JP3151487B2 - Radiation detection method - Google Patents
Radiation detection methodInfo
- Publication number
- JP3151487B2 JP3151487B2 JP16383493A JP16383493A JP3151487B2 JP 3151487 B2 JP3151487 B2 JP 3151487B2 JP 16383493 A JP16383493 A JP 16383493A JP 16383493 A JP16383493 A JP 16383493A JP 3151487 B2 JP3151487 B2 JP 3151487B2
- Authority
- JP
- Japan
- Prior art keywords
- bias voltage
- semiconductor
- radiation
- time
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Measurement Of Radiation (AREA)
- Light Receiving Elements (AREA)
Description
【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION
【0001】[0001]
【産業上の利用分野】本発明は、CdTe放射線検出器
を用いた放射線検出方法に関するものである。CdTe
放射線検出器は、放射線に起因してCdTe半導体内に
生じる光電流をその表面に設けた電極により測定するも
のである。CdTeは、バンドギャップが広いため室温
での動作が可能であり、また構成元素の原子番号が大き
いためX線、γ線などの放射線の吸収係数が大きく、高
い感度が得られる。このような検出器は、放射線使用施
設のモニター、スペクトルサーベイメータなどに用いら
れている。また、検出器の小型化、アレイ化が可能であ
り、医療用診断機器、産業用の非破壊検査装置などにア
レイ化した検出器が応用され始めている。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a radiation detecting method using a CdTe radiation detector. CdTe
The radiation detector measures a photocurrent generated in the CdTe semiconductor due to radiation by using an electrode provided on the surface thereof. CdTe can operate at room temperature because of its wide band gap, and has a large absorption coefficient of radiation such as X-rays and γ-rays because of the large atomic number of the constituent elements, so that high sensitivity is obtained. Such a detector is used for a monitor of a radiation use facility, a spectrum survey meter, and the like. In addition, detectors can be miniaturized and arrayed, and arrayed detectors have begun to be applied to medical diagnostic equipment, industrial nondestructive testing devices, and the like.
【0002】[0002]
【従来の技術】CdTe放射線検出器による測定では、
電極間に比較的高電圧のバイアス電圧を印加し、放射線
の入射に起因した電流パルスを読みだしている。電流パ
ルスの高さとして入射した放射線のエネルギーを、また
電流パルスの頻度としてその強度を測定している。2. Description of the Related Art In a measurement using a CdTe radiation detector,
A relatively high bias voltage is applied between the electrodes, and a current pulse resulting from the incidence of radiation is read. The energy of the incident radiation is measured as the height of the current pulse, and the intensity is measured as the frequency of the current pulse.
【0003】このような放射線測定方法において15分
間程度の比較的長時間の連続測定では、同一放射線の入
力においても読みだした電流パルスの高さや頻度が低下
するという経時変化が生じることが知られていた。バイ
アス電圧の印加を数秒間休止することで、このような劣
化を回復することができる。(R.O.Bell et al.;NUCLEA
R INSTRUMENTS AND METHODS,vol.117(1974)pp.267)[0003] In such a radiation measurement method, it is known that continuous measurement for a relatively long time of about 15 minutes causes a temporal change such that the height and frequency of the read current pulse are reduced even when the same radiation is input. I was By suspending the application of the bias voltage for several seconds, such deterioration can be recovered. (ROBell et al .; NUCLEA
R INSTRUMENTS AND METHODS, vol.117 (1974) pp.267)
【0004】[0004]
【発明が解決しようとする課題】しかしながら、バイア
ス電圧を休止した場合、連続的にバイアスを印加した場
合の初期状態と比較して、電流パルスの高さがばらつく
ための分解能の低下や、パルスの頻度が低下して検出効
率が低下することがあった。また、バイアス電圧を休止
している期間は、放射線を検出できないために検出効率
が低下していた。However, when the bias voltage is stopped, compared to the initial state where the bias is applied continuously, the resolution of the current pulse is reduced due to the variation in the height, and the pulse is not changed. In some cases, the frequency decreased and the detection efficiency decreased. Further, during the period in which the bias voltage is stopped, the detection efficiency is reduced because radiation cannot be detected.
【0005】本発明は上記の課題を解決したもので、本
発明の目的は、バイアス電圧を休止した場合において
も、分解能や検出効率が低下することのない放射線検出
方法を提供するものである。An object of the present invention is to solve the above-mentioned problems, and an object of the present invention is to provide a radiation detection method in which resolution and detection efficiency do not decrease even when a bias voltage is stopped.
【0006】[0006]
【課題を解決するための手段】本発明は、高抵抗CdT
e半導体と、該半導体の一表面上に形成され正孔の注入
を防ぐ障壁を有するアノード電極と、該半導体の他の表
面上に形成され電子の注入を防ぐ障壁を有するカソード
電極とからなる半導体検出器を用いて放射線を検出する
方法において、(a)アノード電極・カソード電極間に直
流のバイアス電圧を印加して放射線の検出を開始し、
(b)バイアス電圧の電圧値をE(V)、アノード電極・
カソード電極間の半導体の厚さをd(cm)とした際
に、t=(E/d)2/106で定められる時間t(秒)
以下の時間、放射線の検出を連続し、(c)その後、前記
バイアス電圧の印加を停止するものである。SUMMARY OF THE INVENTION The present invention provides a high-resistance CdT
e, a semiconductor comprising: an anode electrode formed on one surface of the semiconductor and having a barrier for preventing injection of holes; and a cathode electrode formed on another surface of the semiconductor and having a barrier for preventing injection of electrons. In the method of detecting radiation using a detector, (a) start detection of radiation by applying a DC bias voltage between the anode electrode and the cathode electrode,
(b) When the voltage value of the bias voltage is E (V),
The semiconductor thickness between the cathode electrode upon the d (cm), t = ( E / d) 2/10 6 at time defined t (seconds)
The detection of radiation is continued for the following time, and (c) thereafter, the application of the bias voltage is stopped.
【0007】アノード電極としては、真空蒸着法により
形成したインジウム、錫などの正孔に対する障壁の高さ
が比較的高い(0.5eV以上)金属からなる電極を、
また、カソード電極としては、無電解めっきにより形成
した白金、金などの電子に対する障壁の高さが比較的高
い(0.5eV以上)金属からなる電極を用いることが
できる。As the anode electrode, an electrode made of a metal such as indium or tin formed by a vacuum evaporation method and having a relatively high barrier (0.5 eV or more) against holes is used.
Further, as the cathode electrode, an electrode made of a metal such as platinum or gold formed by electroless plating and having a relatively high barrier against electrons (0.5 eV or more) can be used.
【0008】放射線検出を連続する時間は、1.0t以
下のなるべく長い時間とすることが望ましい。連続する
時間が0.1t未満となると、測定時間に較べてバイア
ス電圧の休止により測定が不能となる時間が長くなるた
めは、実質的な検出効率が低下する。また、バイアス電
圧印加直後の動作不安定を避けるため、0.5秒以上と
することが望ましく。バイアス電圧の印加を停止する時
間は、0.1秒程度以上あれば経時変化前の状態に戻す
ことができる。[0008] It is desirable that the time for continuous radiation detection be as long as 1.0 t or less. If the continuous time is less than 0.1 t, the time during which the measurement cannot be performed due to the suspension of the bias voltage becomes longer as compared with the measurement time, so that the actual detection efficiency decreases. Further, in order to avoid instability of the operation immediately after the application of the bias voltage, it is desirable that the time is 0.5 seconds or longer. If the time for stopping the application of the bias voltage is about 0.1 second or more, the state before the change with time can be returned.
【0009】[0009]
【作用および効果】本発明によれば、バイアス電圧の印
加を継続する時間をt=(E/d)2/106で定められ
る時間t(秒)以下の時間としているので、分解能の劣
化や検出効率の低下を生ずることなく連続的な測定が可
能であり、電極として正孔の注入を防ぐ障壁を有するア
ノード電極と電子の注入を防ぐ障壁を有するカソード電
極とを用いているのでバイアス電圧を高めてもリーク電
流が増えない。したがって、放射線検出において、高い
検出効率と高い分解能を得ることができる。According to the operation and effect of the present invention, since the time to continue the application of the bias voltage t = (E / d) 2 /10 6 at time defined t (in seconds) following times, Ya resolution degradation Continuous measurement is possible without lowering the detection efficiency, and the bias voltage is reduced because an anode electrode having a barrier to prevent hole injection and a cathode electrode having a barrier to prevent electron injection are used as electrodes. Even if it increases, the leak current does not increase. Therefore, in radiation detection, high detection efficiency and high resolution can be obtained.
【0010】[0010]
【実施例】本発明の一実施例としてγ線検出方法につい
て以下詳細に説明する。半導体検出器は、2mm角で厚
さ1mmの塩素ド−プの高抵抗CdTe半導体単結晶の
対向する主面に電極を形成したものである。カソード電
極は無電解めっきにより形成したPt(白金)電極であ
り、電子に対してオーミック特性を示すアノード電極は
真空蒸着により形成されたIn(インジウム)電極であ
る。カソード、アノード電極の正孔に対する障壁の高さ
は、それぞれ0.6eV、1.4eVである。また、カ
ソード、アノード電極の電子に対する障壁の高さは、そ
れぞれ0.9eV、0.1eVである。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS As an embodiment of the present invention, a gamma ray detection method will be described in detail below. The semiconductor detector is one in which electrodes are formed on opposing main surfaces of a high-resistance chlorine-doped CdTe semiconductor single crystal of 2 mm square and 1 mm thick. The cathode electrode is a Pt (platinum) electrode formed by electroless plating, and the anode electrode exhibiting ohmic characteristics to electrons is an In (indium) electrode formed by vacuum evaporation. The height of the barrier against holes of the cathode and anode electrodes is 0.6 eV and 1.4 eV, respectively. The heights of the barriers to the electrons of the cathode and the anode are 0.9 eV and 0.1 eV, respectively.
【0011】本実施例で用いるγ線検出装置の構成を図
1に示す。半導体検出器1のカソード電極は接地され、
アノード電極はリレー2に入力されている。3接点のリ
ードリレーからなるリレー2は、半導体検出器1のアノ
ード電極をバイアス回路または接地状態に切り換えてい
る。バイアス回路側は、バイアス電源3から+300V
の直流バイアス電圧が印加され、コンデンサを介してプ
リアンプ4に信号が入力されている。プリアンプ4の出
力信号は、パルス高分析器5により解析される。リレー
2は、9.8秒間はバイアス回路に接続し、その後0.
2秒間は接地するようにリレー駆動回路6により制御さ
れる。リレー2の切り換え状態は、測定の同期信号とし
てパルス高分析器5にも入力される。FIG. 1 shows the configuration of a γ-ray detector used in the present embodiment. The cathode electrode of the semiconductor detector 1 is grounded,
The anode electrode is input to the relay 2. The relay 2 composed of a three-contact reed relay switches the anode electrode of the semiconductor detector 1 to a bias circuit or a ground state. On the bias circuit side, +300 V from bias power supply 3
And a signal is input to the preamplifier 4 via a capacitor. The output signal of the preamplifier 4 is analyzed by the pulse height analyzer 5. Relay 2 is connected to the bias circuit for 9.8 seconds, then
It is controlled by the relay drive circuit 6 to be grounded for two seconds. The switching state of the relay 2 is also input to the pulse height analyzer 5 as a measurement synchronization signal.
【0012】本実施例による測定手順は、(a)リレーを
切り換えてバイアス回路に接続して+300Vの直流バ
イアス電圧を印加し、放射線により生じる電流パルスの
検出を開始し、(b)9.8秒間、電流パルスの検出を連
続し、(c)リレーを切り換えてアノード電極を接地する
ことで、0.2秒間、バイアス電圧の印加を停止する。
その後、再びリレーを切り換えて上記(a)の状態とす
るものである。The measurement procedure according to the present embodiment is as follows. (A) The relay is switched, connected to a bias circuit, a DC bias voltage of +300 V is applied, and detection of a current pulse caused by radiation is started, and (b) 9.8. The application of the bias voltage is stopped for 0.2 seconds by continuously detecting the current pulse for 2 seconds and switching the relay (c) to ground the anode electrode.
Thereafter, the relay is switched again to bring the state of (a) above.
【0013】本実施例による測定結果を図2に示す。こ
の測定は、放射性同位元素241Amから放射される60
KeVのγ線のエネルギースペクトルに対応した電流パ
ルスの高さ分布を示している。横軸のチャンネルが電流
パルスの高さ、縦軸のカウントが電流パルスの頻度を示
している。この結果から明らかなように、エネルギー分
解能は半値幅で2.8KeVと良好な結果が得られた。FIG. 2 shows the measurement results according to the present embodiment. This measurement is based on the emission of 60% from the radioisotope 241 Am.
The height distribution of the current pulse corresponding to the energy spectrum of the KeV γ-ray is shown. The channel on the horizontal axis indicates the height of the current pulse, and the count on the vertical axis indicates the frequency of the current pulse. As is clear from these results, a good result was obtained with an energy resolution of 2.8 KeV in half width.
【0014】[0014]
【比較例1】比較例1として、半導体検出器のアノー
ド、カソード電極を共に無電解めっきにより形成したP
t(白金)電極を用い、それ以外は上記実施例と同様に
して測定を行った。比較例1による測定結果を図3に示
す。この場合、バイアス電圧を高めると正孔注入による
暗電流が増大するために、バイアス電圧を50Vを超え
て印加することができず、バイアス電圧を50Vとし
た。この場合、エネルギー分解能は半値幅で4.0Ke
Vと悪化し、また、電流パルスの継続時間である応答時
間も10倍程度に悪化した。COMPARATIVE EXAMPLE 1 As Comparative Example 1, the anode and cathode electrodes of a semiconductor detector were formed by electroless plating.
The measurement was carried out in the same manner as in the above example, except that a t (platinum) electrode was used. FIG. 3 shows the measurement results of Comparative Example 1. In this case, when the bias voltage was increased, the dark current due to hole injection increased, so that the bias voltage could not be applied exceeding 50 V, and the bias voltage was set to 50 V. In this case, the energy resolution is 4.0 Ke in half width.
V, and the response time, which is the duration of the current pulse, also deteriorated about 10 times.
【0015】[0015]
【比較例2】比較例2として、直流バイアス電圧の印加
を10秒以上継続して連続的に測定を行い、それ以外は
上記実施例と同様にして測定を行った。図4は、電流パ
ルスの高さ分布でのピークカウントの相対値を縦軸と
し、直流バイアス電圧(300V)印加後の経時変化を
示す。10秒後にカウントピーク数の相対値が1%低下
し、その後も低下が継続することがわかる。直流バイア
ス電圧を変えて、カウントピーク数の相対値が1%低下
するまでの時間を安定時間として測定して、図5にまと
めた。この図から実験的に明らかなように、このような
安定時間tは、平均電界強度E/dの2乗に比例し、t
=(E/d)2/106で定められる。(ただし、バイア
ス電圧の電圧値をE(V)、アノード電極・カソード電
極間の半導体の厚さをd(cm)とする。)COMPARATIVE EXAMPLE 2 As Comparative Example 2, the measurement was carried out continuously by applying a DC bias voltage for 10 seconds or more, and otherwise the measurement was carried out in the same manner as in the above example. FIG. 4 shows a temporal change after the application of the DC bias voltage (300 V), with the relative value of the peak count in the height distribution of the current pulse as the vertical axis. It can be seen that the relative value of the count peak number decreases by 1% after 10 seconds, and the decrease continues thereafter. The time required for the relative value of the count peak number to decrease by 1% was measured as the stable time by changing the DC bias voltage, and the results are summarized in FIG. As is apparent from this drawing, the stabilization time t is proportional to the square of the average electric field strength E / d, and t
= Defined in (E / d) 2/10 6. (However, the voltage value of the bias voltage is E (V), and the thickness of the semiconductor between the anode electrode and the cathode electrode is d (cm).)
【0016】したがって、この安定時間t以下の時間の
み、直流バイアス電圧の印加を継続して測定を行えば、
検出感度の相当する電流パルスのカウント数を低下させ
ることはない。なお、放射線の検出は、電流パルスの数
をカウントする以外に、電流パルスを積分して平均電流
値として測定することもできる。Therefore, if the measurement is performed while the application of the DC bias voltage is continued only for the time equal to or less than the stabilization time t,
The count number of the current pulse corresponding to the detection sensitivity is not reduced. The radiation can be detected by counting the number of current pulses or by integrating the current pulses and measuring the average current value.
【図1】本実施例で用いるγ線検出装置の構成を説明す
るための概念図である。FIG. 1 is a conceptual diagram for explaining a configuration of a γ-ray detection device used in the present embodiment.
【図2】本実施例によるγ線のエネルギースペクトルに
対応した電流パルスの高さ分布を示す図である。FIG. 2 is a diagram illustrating a height distribution of a current pulse corresponding to an energy spectrum of a γ-ray according to the present embodiment.
【図3】比較例1によるγ線のエネルギースペクトルに
対応した電流パルスの高さ分布を示す図である。FIG. 3 is a diagram showing a height distribution of a current pulse corresponding to an energy spectrum of a γ-ray according to Comparative Example 1.
【図4】電流パルスの高さ分布でのカウントピーク数の
相対値の経時変化を示す図である。FIG. 4 is a diagram showing a change over time of a relative value of a count peak number in a height distribution of a current pulse.
【図5】半導体検出器内での平均電界強度と安定時間の
関係を示す図である。FIG. 5 is a diagram illustrating a relationship between an average electric field intensity and a stabilization time in a semiconductor detector.
1 半導体検出器 2 リレー 3 バイアス電源 4 プリアンプ 5 パルス高分析器 6 リレー駆動回路 DESCRIPTION OF SYMBOLS 1 Semiconductor detector 2 Relay 3 Bias power supply 4 Preamplifier 5 Pulse height analyzer 6 Relay drive circuit
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G01T 1/24 H01L 31/09 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 7 , DB name) G01T 1/24 H01L 31/09
Claims (1)
表面上に形成され正孔の注入を防ぐ障壁を有するアノー
ド電極と、該半導体の他の表面上に形成され電子の注入
を防ぐ障壁を有するカソード電極とからなる半導体検出
器を用いて放射線を検出する方法において、 (a)アノード電極・カソード電極間に直流のバイアス電
圧を印加して放射線の検出を開始し、 (b)バイアス電圧の電圧値をE(V)、アノード電極・
カソード電極間の半導体の厚さをd(cm)とした際
に、t=(E/d)2/106で定められる時間t(秒)
以下の時間、放射線の検出を連続し、 (c)その後、前記バイアス電圧の印加を停止する ことを特徴とする放射線検出方法1. A high-resistance CdTe semiconductor, an anode electrode formed on one surface of the semiconductor and having a barrier for preventing injection of holes, and a barrier formed on another surface of the semiconductor for preventing injection of electrons. A method for detecting radiation using a semiconductor detector comprising a cathode electrode having: (a) applying a DC bias voltage between an anode electrode and a cathode electrode to start detecting radiation; When the voltage value is E (V), the anode electrode
The semiconductor thickness between the cathode electrode upon the d (cm), t = ( E / d) 2/10 6 at time defined t (seconds)
(C) after that, the application of the bias voltage is stopped.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16383493A JP3151487B2 (en) | 1992-06-23 | 1993-06-10 | Radiation detection method |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18741892 | 1992-06-23 | ||
JP4-187418 | 1992-06-23 | ||
JP16383493A JP3151487B2 (en) | 1992-06-23 | 1993-06-10 | Radiation detection method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0675052A JPH0675052A (en) | 1994-03-18 |
JP3151487B2 true JP3151487B2 (en) | 2001-04-03 |
Family
ID=26489166
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16383493A Expired - Fee Related JP3151487B2 (en) | 1992-06-23 | 1993-06-10 | Radiation detection method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3151487B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7514689B2 (en) | 2004-12-28 | 2009-04-07 | Hitachi, Ltd. | Radiological imaging apparatus with current regulated units, imaging apparatus with bed, imaging apparatus with opening and closing units, and power supply unit |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2950190B2 (en) * | 1995-03-28 | 1999-09-20 | 株式会社田村電機製作所 | Card issuing device |
US5661289A (en) * | 1995-03-28 | 1997-08-26 | Tamura Electric Works, Ltd. | Card and card check method |
US7154100B2 (en) * | 2002-12-13 | 2006-12-26 | Konstantinos Spartiotis | Switching/depolarizing power supply for a radiation imaging device |
JP4945827B2 (en) * | 2007-06-11 | 2012-06-06 | 株式会社アクロラド | Semiconductor radiation detector |
WO2009101772A1 (en) * | 2008-02-12 | 2009-08-20 | Ishida Co., Ltd. | X-ray inspection apparatus |
WO2009122665A1 (en) * | 2008-04-01 | 2009-10-08 | 株式会社イシダ | X-ray inspection device |
-
1993
- 1993-06-10 JP JP16383493A patent/JP3151487B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7514689B2 (en) | 2004-12-28 | 2009-04-07 | Hitachi, Ltd. | Radiological imaging apparatus with current regulated units, imaging apparatus with bed, imaging apparatus with opening and closing units, and power supply unit |
Also Published As
Publication number | Publication date |
---|---|
JPH0675052A (en) | 1994-03-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Breskin et al. | High flux operation of the gated multistep avalanche chamber | |
JPH1056196A (en) | High speed radioactive ray detector | |
Breskin et al. | On the low-pressure operation of multistep avalanche chambers | |
JPH09127249A (en) | Method and device for correction of spectrum measurement in gamma photon detection field | |
US7372035B2 (en) | Radiological imaging apparatus | |
US6420710B1 (en) | Device for spectrometric measurement in the field of gamma photon detection | |
JP3151487B2 (en) | Radiation detection method | |
US7576326B2 (en) | Devices and methods for detecting and analyzing radiation | |
Charpak et al. | Investigation of operation of a parallel-plate avalanche chamber with a CsI photocathode under high gain conditions | |
WO2024094226A1 (en) | Dual-energy x-ray detector structure and dual-energy x-ray detection method | |
Aitken | Recent advances in x-ray detection technology | |
US7368723B2 (en) | Diamond radiation detector | |
Polichar et al. | Application of monolithic CdZnTe linear solid state ionization detectors for X-ray imaging | |
Kuckuck | Semiconductor detectors for use in the current mode | |
JP3520613B2 (en) | Driving method of radiation detector | |
US4255660A (en) | Detectors of penetrating radiation | |
US5430299A (en) | Scintillation crystal radiation detector which uses a multiwire counter structure in a position sensitive photo-multiplier | |
Veloso et al. | Application of a Microstrip Gas Counter in Energy‐Dispersive X‐Ray Fluorescence Analysis | |
Woody et al. | Properties of a barium fluoride-TMAE-multiwire proportional chamber detector using a large single crystal | |
JP3585356B2 (en) | Radiation detector | |
Benjamin et al. | High spectral resolution, photon counting detector for Doppler temperature measurements in magnetically confined plasmas | |
Shao et al. | Measurement of coincidence timing resolution with CdTe detectors | |
JPH07325157A (en) | Semiconductor radiation detector | |
Klein et al. | Fission fragment detection by thin film capacitors—II: Current pulse counter and mechanisms | |
Allison | Cadmium telluride matrix gamma camera |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S803 | Written request for registration of cancellation of provisional registration |
Free format text: JAPANESE INTERMEDIATE CODE: R316803 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080126 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090126 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100126 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100126 Year of fee payment: 9 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313532 |
|
S803 | Written request for registration of cancellation of provisional registration |
Free format text: JAPANESE INTERMEDIATE CODE: R316803 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100126 Year of fee payment: 9 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R370 | Written measure of declining of transfer procedure |
Free format text: JAPANESE INTERMEDIATE CODE: R370 |
|
S803 | Written request for registration of cancellation of provisional registration |
Free format text: JAPANESE INTERMEDIATE CODE: R316803 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110126 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130126 Year of fee payment: 12 |
|
LAPS | Cancellation because of no payment of annual fees |