数4】E1 > Ecr ≧ E0 を満足する帯電除電を十分に満足させることができ、下
引き層3中での電子輸送と下引き層3から感光層4への
電子注入とを十分に行わせて、表面正電荷の中和を十分
に行わせることができる。
The charge elimination satisfying E 1 > Ecr ≧ E 0 can be sufficiently satisfied, and the electron transport in the undercoat layer 3 and the electron injection from the undercoat layer 3 to the photosensitive layer 4 can be sufficiently performed. To sufficiently neutralize the surface positive charge.

【0025】しかも感光体の暗部Dでは、表面に十分な
電位が保持されると共に、その電気抵抗が十分に高いた
め、現像に際しても、解像力とコントラストとに優れた
高濃度画像の形成が可能となるのである。
Further, in the dark portion D of the photoreceptor, a sufficient potential is maintained on the surface and the electric resistance is sufficiently high, so that a high density image excellent in resolution and contrast can be formed even during development. It becomes.

【0026】図3は、帯電−露光時の表面電位を示して
いる。
FIG. 3 shows the surface potential during charging and exposure.

【0027】本発明では、バリスタ型下引き層を用いる
ことにより、帯電・露光除電を反復したときの露光部
(L)における残留電位の蓄積を防止し、しかも初期飽
和電位の低下を抑制し得るという予想外の作用がある。
図4は、帯電・露光除電の反復回数を横軸に、有効初期
電位及び露光部残留電位を縦軸に、両者の関係をプロッ
トしたものであり、破線は通常の樹脂を下引き層とした
もの、実線は本発明によりバリスタ型下引き層を用いた
ものについての値である。この図4から、従来の下引き
層を用いた感光体では繰返し使用により、電荷のトラッ
プによる残留電位の増大及び有効表面電位の減少がある
のに対して、本発明によればこれらの傾向が殆んど完全
に解消されていることが明らかとなる。
In the present invention, by using a varistor-type undercoat layer, accumulation of a residual potential in the exposed portion (L) when charging and exposure and charge elimination are repeated can be prevented, and a decrease in the initial saturation potential can be suppressed. There is an unexpected effect.
FIG. 4 is a graph in which the number of repetitions of charge / exposure static elimination is plotted on the horizontal axis, the effective initial potential and the residual potential of the exposed portion are plotted on the vertical axis, and the relationship between the two is plotted. The solid line and the solid line are the values for those using the varistor-type undercoat layer according to the present invention. From FIG. 4, it can be seen from FIG. 4 that in the conventional photoreceptor using the undercoat layer, the repetitive use causes an increase in the residual potential and a decrease in the effective surface potential due to charge trapping. It is clear that it has been almost completely eliminated.

【0028】本発明において、電圧非直線性係数が前記
範囲内にあることが、光感度を増大させ、残留電位を減
少させるために重要であり、このようなバリスタ型下引
き層を感光層、特に正帯電型感光層と導電性基体との間
に設けることにより、十分な耐摩耗性、耐刷性等の効果
を発現させながら、優れた帯電特性、画像形成能等が得
られるものである。
In the present invention, it is important that the voltage nonlinearity coefficient is within the above range in order to increase the photosensitivity and reduce the residual potential. In particular, by providing between the positively charged photosensitive layer and the conductive substrate, excellent charging characteristics, image forming ability, etc. can be obtained while exhibiting sufficient effects such as abrasion resistance and printing durability. .

【0029】[0029]

【発明の好適態様】(バリスタ型下引き層)本発明にお
いて、バリスタ型下引き層は、前述した特性を有するも
のであればよく、その組成や分散形態は特に制限されな
い。
BEST MODE FOR CARRYING OUT THE INVENTION (Varistor-type undercoat layer) In the present invention, the varistor-type undercoat layer may have any of the above-mentioned characteristics, and its composition and dispersion form are not particularly limited.

【0030】この下引き層は、樹脂、特に電気絶縁性樹
脂の連続相とこれに分散した導電性微粉末とから成って
いる。
This undercoat layer is composed of a continuous phase of a resin, particularly an electrically insulating resin, and conductive fine powder dispersed therein.

【0031】導電性微粉末としては、前記特性を与える
ものであれば全て使用し得るが、好適なものとしてアン
チモン含有酸化スズ(Sb/SnO2 )や二硫化モリブデ
ン(MoS2 )を挙げることができる。二硫化モリブデ
ンは、バリスタ層をグレイに着色する傾向があるが、本
発明の場合、バリスタを下引き層として使用するので、
着色の影響がないことも利点の一つである。特に好適な
導電性微粉末は、酸化スズ当り酸化アンチモンを2乃至
20重量%の量で含むものである。勿論、体積抵抗率が
106 Ω・cm以下で、粒径が微細なもの、特に平均粒
径0.3μm以下のものであれば、他の導電剤を用いる
ことができる。
As the conductive fine powder, any one can be used as long as it provides the above-mentioned properties. Preferred examples thereof include tin oxide containing antimony (Sb / SnO 2 ) and molybdenum disulfide (MoS 2 ). it can. Molybdenum disulfide tends to color the varistor layer gray, but in the case of the present invention, since the varistor is used as an undercoat layer,
One of the advantages is that there is no influence of coloring. Particularly preferred conductive fine powders are those containing 2 to 20% by weight of antimony oxide per tin oxide. Of course, other conductive agents can be used as long as they have a volume resistivity of 10 6 Ω · cm or less and a fine particle size, particularly, an average particle size of 0.3 μm or less.

【0032】樹脂としては、この種の下引き層の形成に
使用されているものは全て使用され、例えばメラミン系
樹脂、尿素系樹脂、シリコーン系樹脂、エポキシ樹脂、
フェノール樹脂等の熱硬化性樹脂やポリエステル樹脂、
ポリカーボネート樹脂、ポリアミド樹脂、フッ素系樹
脂、ポリアリレート樹脂、アクリル樹脂等の熱可塑性樹
脂が単独または2種以上の組合せで使用されるが、導電
性微粉末の濡れ性、分散性に優れたものが望ましい。
As the resin, those used for forming this kind of undercoat layer are all used. For example, melamine resin, urea resin, silicone resin, epoxy resin,
Thermosetting resin such as phenolic resin and polyester resin,
Thermoplastic resins such as polycarbonate resin, polyamide resin, fluorine-based resin, polyarylate resin, and acrylic resin are used alone or in combination of two or more, but those having excellent wettability and dispersibility of conductive fine powder are used. desirable.

【0033】バリスタ型下引き層の前記特性を得る上
で、分散系において、配合比と同時に両者の分散の程度
を調節するのがよい。
In order to obtain the above characteristics of the varistor-type undercoat layer, it is preferable to adjust the mixing ratio and the degree of dispersion of the two in the dispersion system.

【0034】導電性微粉末の配合比が或る範囲より多く
なると、導電性微粒子が連鎖或いは房状となった分散構
造をとるため、導電剤の影響が電気特性上支配的となり
電圧−電流特性が直線に近いものとなったり、しきい値
電界が小さくなって、本発明の特性は得られなくなる傾
向がある。また導電性微粉末の配合比が或る範囲よりも
少なくなると、導電性微粒子間に介在する電気絶縁性樹
脂の影響が電気特性の上で支配的となるため、むしろ電
気絶縁性に近い保護層となる。
When the compounding ratio of the conductive fine powder exceeds a certain range, the conductive fine particles take a dispersed structure in which the conductive fine particles are chained or tufted. Tend to be close to a straight line or the threshold electric field becomes small, so that the characteristics of the present invention tend not to be obtained. If the compounding ratio of the conductive fine powder is less than a certain range, the effect of the electrically insulating resin interposed between the conductive fine particles becomes dominant on the electrical characteristics, and thus the protective layer is rather close to the electrical insulation. Becomes

【0035】本発明の下引き層における非線形の電圧−
電流特性は、上記2つの場合とは対比的に、導電性微粒
子と電気絶縁性樹脂との界面の影響が電気特性の点で支
配的となっている分散系で達成されるものであり、両者
の配合比及び分散状態には一定の制限がある。
The nonlinear voltage in the underlayer according to the present invention.
In contrast to the above two cases, the current characteristics are achieved by a dispersion system in which the influence of the interface between the conductive fine particles and the electrically insulating resin is dominant in terms of electric characteristics. There are certain restrictions on the compounding ratio and the dispersion state of.

【0036】先ず、導電性微粉末は、その種類によって
も相違するが、被覆全体当り10乃至40重量%、特に
20乃至30重量%の量で存在することが、上記見地か
ら望ましい。
First, from the above viewpoint, it is desirable that the conductive fine powder is present in an amount of 10 to 40% by weight, particularly 20 to 30% by weight, based on the whole coating, although it varies depending on the kind thereof.

【0037】また、本発明者等の電子顕微鏡による研究
によると、非線形の電圧−電流特性を示す下引き層の分
散系では、導電性微粒子は、実質上、前述した鎖或いは
房状構造をとることなく独立した分散構造として存在す
ると共に、それらの平均粒子間距離は100乃至500
オングストロームの範囲にあるのがよい。
According to a study by an electron microscope of the present inventors, in a dispersion of an undercoat layer exhibiting non-linear voltage-current characteristics, the conductive fine particles substantially take the above-mentioned chain or tufted structure. Without a dispersion structure, and their average interparticle distance is 100 to 500.
It should be in the Angstrom range.

【0038】導電剤微粉末と樹脂とは、相互に分散性に
優れた組合せであると共に、両者の濡れ性、即ち界面で
の密着性に優れていることも電気特性に重大な影響を与
える。この意味で、導電性微粉末を、それ自体公知のシ
ラン系カップリング剤、ジルコニウム系カップリング
剤、チタネート系カップリング剤、アルミニウム系カッ
プリング剤、スズ系カップリング剤等で処理しておくこ
とが特に望ましい。カップリング剤は、導電性微粉末1
00重量部当り0.1乃至5重量部の量で用いるのがよ
い。
The conductive agent fine powder and the resin are a combination excellent in mutual dispersibility, and the wettability of the two, that is, the excellent adhesion at the interface, also has a significant effect on the electrical characteristics. In this sense, the conductive fine powder should be treated with a known silane coupling agent, zirconium coupling agent, titanate coupling agent, aluminum coupling agent, tin coupling agent, or the like. Is particularly desirable. The coupling agent is conductive fine powder 1
It is preferably used in an amount of 0.1 to 5 parts by weight per 100 parts by weight.

【0039】下引き層の厚み(Lu)は、0.5乃至1
0μm、特に1乃至5μmの範囲とする
The thickness (Lu) of the undercoat layer is 0.5 to 1
0 μm, especially in the range of 1 to 5 μm.

【0040】下引き層の被覆形成も、上記樹脂の溶液乃
至分散液を調製し、これを塗布し、乾燥し、必要により
これを焼付処理することにより行うことができる。
The coating of the undercoat layer can also be formed by preparing a solution or dispersion of the above resin, applying it, drying it and, if necessary, baking it.

【0041】(感光体)上記バリスタ型下引き層を形成
させるのに用いる導電性基材としては、アルミニウム、
アルミニウム合金、鋼、すず、白金、金、銀、パナジウ
ム、モリブデン、クロム、カドミウム、チタン、ニッケ
ル、パラジウム、インジウム、ステンレス鋼、真鍮など
の金属単体、及びこれら列挙した金属又はその金属酸化
物の膜が蒸着等の手段により形成されたガラス基板、プ
ラスチック基板が例示される。導電性基材の形状は、シ
ート状またはドラム状のいずれであってもよい。
(Photoreceptor) The conductive base material used for forming the varistor-type undercoat layer is aluminum,
Metals such as aluminum alloy, steel, tin, platinum, gold, silver, panadium, molybdenum, chromium, cadmium, titanium, nickel, palladium, indium, stainless steel, brass, etc., and films of these listed metals or their metal oxides A glass substrate and a plastic substrate formed by means such as vapor deposition. The shape of the conductive substrate may be a sheet shape or a drum shape.

【0042】下引き層上に設ける感光層としては、任意
の感光層を用いることができ、例えば電荷輸送物質を含
む媒体中に電荷発生物質を分散させた単一分散層型の感
光層や電荷輸送層(CTL)と電荷発生層(CGL)と
の組合せから成る機能分離型の積層感光層が使用され
る。これらの電荷輸送物質や電荷発生物質は、それ自体
公知の樹脂溶液中に溶解乃至分散させて、感光層の形成
に用いる。
As the photosensitive layer provided on the undercoat layer, any photosensitive layer can be used. For example, a monodispersed layer type photosensitive layer in which a charge generating substance is dispersed in a medium containing a charge transporting substance, or a charge-transporting layer can be used. A function-separated laminated photosensitive layer composed of a combination of a transport layer (CTL) and a charge generation layer (CGL) is used. These charge transporting substances and charge generating substances are dissolved or dispersed in a resin solution known per se and used for forming a photosensitive layer.

【0043】電荷輸送材料としては、クロラニル、テト
ラシアノエチレン、2,4,7−トリニトロ−9−フル
オレノン等のフルオレノン系化合物、2,4,8−トリ
ニトロチオキサントン、ジニトロアントラセン等のニト
ロ化化合物、N,N−ジエチルアミノベンズアルデヒ
ド、N,N−ジフェニルヒドラゾン、N−メチル−3−
カルバゾリルアルデヒド、N,N−ジフェニルヒドラゾ
ン等のヒドラゾン系化合物、2,5−ジ(4−ジメチル
アミノフェニル)−1,3,4−オキサジアゾ−ル等の
オキサジアゾール系化合物、9−(4−ジエチルアミノ
スチリル)アントラセン等のスチリル系化合物、N−エ
チルカルバゾール等のカルバゾール系化合物、1−フェ
ニル−3−(p−ジメチルアミノフェニル)ピラゾリン
等のピラゾリン系化合物、2−(p−ジエチルアミノフ
ェニル)−4−(p−ジメチルアミノフェニル)−5−
(2−クロロフェニル)オキサゾール等のオキサゾール
系化合物、イソオキサゾール系化合物、2−(p−ジエ
チルアミノスチリル)−6−ジエチルアミノベンゾチア
ゾール等のチアゾール系化合物、トリフェニルアミン、
4,4´−ビス〔N−(3−メチルフェニル)−N−フ
ェニルアミノ〕ジフェニルなどのアミン誘導体、スチル
ベン系化合物、チアジアゾール系化合物、イミダゾール
系化合物、ピラゾール系化合物、インドール系化合物、
トリアゾール系化合物等の含窒素環式化合物、縮合多環
族化合物、無水コハク酸、無水マレイン酸、ジブロモ無
水マレイン酸、ポリ−N−ビニルカルバゾール、ポリビ
ニルピレン、ポリビニルアントラセン、エチルカルバゾ
ール−ホルムアルデヒド樹脂が例示される。なお、ポリ
−N−ビニルカルバゾールなどの光導電性ポリマーは、
後述する結着樹脂としても用い得るものである。これら
の電荷輸送材料は一種単独で用いてもよく、二種以上併
用してもよい。
Examples of the charge transport material include fluorenone compounds such as chloranil, tetracyanoethylene, 2,4,7-trinitro-9-fluorenone, nitrated compounds such as 2,4,8-trinitrothioxanthone and dinitroanthracene; N, N-diethylaminobenzaldehyde, N, N-diphenylhydrazone, N-methyl-3-
Hydrazone compounds such as carbazolylaldehyde and N, N-diphenylhydrazone; oxadiazole compounds such as 2,5-di (4-dimethylaminophenyl) -1,3,4-oxadiazol; 9- ( Styryl compounds such as 4-diethylaminostyryl) anthracene, carbazole compounds such as N-ethylcarbazole, pyrazoline compounds such as 1-phenyl-3- (p-dimethylaminophenyl) pyrazoline, 2- (p-diethylaminophenyl) -4- (p-dimethylaminophenyl) -5
Oxazole compounds such as (2-chlorophenyl) oxazole, isoxazole compounds, thiazole compounds such as 2- (p-diethylaminostyryl) -6-diethylaminobenzothiazole, triphenylamine,
Amine derivatives such as 4,4′-bis [N- (3-methylphenyl) -N-phenylamino] diphenyl, stilbene compounds, thiadiazole compounds, imidazole compounds, pyrazole compounds, indole compounds,
Examples include nitrogen-containing cyclic compounds such as triazole compounds, condensed polycyclic compounds, succinic anhydride, maleic anhydride, dibromomaleic anhydride, poly-N-vinylcarbazole, polyvinylpyrene, polyvinylanthracene, and ethylcarbazole-formaldehyde resin. Is done. Incidentally, a photoconductive polymer such as poly-N-vinyl carbazole,
It can be used also as a binder resin described later. These charge transport materials may be used alone or in combination of two or more.

【0044】また、電荷発生材料としては、従来公知の
種々の材料、例えば、セレン、セレン−チルル、アモル
ファスシリコン、ビリリウム塩、アゾ系化合物、ジスア
ゾ系化合物、トリスアゾ系化合物、アンサンスロン系化
合物、フタロシアニン系化合物、インジゴ系化合物、ト
リフェニルメタン系化合物、スレン系化合物、トルイジ
ン系化合物、ピラゾリン系化合物、ペリレン系化合物、
キナクリドン系化合物が例示され、これらは一種単独で
用いてもよく、二種以上併用してもよい。
Examples of the charge generating material include various conventionally known materials, for example, selenium, selenium-till, amorphous silicon, billiium salts, azo compounds, disazo compounds, trisazo compounds, anthanthrone compounds, and phthalocyanine. Compounds, indigo compounds, triphenylmethane compounds, sulene compounds, toluidine compounds, pyrazoline compounds, perylene compounds,
Examples thereof include quinacridone compounds, which may be used alone or in combination of two or more.

【0045】樹脂(バインダー)としては、スチレン系
重合体、スチレン−ブタジエン共重合体、スチレン−ア
クリロニトリル共重合体、スチレン−マレイン酸共重合
体、アクリル系重合体、スチレン−アクリル系共重合
体、エチレン−酢酸ビニル共重合体、ポリエステル、ア
ルキッド樹脂、ポリアミド、ポリウレタン、エポキシ樹
脂、ポリカーボネート、ポリアリレート、ポリスルホ
ン、ジアリルフタレート樹脂、シリコーン樹脂、ケトン
樹脂、ポリビニルブチラール樹脂、ポリエーテル樹脂、
フェノール樹脂等の他、エポキシアクリレート、ウレタ
ンアクリレート等の光硬化型樹脂等、各種の重合体が例
示され、これらは一種単独で用いてもよく、二種以上併
用してもよい。
Examples of the resin (binder) include a styrene-based polymer, a styrene-butadiene copolymer, a styrene-acrylonitrile copolymer, a styrene-maleic acid copolymer, an acrylic polymer, a styrene-acrylic copolymer, Ethylene-vinyl acetate copolymer, polyester, alkyd resin, polyamide, polyurethane, epoxy resin, polycarbonate, polyarylate, polysulfone, diallyl phthalate resin, silicone resin, ketone resin, polyvinyl butyral resin, polyether resin,
In addition to phenol resins and the like, various polymers such as photo-curable resins such as epoxy acrylate and urethane acrylate are exemplified, and these may be used alone or in combination of two or more.

【0046】単一分散型の感光層の場合、層全体当り、
電荷輸送物質は15乃至70重量%、特に30乃至60
重量%の量で、電荷発生物質は1乃至30重量%、特に
5乃至15重量%の量で、また樹脂は17乃至70重量
%、特に30乃至60重量%の量で存在するのがよい。
また、感光層の厚み(Lp)は、5乃至50μm、特に
10乃至30μmとする。
In the case of a monodispersed photosensitive layer,
15 to 70% by weight, especially 30 to 60% by weight of the charge transport material
In amounts by weight, the charge generating substance is present in an amount of from 1 to 30% by weight, especially from 5 to 15% by weight, and the resin is present in an amount of from 17 to 70% by weight, especially from 30 to 60% by weight.
The thickness (Lp) of the photosensitive layer is 5 to 50 μm, particularly
The thickness is set to 10 to 30 μm.

【0047】機能分離型の感光層の場合電荷発生層を形
成する際、通常、電荷発生材料100重量部に対して結着
樹脂1〜300 重量部使用される。電荷発生層は、適宜の
厚みに形成すればよい。通常、膜厚0.01〜5μm程度
に形成される。
In the case of the photosensitive layer of the function-separated type, when forming the charge generating layer, usually 1 to 300 parts by weight of the binder resin is used per 100 parts by weight of the charge generating material. The charge generation layer may be formed to an appropriate thickness. Usually, it is formed to a thickness of about 0.01 to 5 μm.

【0048】また、電荷輸送層の形成に際し電荷輸送材
料と結着樹脂との割合は適宜選定すればよい。通常、電
荷輸送材料100重量部に対して、結着樹脂30乃至5
00重量部使用される。電荷輸送層は、感光層の厚み
(Lp)が5乃至50μmとなるように形成される。
In forming the charge transport layer, the ratio between the charge transport material and the binder resin may be appropriately selected. Usually, the binder resin 30 to 5 is added to 100 parts by weight of the charge transporting material.
00 parts by weight are used. The charge transport layer has a thickness of the photosensitive layer.
(Lp) is formed to be 5 to 50 μm.

【0049】上記電荷発生層用塗布液および電荷輸送層
用塗布液の調製においては、各層中に含有させる樹脂の
種類に応じて塗布性の向上を図るべく、必要に応じて適
宜の有機溶媒を用いることができ、この際下地の層を再
溶解しないような溶剤を使用すべきである。
In preparing the above-mentioned coating solution for the charge generation layer and the coating solution for the charge transport layer, an appropriate organic solvent may be used, if necessary, in order to improve coatability according to the type of resin contained in each layer. A solvent that can be used, but does not re-dissolve the underlying layer, should be used.

【0050】なお、感光層に、ターフェニル、ハロナフ
トキノン類、アセナフチレン類、従来公知の増感剤、可
塑剤、紫外線吸収剤、酸化防止剤などの劣化防止剤等、
種々の添加剤を含有させてもよい。また、電荷発生層と
電荷輸送層との両層間の電荷の移層を円滑にするための
中間層が両層間に形成されていてもよい。
In the photosensitive layer, terphenyl, halonaphthoquinones, acenaphthylenes, conventionally known sensitizers, plasticizers, ultraviolet absorbers, deterioration inhibitors such as antioxidants, etc.
Various additives may be contained. Further, an intermediate layer may be formed between the charge generation layer and the charge transport layer to facilitate the transfer of charges between the two layers.

【0051】(電子写真法)本発明によれば、上記感光
体を使用し、下引き層の電界がそのしきい値電界以下と
なる条件下に帯電を行ない、且つ下引き層の電界がその
しきい値電界を越える条件下に露光除電を行なう。
(Electrophotography) According to the present invention, the above-mentioned photoreceptor is used, charging is performed under the condition that the electric field of the undercoat layer is equal to or less than the threshold electric field, and the electric field of the undercoat layer is controlled by the electric field. Exposure static elimination is performed under conditions exceeding the threshold electric field.

【0052】先ず、感光体の下引き層の電界制御は、図
2に示した機構により行われるが、Lp/Luの比は、
1乃至500、特に3乃至100の範囲に設定する。
First, the electric field control of the undercoat layer of the photoreceptor is performed by the mechanism shown in FIG. 2, but the ratio of Lp / Lu is
It is set in the range of 1 to 500, especially 3 to 100.

【0053】感光体に対する表面電位は、400乃至15
00V、特に600乃至1000Vの範囲から上記条件を満足
するように設定するのがよく、帯電は正帯電コロナを用
いて行う。
The surface potential of the photosensitive member is 400 to 15
The voltage is preferably set to satisfy the above condition from the range of 00 V, particularly 600 to 1000 V, and the charging is performed using a positively charged corona.

【0054】次いで、画像露光により除電を行う。下引
き層として非線形の電圧−電流特性のバリスタを使用
し、帯電電位及び感光層と下引き層の厚み比〔Lp/L
u〕を前述した範囲に設定しておくと、この露光時にお
ける下引き層に加わる電界がしきい値電界Ecrを越え、
有効に除電が行われる。
Next, static elimination is performed by image exposure. A varistor having a non-linear voltage-current characteristic is used as the undercoat layer, and the charging potential and the thickness ratio of the photosensitive layer and the undercoat layer [Lp / L
u] is set in the above-described range, the electric field applied to the undercoat layer during this exposure exceeds the threshold electric field Ecr,
Effective neutralization is performed.

【0055】露光は、原稿からのスリット露光でもレー
ザーを用いた走査露光でもよくその露光量は一般に2 l
ux・sec(0.6μJ/cm2 )乃至10 lux・sec(3μ
J/cm2 )程度が適当である。
The exposure may be slit exposure from a document or scanning exposure using a laser.
ux · sec (0.6 μJ / cm 2 ) to 10 lux · sec (3 μ
J / cm 2 ) is appropriate.

【0056】本発明の電子写真法によれば、これに制限
されないが半減露光量で表わして1乃至3 Lux・sec程度
の感度が容易に得られる。
According to the electrophotographic method of the present invention, it is possible to easily obtain a sensitivity of about 1 to 3 Lux · sec in terms of half-exposure, although not limited thereto.

【0057】本発明の電子写真法における画像形成は、
上記の点を除けば、それ自体公知の任意の方式で行うこ
とができる。例えば現像には、二成分系磁性現像剤や一
成分系磁性現像剤を使用する磁気ブラシ現像方式、非接
触式振動電界現像方式、或いは一成分系非磁性現像剤に
よる現像方式等を用いることができ、感光体上に形成さ
れるトナー像は複写紙等に公知の方式で転写し、定着さ
せることができる。
The image formation in the electrophotographic method of the present invention is as follows.
Except for the above points, it can be carried out in any known manner per se. For example, for development, a magnetic brush developing method using a two-component magnetic developer or a one-component magnetic developer, a non-contact oscillating electric field developing method, or a developing method using a one-component non-magnetic developer can be used. The toner image formed on the photoreceptor can be transferred onto a copy paper or the like by a known method and fixed.

【0058】[0058]

【実施例】本発明を次の例で説明する。 実施例1 アンチモン含有酸化スズ(三菱金属社製、T−1)30
重量部と酢酸ビニル−塩化ビニル共重合体樹脂(清水化
学社製、エスレックC)70重量部を、テトラヒドロフ
ラン900重量部に分散・溶解させ、この溶液を100
μm厚のアルミニウム・シート上に塗布し、110℃で
乾燥させてバリスタ型下引き層とした。この時、乾燥後
の膜厚が約1μmになるように塗工条件を設定した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described with reference to the following examples. Example 1 Antimony-containing tin oxide (manufactured by Mitsubishi Metals, T-1) 30
Parts by weight and 70 parts by weight of a vinyl acetate-vinyl chloride copolymer resin (Slec C, manufactured by Shimizu Chemical Co., Ltd.) are dispersed and dissolved in 900 parts by weight of tetrahydrofuran.
It was applied on an aluminum sheet having a thickness of μm and dried at 110 ° C. to obtain a varistor-type undercoat layer. At this time, the coating conditions were set so that the film thickness after drying was about 1 μm.

【0059】次に、N,N’−3,5−キシリル−3,
4,9,10−ペリレンテトラカルボン酸ジイミド10
重量部、p−ジエチルアミノベンズアルデヒドジフェニ
ルヒドラゾン90重量部、ポリカーボネト樹脂(三菱瓦
斯化学社製、Z−200)100重量部をトルエン90
0重量部に分散・溶解させ、この塗工液を前記下引き層
の上に塗布し、120℃で乾燥させて単層型の感光層と
し、感光体試料とした。この時、乾燥後の膜厚が約20
μmになるように塗工条件を設定した。
Next, N, N'-3,5-xylyl-3,
4,9,10-perylenetetracarboxylic diimide 10
Parts by weight, 90 parts by weight of p-diethylaminobenzaldehyde diphenylhydrazone, and 100 parts by weight of a polycarbonate resin (Z-200, manufactured by Mitsubishi Gas Chemical Company) in toluene 90
The coating solution was dispersed and dissolved in 0 parts by weight, and this coating solution was applied on the undercoat layer, and dried at 120 ° C. to form a single-layer type photosensitive layer to obtain a photoreceptor sample. At this time, the film thickness after drying is about 20
The coating conditions were set to be μm.

【0060】実施例2 実施例1において、アンチモン含有酸化スズを二硫化モ
リブデンに代替えしたこと以外は実施例1と同様の感光
体試料を作製した。
Example 2 A photoconductor sample was prepared in the same manner as in Example 1 except that antimony-containing tin oxide was replaced by molybdenum disulfide.

【0061】実施例3 アンチモン含有酸化スズ(三菱金属社製、T−1)30
重量部をシリコン系硬化樹脂(日本精化社製、NSC−
1272)[固形分/70重量部]に分散させたものを
塗工液とし、100μm厚のアルミニウム・シート上に
塗布し、120℃で乾燥させてバリスタ型下引き層とし
た。この時、乾燥後の膜厚が約1μmになるように塗工
条件を設定した。
Example 3 Tin oxide containing antimony (T-1 manufactured by Mitsubishi Metal Corporation) 30
Parts by weight are silicone-based cured resin (NSC-NSC-
1272) A dispersion dispersed in [solid content / 70 parts by weight] was used as a coating liquid, applied on an aluminum sheet having a thickness of 100 μm, and dried at 120 ° C. to obtain a varistor-type undercoat layer. At this time, the coating conditions were set so that the film thickness after drying was about 1 μm.

【0062】次に、ジブロモアンサンスロン100重量
部をポリビニルブチラール(電気化学工業社製、300
0K)50重量部とともに、n−ブチルアルコール35
00重量部に攪拌・混合した分散液を前記下引き層の上
に塗布し120℃で乾燥させてキャリア発生層とした。
この際、乾燥後の膜厚が0.3μmになるように塗工条
件を設定した。
Next, 100 parts by weight of dibromoanthanthrone was charged with polyvinyl butyral (300 g, manufactured by Denki Kagaku Kogyo KK).
0K) with 50 parts by weight of n-butyl alcohol 35
A dispersion obtained by stirring and mixing 00 parts by weight was applied onto the undercoat layer and dried at 120 ° C. to obtain a carrier generation layer.
At this time, the coating conditions were set so that the film thickness after drying was 0.3 μm.

【0063】続いて、1,1−ビス(p−ジエチルアミ
ノフェニル)−4,4−ジフェニル−1,3−ブタジエ
ン(アナン、T−405)100重量部とポリカーボネ
ート樹脂(三菱瓦斯化学社製、Z−200)100重量
部をトルエン900重量部に溶解させ、この塗工液をキ
ャリア発生層の上に塗布し、120℃で乾燥させてキャ
リア輸送層とした。この時、乾燥後の膜厚が約20μm
になるように塗工条件を設定した。この実施例は、積層
型の感光層を有する感光体試料である。
Subsequently, 100 parts by weight of 1,1-bis (p-diethylaminophenyl) -4,4-diphenyl-1,3-butadiene (anan, T-405) and a polycarbonate resin (Z-Mitsubishi Chemical Co., Ltd.) -200) 100 parts by weight were dissolved in 900 parts by weight of toluene, and this coating solution was applied on the carrier generation layer and dried at 120 ° C. to obtain a carrier transport layer. At this time, the film thickness after drying is about 20 μm.
The coating conditions were set so that This example is a photoreceptor sample having a laminated type photosensitive layer.

【0064】実施例4 実施例3において、アンチモン含有酸化スズを二硫化モ
リブデンに代替えしたこと以外は実施例3と同様の感光
体試料を作製した。
Example 4 A photoconductor sample was prepared in the same manner as in Example 3 except that antimony-containing tin oxide was replaced by molybdenum disulfide.

【0065】比較例1 実施例1において、バリスタ型下引き層を取り除いたこ
と以外は実施例1と同様の感光体試料を作製した。
Comparative Example 1 A photoconductor sample was prepared in the same manner as in Example 1 except that the varistor-type undercoat layer was removed.

【0066】比較例2 実施例2において、バリスタ型下引き層を取り除いたこ
と以外は実施例2と同様の感光体試料を作製した。
Comparative Example 2 A photoreceptor sample was prepared in the same manner as in Example 2 except that the varistor-type undercoat layer was removed.

【0067】比較例3 実施例3において、バリスタ型下引き層を取り除いたこ
と以外は実施例3と同様の感光体試料を作製した。
Comparative Example 3 A photoconductor sample was prepared in the same manner as in Example 3 except that the varistor-type undercoat layer was removed.

【0068】比較例4 実施例4において、バリスタ型下引き層を取り除いたこ
と以外は実施例4と同様の感光体試料を作製した。
Comparative Example 4 A photoconductor sample was prepared in the same manner as in Example 4 except that the varistor-type undercoat layer was removed.

【0069】このようにして作製した感光体は、市販の
普通紙複写機(三田工業社製、DC−3285)を用い
て、静電特性を評価した。露光は、露光量が感光体表面
上で、0〜6Lux・secの範囲で0.2Lux・sec毎に変化
させて行った。露光に対する表面電位の減衰は現像部位
置(露光開始後300msec後)の電位をもって評価し
た。このようにして得られた露光量と露光部電位との関
係から、半減露光量および露光量6Lux・secのときの露
光部残留電位を感度として取り扱った。感光体のコロナ
帯電能力は、表面電位を800Vに帯電させるのに要す
るコロナ放電電流量をもって評価した。また、静電特性
の繰り返し安定性は、初期暗部帯電電位を650V、露
光量3.5Lux・secに設定して、300回の帯電・露光
除電の反復により評価した。その結果を表1に具体的に
示した.
The photoreceptor thus manufactured was evaluated for electrostatic characteristics using a commercially available plain paper copying machine (DC-3285, manufactured by Mita Kogyo KK). The exposure was performed by changing the exposure amount on the surface of the photoreceptor in the range of 0 to 6 Lux · sec every 0.2 Lux · sec. The decay of the surface potential with respect to the exposure was evaluated based on the potential at the developing portion position (300 msec after the start of the exposure). From the relationship between the exposure amount thus obtained and the exposed portion potential, the half-life exposure amount and the exposed portion residual potential at an exposure amount of 6 Lux · sec were treated as sensitivity. The corona charging ability of the photoreceptor was evaluated based on the corona discharge current required for charging the surface potential to 800V. The repetition stability of the electrostatic property was evaluated by setting the initial dark portion charging potential at 650 V and the exposure amount at 3.5 Lux · sec, and repeating the charging / exposure charge elimination 300 times. The results are shown in Table 1.

【0070】[0070]

【表1】 [Table 1]

【0071】また、電気物性値確認のため、アルミニウ
ム・シート上に、実施例1のバリスタ型下引き層だけを
形成した試料A(表面保護層中のアンチモンドープ(1
0wt%)の酸化スズの含有率=27wt%)、アンチ
モンドープ(10wt%)の酸化スズを添加していない
樹脂成分だけの、言わば、電気絶縁性の下引き層(比較
例1に相当する)をアルミニウム・シート上に形成した
試料B(表面保護層中のアンチモンドープ(10wt
%)の酸化スズの含有率=0wt%)、実施例1のアン
チモンドープ(10wt%)の酸化スズの添加量40重
量部を100重量部に変更した、言わば低抵抗型の下引
き層(比較例2に相当する)をアルミニウム・シート上
に形成した試料C(表面保護層中のアンチモンドープ
(10wt%)の酸化スズ含有率=48wt%)を作製
した。膜厚は、試料Aが2.1μm、試料Bが1.8μ
m、試料Cが2.0μmであった。
Further, in order to confirm the electrical properties, the sample A in which only the varistor-type undercoat layer of Example 1 was formed on an aluminum sheet (the antimony-doped (1
(0 wt%) tin oxide content = 27 wt%), antimony-doped (10 wt%) resin component without tin oxide added, so-called electrically insulating undercoat layer (corresponding to Comparative Example 1) B formed on an aluminum sheet (with antimony dope (10 wt.
%) Of tin oxide of antimony-doped (10 wt%) in Example 1 was changed to 40 parts by weight of 100 parts by weight. Sample C (corresponding to Example 2) was formed on an aluminum sheet (tin oxide content of antimony-doped (10 wt%) in the surface protective layer = 48 wt%). The film thickness was 2.1 μm for sample A and 1.8 μm for sample B.
m and Sample C were 2.0 μm.

【0072】そして、高抵抗率測定装置(アドバンテス
ト社製、TR42[試料測定ボックス]、TR300C
[直流安定化電源]、TR8652[微少電流計])を
用いて、電界強度が1×105 V/cmにおける、体積
抵抗率を測定したところ、試料Aが6×1015Ω・c
m、試料Bが3×1017Ω・cm、試料Cが2×1015
Ω・cmであった。
Then, a high resistivity measurement device (TR42 [sample measurement box], TR300C, manufactured by Advantest Co., Ltd.)
[Regulated DC power supply], TR8652 [micro ammeter]) using, in the electric field intensity 1 × 10 5 V / cm, was measured for volume resistivity, the sample A is 6 × 10 15 Ω · c
m, sample B is 3 × 10 17 Ω · cm, sample C is 2 × 10 15
Ω · cm.

【0073】さらに、試料Aと試料Cの断面を透過型電
子顕微鏡で観察したところ、試料Aでは、アンチモンド
ープ(10wt%)の酸化スズの微粒子がほぼ200〜
500オングストロームの距離を隔てて分散しているの
に対して、試料Cでは、アンチモンドープ(10wt
%)の酸化スズの微粒子がある部分では房状に凝集して
いたりまたある部分では鎖状に連なっていたりしている
のが観察された。
Further, when the cross sections of Sample A and Sample C were observed with a transmission electron microscope, in Sample A, antimony-doped (10 wt%) fine particles of tin oxide were almost 200 to
The sample C was dispersed at a distance of 500 angstroms, whereas the antimony dope (10 wt.
%) Of tin oxide fine particles were observed to be aggregated in a tufted shape at a certain portion, and to a chain at a certain portion.

【0074】[0074]

【発明の効果】本発明によれば、下引き層として、非線
形の電圧−電流特性を有するバリスタ型下引き層を有す
る感光体を使用し、下引き層の電界がそのしきい値電界
以下となる条件下に帯電を行ない、且つ表面保護層の電
界がそのしきい値電界を越える条件下に露光除電を行な
うことにより、暗時には感光層が高抵抗で安定して帯電
が行われ、明時には抵抗が低下して表面電荷や中間電荷
の除電が有効に行われ、コロナ帯電特性を損うことなし
に、優れた光感度と画像の鮮明さと高いコントラストを
得ることが可能となった。また、初期電位を高く維持し
ながら、残留電位を有効に減少させ得る等、繰返し特性
乃至耐刷性を顕著に向上させることができた。
According to the present invention, a photoreceptor having a varistor-type undercoating layer having non-linear voltage-current characteristics is used as the undercoating layer, and the electric field of the undercoating layer is less than the threshold electric field. By performing charging under a certain condition, and performing exposure and elimination under the condition that the electric field of the surface protective layer exceeds the threshold electric field, the photosensitive layer is stably charged with high resistance in the dark and in the bright state. The resistance has been reduced to effectively remove the surface charge and the intermediate charge, and it has become possible to obtain excellent light sensitivity, clear image and high contrast without impairing the corona charging characteristics. In addition, the repetition characteristics and printing durability were significantly improved, for example, the residual potential could be effectively reduced while maintaining the initial potential high.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明に用いる下引き層について印加電圧と
電流密度との関係を示すグラフである。
FIG. 1 is a graph showing the relationship between applied voltage and current density for an undercoat layer used in the present invention.

【図2】 本発明の原理を示す説明図であり、Aは帯電
工程、Bは露光除電工程を示す。
FIG. 2 is an explanatory view showing the principle of the present invention, wherein A shows a charging step, and B shows an exposure and charge removing step.

【図3】 表面保護感光体についての帯電露光時の表面
電位を示すグラフである。
FIG. 3 is a graph showing a surface potential at the time of charge exposure of a surface protective photoconductor.

【図4】 帯電、露光除電の反復回数と有効初期電位及
び露光部残留電位との関係を示すグラフである。
FIG. 4 is a graph showing a relationship between the number of repetitions of charging and exposure / elimination, an effective initial potential, and a residual potential of an exposed portion.

【記号の説明】[Explanation of symbols]

1 感光体 2 導電性基板 3 下引き層 4 感光層 5 コロナ帯電機構 6 画像露光機構 DESCRIPTION OF SYMBOLS 1 Photoconductor 2 Conductive substrate 3 Undercoat layer 4 Photosensitive layer 5 Corona charging mechanism 6 Image exposure mechanism

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 導電性基体と感光層との間に下引き層を
設けた電子写真感光体において、前記下引き層がバリス
タ型の非線形の導電特性と0.5乃至10μmの膜厚
(Lu)とを有し、前記感光層が5乃至50μmの膜厚
(Lp)を有し、且つ前記感光層と下引き層との膜厚の
比(Lp/Lu)が1乃至500の範囲にあることを特
徴とする電子写真感光体。
1. An electrophotographic photoreceptor in which an undercoat layer is provided between a conductive substrate and a photosensitive layer, wherein the undercoat layer is a ballistic
Non-linear conductive characteristics and film thickness of 0.5 to 10 μm
(Lu), and the photosensitive layer has a thickness of 5 to 50 μm.
(Lp) and the film thickness of the photosensitive layer and the undercoat layer
An electrophotographic photosensitive member, wherein the ratio (Lp / Lu) is in the range of 1 to 500 .
【請求項2】 前記下引き層がアンチモン含有酸化スズ
または二硫化モリブデンと樹脂との分散組成物から成る
請求項1記載の電子写真感光体。
2. The electrophotographic photoreceptor according to claim 1, wherein the undercoat layer comprises a dispersion composition of antimony-containing tin oxide or molybdenum disulfide and a resin.
【請求項3】 前記下引き層が3以上の電圧非直線性係
数(b)を有するものである請求項1記載の電子写真感
光体。
3. The electrophotographic photoreceptor according to claim 1, wherein the undercoat layer has a voltage nonlinearity coefficient (b) of 3 or more.
【請求項4】 前記下引き層がしきい値よりも低い電界
において1013Ω・cm以上の体積抵抗率を有するも
のである請求項1記載の電子写真感光体。
4. The electrophotographic photoreceptor according to claim 1, wherein the undercoat layer has a volume resistivity of 10 13 Ω · cm or more in an electric field lower than a threshold value.
JP29618292A 1992-11-05 1992-11-05 Electrophotographic photoreceptor Expired - Lifetime JP3153651B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29618292A JP3153651B2 (en) 1992-11-05 1992-11-05 Electrophotographic photoreceptor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29618292A JP3153651B2 (en) 1992-11-05 1992-11-05 Electrophotographic photoreceptor

Publications (2)

Publication Number Publication Date
JPH06148923A JPH06148923A (en) 1994-05-27
JP3153651B2 true JP3153651B2 (en) 2001-04-09

Family

ID=17830231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29618292A Expired - Lifetime JP3153651B2 (en) 1992-11-05 1992-11-05 Electrophotographic photoreceptor

Country Status (1)

Country Link
JP (1) JP3153651B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015210366A (en) 2014-04-25 2015-11-24 株式会社リコー Electrophotographic photoreceptor, image forming apparatus, and process cartridge

Also Published As

Publication number Publication date
JPH06148923A (en) 1994-05-27

Similar Documents

Publication Publication Date Title
JP2795566B2 (en) Electrophotography and photoreceptor used for it
JP2002341570A (en) Electrophotographic sensitive body
JP4082875B2 (en) Electrophotographic photosensitive member and image forming apparatus
JP3153651B2 (en) Electrophotographic photoreceptor
JP2002139859A (en) Electrophotographic photoreceptor, electrophotographic method, electrophotographic device and process cartridge for the same
JP2917426B2 (en) Photoconductor
JP2001159838A (en) Electrophotographic image forming device
JP4025481B2 (en) Electrophotographic photosensitive member and image forming apparatus using the same
JP2694745B2 (en) Electrophotographic equipment
JP2961818B2 (en) Photoconductor
JP2865037B2 (en) Electrophotographic photoreceptor
JPH0636113B2 (en) Electrophotographic device
JP3948696B2 (en) Electrophotographic photoreceptor
JPH07128874A (en) Electrophotographic image forming method, electrophotographic device and electrophotographic device unit
JP2746199B2 (en) Electrophotographic photoreceptor
JPH08202055A (en) Electrophotographic photoreceptor for latent image transfer
JP2002351106A (en) Electrophotographic photoreceptor and electrophotographic device using the same
JPH0553348A (en) Electrophotographic sensitive body
JPH07287405A (en) Electrophotographic photoreceptor for transferring latent image
JPH01207768A (en) Image forming device
JPH0697358B2 (en) Electrophotographic device
JPH0743919A (en) Electrophotographic photoreceptor
JPH0797225B2 (en) Organic photoconductor
JPH0553346A (en) Electrophotographic sensitive body
JPH01142640A (en) Electrophotographic sensitive body