JP3152976B2 - Method for manufacturing lead telluride semiconductor - Google Patents

Method for manufacturing lead telluride semiconductor

Info

Publication number
JP3152976B2
JP3152976B2 JP29896791A JP29896791A JP3152976B2 JP 3152976 B2 JP3152976 B2 JP 3152976B2 JP 29896791 A JP29896791 A JP 29896791A JP 29896791 A JP29896791 A JP 29896791A JP 3152976 B2 JP3152976 B2 JP 3152976B2
Authority
JP
Japan
Prior art keywords
lead
tellurium
lead telluride
mol
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29896791A
Other languages
Japanese (ja)
Other versions
JPH0558796A (en
Inventor
木 峰 男 村
マイケル ロウ デビッド
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JPH0558796A publication Critical patent/JPH0558796A/en
Application granted granted Critical
Publication of JP3152976B2 publication Critical patent/JP3152976B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B19/00Selenium; Tellurium; Compounds thereof
    • C01B19/007Tellurides or selenides of metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Electrodes Of Semiconductors (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は熱電特性を持った熱発電
用素子に利用するテルル化鉛熱電材料薄膜の製造方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a lead telluride thermoelectric material thin film for use in a thermoelectric element having thermoelectric properties.

【0002】[0002]

【従来の技術】テルル化鉛半導体材料は優れた熱電特性
を持つため熱発電用素子として広く用いられている。単
相テルル化鉛はその化学量論組成付近において固溶体組
成範囲が極めて狭く(700℃においてTe:49.9
94〜50.013原子%)、この範囲から組成が外れ
ることによって容易に第二相が出現する。しかしなが
ら、二相領域にあるテルル化鉛は機械的特性、半導体特
性が単相材料に比べて劣ることが知られている。
2. Description of the Related Art Lead telluride semiconductor materials are widely used as thermoelectric power generation devices because of their excellent thermoelectric properties. Single phase lead telluride has a very narrow solid solution composition range near its stoichiometric composition (Te: 49.9 at 700 ° C).
When the composition deviates from this range, the second phase easily appears. However, it is known that lead telluride in the two-phase region is inferior in mechanical properties and semiconductor properties as compared with single-phase materials.

【0003】同材料製造の凝固過程において、偏析によ
って上記の望ましくない効果が表れるのを防ぐために多
くの複雑な方法が単相のテルル化鉛製造法として提示さ
れている。例えば、鉛とテルルの密封雰囲気中での溶
解、単結晶育成、急冷法、機械的粉砕、冷間プレス、水
素雰囲気中での焼結などの方法がある。
In order to prevent the above-mentioned undesired effects from appearing due to segregation during the solidification process of producing the same material, many complicated methods have been proposed for producing single-phase lead telluride. For example, there are methods of melting lead and tellurium in a sealed atmosphere, growing a single crystal, quenching, mechanical pulverization, cold pressing, and sintering in a hydrogen atmosphere.

【0004】一方、分子線エピタクシーや化学蒸着法
も、合金組成の直接製法として提案されているが、その
製造機器の価格は高価であり、したがって工業的な生産
には現実的ではない。
[0004] On the other hand, molecular beam epitaxy and chemical vapor deposition have also been proposed as direct methods for producing alloy compositions, but the production equipment is expensive and therefore not practical for industrial production.

【0005】また、電着法によって、テルルを含む合金
を、二種あるいはそれ以上の金属元素を含む溶液中から
析出する方法も簡便、低コストの化合物半導体製法とし
て試みられているが、その報告例は限られている。それ
らは主に鉛が、例えば代表的な電解質である硫酸と反応
して不溶性の硫酸鉛といった化合物を生成するためであ
る。
A method of depositing an alloy containing tellurium from a solution containing two or more metal elements by an electrodeposition method has also been attempted as a simple and low-cost method for producing a compound semiconductor. Examples are limited. These are mainly because lead reacts with sulfuric acid, which is a typical electrolyte, to produce a compound such as insoluble lead sulfate.

【0006】[0006]

【発明が解決しようとする課題】本発明に類似の組成の
化合物半導体電着法としては、例えばラブレスら(Juan
Llabres and Vicente Delmas, Journal of the Electro
chemical Society, Vol.133, Part12, Pages 2580-5)
はテルル化カドミウムを硫酸溶液を用いて製造する方法
を示している。しかしながら、同法でカドミウムイオン
の替わりに鉛イオンを溶解してテルル化鉛を得る試みは
鉛が溶液中の硫酸イオンと反応して不溶性の硫酸鉛を生
成するため実現不能であることがわかった。本発明は上
記問題点を解決して、工業的に簡便かつ低価格なプロセ
スで単相のテルル化鉛半導体の製造を行なう技術を提供
することを目的とする。
As a method of electrodepositing a compound semiconductor having a composition similar to that of the present invention, for example, a method described in J. Labless et al.
Llabres and Vicente Delmas, Journal of the Electro
chemical Society, Vol.133, Part12, Pages 2580-5)
Shows a method for producing cadmium telluride using a sulfuric acid solution. However, it was found that an attempt to obtain lead telluride by dissolving lead ions instead of cadmium ions by the same method was not feasible because lead reacted with sulfate ions in the solution to form insoluble lead sulfate. . An object of the present invention is to solve the above problems and to provide a technique for industrially producing a single-phase lead telluride semiconductor by a simple and low-cost process.

【0007】[0007]

【課題を解決するための手段】テルルあるいはその酸化
物である二酸化テルルを溶解する電解質としては硫酸塩
が広く知られているが、これは上記のように鉛イオンの
溶解には不適当である。本発明者らはスルファミン酸
(Sulfamic acid, NH2SO3H)水溶液が鉛イオンを安定に
保持すると同時に少量のテルルイオンを溶解すること、
さらにこれを利用して電着用の電極電位を適度に調整す
ることにより、広い温度、濃度範囲にわたって単相のテ
ルル化鉛半導体が安定して得られることを見いだした。
As an electrolyte for dissolving tellurium or its oxide, tellurium dioxide, sulfate is widely known, but this is unsuitable for dissolving lead ions as described above. . The present inventors have found that an aqueous solution of sulfamic acid (Sulfamic acid, NH 2 SO 3 H) stably retains lead ions and simultaneously dissolves a small amount of tellurium ions.
Furthermore, it has been found that a single-phase lead telluride semiconductor can be stably obtained over a wide temperature and concentration range by appropriately adjusting the electrode potential for electrodeposition by utilizing this.

【0008】すなわち、本発明は、電気化学的に反応す
る鉛、テルルおよび遊離スルファミン酸イオン(NH2SO3
- )を含む溶液中に、電着電極を飽和カロメル電極に対
して−0.25Vから−0.40Vの範囲の電位に維持
することにより実質的に単相のテルル化鉛半導体を製造
することを特徴とするテルル化鉛半導体の製造方法を提
供するものである。溶液に添加するスルファミン酸の濃
度は0.10〜0.40mol/lが好ましく、溶液中
のスルファミン酸鉛の濃度は0.03〜0.5mol/
lが好ましい。また、テルル源としては二酸化テルルを
用い、その添加濃度は0.002〜0.05mol/l
とするのがよい。
That is, the present invention relates to electrochemically reacting lead, tellurium and free sulfamate ions (NH 2 SO 3
-) in a solution containing, to produce a substantially single-phase lead telluride semiconductor by maintaining the electrodeposited electrode potential ranging between -0.40V from -0.25V vs. a saturated calomel electrode And a method for producing a lead telluride semiconductor. The concentration of sulfamic acid added to the solution is preferably 0.10 to 0.40 mol / l, and the concentration of lead sulfamate in the solution is 0.03 to 0.5 mol / l.
l is preferred. Further, tellurium dioxide is used as a tellurium source, and its concentration is 0.002 to 0.05 mol / l.
It is good to do.

【0009】以下に本発明をさらに詳細に説明する。Hereinafter, the present invention will be described in more detail.

【0010】本発明によれば、電気化学的に反応する
鉛、テルルおよびスルファミン酸イオン(NH2SO3 - )を
含む溶液中に電着電極を飽和カロメル電極に対して−
0.25Vから−0.40Vの範囲に維持することによ
り、単相のテルル化鉛が得られる。同電位を−.025
Vを超える電位に維持した場合は得られる組成は図1に
示すようにテルル、あるいはテルルとテルル化鉛の混合
物となり、一方−0.40V未満に維持した場合には、
図1に示すように鉛、あるいは鉛とテルル化鉛の混合物
が得られ望ましくない。
According to the present invention, the electrodeposition electrode is placed in a solution containing electrochemically reactive lead, tellurium and sulfamate ions (NH 2 SO 3 ) with respect to the saturated calomel electrode.
By maintaining the range of 0.25V to -0.40V, a single phase lead telluride is obtained. The same potential is-. 025
When maintained at a potential greater than V, the resulting composition is tellurium, or a mixture of tellurium and lead telluride, as shown in FIG.
As shown in FIG. 1, lead or a mixture of lead and lead telluride is not desirable.

【0011】添加するスルファミン酸(Sulfamic acid)
の濃度は好ましくは0.10〜0.40mol/lであ
る。0.40mol/lより高濃度ではスルファミン酸
鉛の水和反応が顕著になり、一方0.10mol/lよ
り低濃度では電着速度がきわめて低くなるので好ましく
ない。スルファミン酸を電解質として用いると、従来用
いていた電解質である硫酸で生じていたような鉛化合物
の沈澱という問題がなくなる。
[0011] Sulfamic acid to be added
Is preferably 0.10 to 0.40 mol / l. At a concentration higher than 0.40 mol / l, the hydration reaction of lead sulfamate becomes remarkable, while at a concentration lower than 0.10 mol / l, the electrodeposition rate becomes extremely low, which is not preferable. When sulfamic acid is used as an electrolyte, the problem of precipitation of a lead compound, which is caused by sulfuric acid, which has been conventionally used, is eliminated.

【0012】溶液中のスルファミン酸鉛(lead Sulfamat
e)の濃度は好ましくは0.03〜0.5mol/lであ
る。0.5mol/lを超えた濃度では、やはりスルフ
ァミン酸鉛の水和反応が顕著になり、一方0.03mo
l/l未満の濃度では得られるテルル化鉛の均質性が劣
化する。
[0012] Lead Sulfamat in solution
The concentration of e) is preferably between 0.03 and 0.5 mol / l. At a concentration exceeding 0.5 mol / l, the hydration reaction of lead sulfamate also becomes remarkable, while 0.03 mol / l
If the concentration is less than 1 / l, the homogeneity of the obtained lead telluride deteriorates.

【0013】さらに、二酸化テルルの濃度は望ましくは
0.002〜0.05mol/lである。本範囲におい
ては溶液は二酸化テルル飽和となっている。鉛との反応
によって減少したテルルは更に二酸化テルルを追加する
ことにより補うことが可能である。
Further, the concentration of tellurium dioxide is desirably 0.002 to 0.05 mol / l. In this range, the solution is tellurium dioxide saturated. Tellurium reduced by reaction with lead can be compensated for by adding additional tellurium dioxide.

【0014】以上に述べられたように、テルル化鉛は一
般的にはスルファミン酸鉛と二酸化テルルのように別々
の化合物から作られるのが好ましいが、もちろん鉛とテ
ルルを含む複合材を原料とすることも可能である。この
場合、電気化学的に反応する鉛とテルルは上記複合材の
電解あるいは分解で得ることができる。
As mentioned above, lead telluride is generally preferred to be made from separate compounds, such as lead sulfamate and tellurium dioxide, but of course, a composite material containing lead and tellurium is used as a raw material. It is also possible. In this case, lead and tellurium, which react electrochemically, can be obtained by electrolysis or decomposition of the composite material.

【0015】電着用電極は好ましくは、金属シートに代
表されるカソードである。またアノードは代表的なもの
として、黒鉛や白金のような適切な材料で作られた不溶
性電極である。
The electrodeposited electrode is preferably a cathode typified by a metal sheet. The anode is also typically an insoluble electrode made of a suitable material such as graphite or platinum.

【0016】溶液は20℃〜50℃の範囲に保持される
ことが望ましい。50℃を超える温度ではスルファミン
酸鉛の水和反応がやはり顕著となり、一方20℃未満の
温度では電着速度が極めて低くなる。
The solution is desirably kept at a temperature in the range of 20 ° C to 50 ° C. At temperatures above 50 ° C., the hydration of lead sulfamate still becomes prominent, while at temperatures below 20 ° C., the electrodeposition rate becomes extremely low.

【0017】電極上へのテルル化鉛の電析の速度をあげ
る目的で反応溶液を本質的に攪拌することはさらに望ま
しい。
It is further desirable to essentially stir the reaction solution for the purpose of increasing the rate of electrodeposition of lead telluride on the electrode.

【0018】場合によっては、反応溶液にドーパントを
加えることによって、電着後得られる半導体特性を向上
することが望ましいことがある。代表的なドーパントと
して銀、すず、インジウム、またはビスマスの酸化物が
あげられる。別の方法として、あるいは複合効果として
生成物の鉛/テルルの量比を変えることによっても半導
体特性は改善できる。反応溶液中に存在するイオンの濃
度をコントロールすることによって更に三元系、四元系
のテルル化鉛を電着することも可能である。
In some cases, it may be desirable to improve the semiconductor properties obtained after electrodeposition by adding a dopant to the reaction solution. Representative dopants include silver, tin, indium, or bismuth oxide. Alternatively, or as a combined effect, the semiconductor properties can be improved by varying the lead / tellurium ratio of the product. By controlling the concentration of ions present in the reaction solution, it is possible to further electrodeposit ternary or quaternary lead telluride.

【0019】[0019]

【実施例】以下に本発明を実施例に基づいて具体的に説
明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below based on embodiments.

【0020】(実施例1)下記の薬品を順に加え混合し
た。 a)150mlの蒸留水中に溶解した7.5gのスルフ
ァミン酸 b)10gの炭酸鉛 c)7.5gのスルファミン酸 得られた混合物をろ過した後、100mgの二酸化テル
ルをこれに加えた。この時点で混合物は0.26mol
/lの遊離スルファミン酸、0.25mol/lのスル
ファミン酸鉛および0.002mol/lのテルルを含
んでいた。滑らかに磨かれた銅板上2×2cmの領域を
電着用に露出し、カソードとして用いた。また不溶性の
アノードとして黒鉛板が用いられたカソード電位を、飽
和カロメル電極基準で−0.35Vに、温度を35℃に
それぞれ維持した。このときカソード電流密度は0.6
mA/cm2であり、30分の電着後得られた析出物の分析値
は鉛50%、テルル50%であった。鋼板上の析出物に
ついてX線回折強度の測定を行なった。その結果を図2
に示す。
(Example 1) The following chemicals were added in order and mixed. a) 7.5 g of sulfamic acid dissolved in 150 ml of distilled water b) 10 g of lead carbonate c) 7.5 g of sulfamic acid After filtering the resulting mixture, 100 mg of tellurium dioxide were added thereto. At this point the mixture is 0.26 mol
/ L free sulfamic acid, 0.25 mol / l lead sulfamate and 0.002 mol / l tellurium. A 2 × 2 cm area on a smooth polished copper plate was exposed for electrodeposition and used as a cathode. The cathode potential at which a graphite plate was used as the insoluble anode was maintained at -0.35 V and the temperature was maintained at 35 ° C. based on the saturated calomel electrode. At this time, the cathode current density was 0.6
was mA / cm 2, the analysis value of 30 minutes electrodeposition after resulting precipitate was 50%, 50% tellurium lead. The X-ray diffraction intensity of the precipitate on the steel sheet was measured. Figure 2 shows the result.
Shown in

【0021】[0021]

【発明の効果】従来技術のように硫酸鉛のような不溶化
物を生成することなく、実質的に単相のテルル化鉛半導
体を簡便なプロセスで安価に製造することができる。
According to the present invention, a substantially single-phase lead telluride semiconductor can be produced at a low cost by a simple process without producing insolubilized substances such as lead sulfate as in the prior art.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 カソード電位と電流密度の関係を、析出物の
分析の結果同定された相とともに示す図である。
FIG. 1 is a diagram showing a relationship between a cathode potential and a current density together with phases identified as a result of precipitate analysis.

【図2】 実施例1に記載されるように−0.35Vで
銅板上に電着された析出物のX線回折測定結果であり、
図中のピークはそれぞれ同定された相を示す図である。
FIG. 2 is an X-ray diffraction measurement of a deposit electrodeposited on a copper plate at −0.35 V as described in Example 1,
The peaks in the figure show the identified phases.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 デビッド マイケル ロウ イギリス国,シーエフ38 2エルティ ー, ミッド グラモーガン,チャーチ ビレッジ, メイン ロード,トレワ ーネン (56)参考文献 特開 昭57−61694(JP,A) 特開 昭59−164694(JP,A) 特開 昭55−122892(JP,A) (58)調査した分野(Int.Cl.7,DB名) C30B 1/00 - 35/00 CA(STN) REGISTRY(STN)────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor David Michael Row UK, cf 382 EL, Mid Glamorgan, Church Village, Main Road, Trewanen (56) References JP-A-57-61694 (JP, A) JP-A-59-164694 (JP, A) JP-A-55-122892 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C30B 1/00-35/00 CA ( STN) REGISTRY (STN)

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】電気化学的に反応する鉛、テルルおよび遊
離スルファミン酸イオン(NH2SO3 - )を含む溶液中に、
電着電極を飽和カロメル電極に対して−0.25Vから
−0.40Vの範囲の電位に維持することにより実質的
に単相のテルル化鉛半導体を製造することを特徴とする
テルル化鉛半導体の製造方法。
In a solution containing electrochemically reactive lead, tellurium and free sulfamate ions (NH 2 SO 3 ),
Producing a substantially single-phase lead telluride semiconductor by maintaining the electrodeposited electrode at a potential in the range of -0.25V to -0.40V with respect to the saturated calomel electrode. Manufacturing method.
【請求項2】溶液に添加するスルファミン酸の濃度は
0.10〜0.40mol/lである請求項1に記載の
テルル化鉛半導体の製造方法。
2. The method for producing a lead telluride semiconductor according to claim 1, wherein the concentration of sulfamic acid added to the solution is 0.10 to 0.40 mol / l.
【請求項3】溶液中のスルファミン酸鉛の濃度は0.0
3〜0.5mol/lである請求項1または2に記載の
テルル化鉛半導体の製造方法。
3. The concentration of lead sulfamate in the solution is 0.0
3. The method for producing a lead telluride semiconductor according to claim 1, wherein the amount is 3 to 0.5 mol / l.
【請求項4】テルル源として二酸化テルルを用い、その
添加濃度は0.002〜0.05mol/lである請求
項1〜3のいずれかに記載のテルル化鉛半導体の製造方
法。
4. The method for producing a lead telluride semiconductor according to claim 1, wherein tellurium dioxide is used as a tellurium source, and its concentration is 0.002 to 0.05 mol / l.
JP29896791A 1991-08-30 1991-11-14 Method for manufacturing lead telluride semiconductor Expired - Fee Related JP3152976B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB91186593 1991-08-30
GB9118659A GB2259098B (en) 1991-08-30 1991-08-30 Preparation of lead telluride

Publications (2)

Publication Number Publication Date
JPH0558796A JPH0558796A (en) 1993-03-09
JP3152976B2 true JP3152976B2 (en) 2001-04-03

Family

ID=10700721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29896791A Expired - Fee Related JP3152976B2 (en) 1991-08-30 1991-11-14 Method for manufacturing lead telluride semiconductor

Country Status (2)

Country Link
JP (1) JP3152976B2 (en)
GB (1) GB2259098B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6603173B1 (en) 1991-07-26 2003-08-05 Denso Corporation Vertical type MOSFET

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004025066A1 (en) * 2004-05-18 2005-12-08 Basf Ag Telluride with new property combinations

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50122892A (en) * 1974-03-14 1975-09-26
US3887446A (en) * 1974-07-26 1975-06-03 Us Navy Electrochemical preparation of metallic tellurides
GB2006268A (en) * 1977-10-14 1979-05-02 Univ Queensland Preparation of semiconductor films on electrically conductive substrates
SU1516929A1 (en) * 1988-01-29 1989-10-23 Московский химико-технологический институт им.Д.И.Менделеева Method of producing semiconductor sensitive elements for gas analysis

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6603173B1 (en) 1991-07-26 2003-08-05 Denso Corporation Vertical type MOSFET

Also Published As

Publication number Publication date
GB9118659D0 (en) 1991-10-16
GB2259098B (en) 1995-01-18
JPH0558796A (en) 1993-03-09
GB2259098A (en) 1993-03-03

Similar Documents

Publication Publication Date Title
Neumann-Spallart et al. Electrodeposition of zinc telluride
Streltsov et al. Electrochemical deposition of PbSe films
Jaeger et al. Electrochemical behavior of donor-tetracyanoquinodimethane electrodes in aqueous media
Ebe et al. Electrodeposition of Sb, Bi, Te, and their alloys in AlCl3–NaCl–KCl molten salt
Köse et al. The underpotential deposition of Bi2Te3− ySey thin films by an electrochemical co-deposition method
Murase et al. Electrodeposition of CdTe films from ammoniacal alkaline aqueous solution at low cathodic overpotentials
Zhu et al. Effect of potential on bismuth telluride thin film growth by electrochemical atomic layer epitaxy
Şişman et al. Structural, morphological and optical properties of Bi2− xSbxSe3 thin films grown by electrodeposition
JPH0685444B2 (en) Cd-rich solar cell including Hg-lower 1-X Cd-lower x Te layer and method of manufacturing the same
Majidzade et al. Electrodeposition of the Sb2Se3 thin films on various substrates from the tartaric electrolyte
Streltsov et al. Electrochemical deposition of PbSe1− xTex solid solutions
Sharma et al. Electrochemical growth and characterization of manganese telluride thin films
JP3152976B2 (en) Method for manufacturing lead telluride semiconductor
US3419484A (en) Electrolytic preparation of semiconductor compounds
Bouroushian et al. Electrodeposition of polycrystalline ZnTe from simple and citrate-complexed acidic aqueous solutions
Ishizaki et al. Electrodeposition of ZnTe film with high current efficiency at low overpotential from a citric acid bath
EP1807872B1 (en) Photovoltaic cell comprising a photovoltaic active semiconductor material
Ghali et al. Electrodeposition of lead from aqueous acetate and chloride solutions
EP0260223B1 (en) Process for the preparation of polycrystalline silicon layers by electrolytic deposition of silicon
Chen et al. Dependence of the composition of CdTe semiconductor on conditions of electrodeposition
Thangarasu et al. Impact of Cu doping on the structural, morphological and optical activity of V 2 O 5 nanorods for photodiode fabrication and their characteristics
Henriquez et al. Electrochemical deposition of ZnSe from dimethyl sulfoxide solution and characterization of epitaxial growth
Ishizaki et al. Electrodeposition of a copper-tellurium compound under diffusion-limiting control
Magri et al. Electrodeposition of Bi2Te3 films
Elwell et al. Electrodeposition of indium phosphide

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010109

LAPS Cancellation because of no payment of annual fees