JP3148703B2 - Magnetoresistive head and magnetic recording / reproducing device - Google Patents

Magnetoresistive head and magnetic recording / reproducing device

Info

Publication number
JP3148703B2
JP3148703B2 JP33589897A JP33589897A JP3148703B2 JP 3148703 B2 JP3148703 B2 JP 3148703B2 JP 33589897 A JP33589897 A JP 33589897A JP 33589897 A JP33589897 A JP 33589897A JP 3148703 B2 JP3148703 B2 JP 3148703B2
Authority
JP
Japan
Prior art keywords
magnetic
layer
head
insulating layer
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33589897A
Other languages
Japanese (ja)
Other versions
JPH11175921A (en
Inventor
亮一 中谷
俊彦 佐藤
洋治 丸山
昇 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP33589897A priority Critical patent/JP3148703B2/en
Publication of JPH11175921A publication Critical patent/JPH11175921A/en
Application granted granted Critical
Publication of JP3148703B2 publication Critical patent/JP3148703B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高い感度を有する
再生用磁気ヘッド及びその磁気ヘッドを用いた磁気記録
再生装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reproducing magnetic head having high sensitivity and a magnetic recording / reproducing apparatus using the magnetic head.

【0002】[0002]

【従来の技術】磁気記録の高密度化に伴い、磁気記録再
生装置の再生用磁気ヘッドとして、JulliereによるPhys
ics Letters,54A巻(1975年),3号,225ページに掲載
された"Tunneling between Ferromagnetic Films"に記
載の磁気トンネリング現象を示す多層膜の磁気抵抗効果
型ヘッドへの応用が検討されつつある。この磁気磁気抵
抗効果型ヘッドは、2層の磁性層で絶縁層を挟んだ構造
を有する磁気抵抗効果素子を備え、磁気抵抗効果素子の
2つの磁性層の磁化の向きが平行になっている時の方が
反平行になっている時より電子が絶縁層をトンネリング
する確率が高いことを利用して記録磁化の検出を行うも
のである。2層の磁性層で保磁力の大きさを変えたり、
片方の磁性層に反強磁性層を接触させた構造とすること
により、記録磁化からの漏洩磁界の作用で一方の磁性層
の磁化のみが反転して2つの磁性層の磁化の向きが平行
になったり反平行になったりするようにし、絶縁層を流
れるトンネル電流の大きさを検出することによって記録
磁化を検出する。
2. Description of the Related Art With the increase in the density of magnetic recording, Juliere's Phys.
The application of a multilayer film exhibiting a magnetic tunneling phenomenon described in “Tunneling between Ferromagnetic Films”, published in ics Letters, Vol. 54A (1975), Issue 3, page 225, to a magnetoresistive head is being studied. This magneto-resistance effect type head has a magneto-resistance effect element having a structure in which an insulating layer is sandwiched between two magnetic layers, and when the magnetization directions of the two magnetic layers of the magneto-resistance effect element are parallel. The recording magnetization is detected by utilizing the fact that electrons are more likely to tunnel through the insulating layer than when they are antiparallel. Change the coercive force with two magnetic layers,
With a structure in which the antiferromagnetic layer is in contact with one of the magnetic layers, only the magnetization of one of the magnetic layers is reversed by the action of the leakage magnetic field from the recording magnetization, and the magnetization directions of the two magnetic layers become parallel. The recording magnetization is detected by detecting the magnitude of a tunnel current flowing through the insulating layer.

【0003】このような磁気トンネリング現象を示す多
層膜では、平坦な優れた特性を有する絶縁層を形成する
ことが最も重要である。比較的優れた絶縁層を形成する
方法として、TezukaらによるJournal of Applied Physi
cs, 79巻(1996年), 8号, 6262ページに掲載された "Mag
netic Tunneling effect in Fe/Al2O3 /Ni1-XFeX Junct
ions"に記載のように、Alを自然酸化させる方法、あ
るいはMooderaらによる1997 Digests of INTERMAG '97,
FA-04に掲載された "Large Magnetoresistancein Tunn
el Junctions - Potential for MRAM and Read Head"
に記載のように、Alを酸素プラズマにさらし、酸化さ
せる方法がある。
In a multilayer film exhibiting such a magnetic tunneling phenomenon, it is most important to form a flat insulating layer having excellent characteristics. As a method of forming a relatively excellent insulating layer, Tezuka et al., Journal of Applied Physi
cs, Vol. 79 (1996), No. 8, page 6262, "Mag
netic Tunneling effect in Fe / Al 2 O 3 / Ni 1-X Fe X Junct
As described in "Ions", a method of spontaneously oxidizing Al, or the method of Moodera et al. 1997 Digests of INTERMAG '97,
"Large Magnetoresistancein Tunn" published in FA-04
el Junctions-Potential for MRAM and Read Head "
As described above, there is a method of exposing Al to oxygen plasma to oxidize it.

【0004】[0004]

【発明が解決しようとする課題】上述のようにAlを酸
化させて絶縁層を形成する方法では、磁性層上にAl層
を形成する必要がある。しかし、Alの融点が低いため
に、スパッタリング法を用いても厚さの均一なAl層を
形成することは困難である。従って、上記Al層を酸化
させた絶縁層の厚さも不均一となる。絶縁層厚の不均一
性は、多層膜の磁気抵抗変化率を低下させるという問題
がある。
In the method of forming an insulating layer by oxidizing Al as described above, it is necessary to form an Al layer on a magnetic layer. However, since the melting point of Al is low, it is difficult to form an Al layer having a uniform thickness even by using a sputtering method. Therefore, the thickness of the insulating layer obtained by oxidizing the Al layer becomes uneven. The non-uniformity of the thickness of the insulating layer has a problem that the magnetoresistance ratio of the multilayer film is reduced.

【0005】本発明は、磁気トンネリング現象を示す多
層膜の磁気抵抗効果型ヘッドへの応用におけるこのよう
な問題点に鑑みてなされたもので、絶縁層に改良を加え
て高感度な磁気抵抗効果型ヘッドを提供することを目的
とする。
The present invention has been made in view of such a problem in the application of a multilayer film exhibiting a magnetic tunneling phenomenon to a magnetoresistive head. It is intended to provide a mold head.

【0006】[0006]

【課題を解決するための手段】本発明者等は、磁気トン
ネリング現象を示す多層膜について鋭意研究を重ねた結
果、絶縁層として、酸化されやすく、また、融点の比較
的高い金属の酸化物を用いることにより、層厚の均一な
絶縁層を得ることができることを見出し、本発明を完成
するに至った。
Means for Solving the Problems The present inventors have conducted intensive studies on a multilayer film exhibiting a magnetic tunneling phenomenon, and as a result, as an insulating layer, a metal oxide which is easily oxidized and has a relatively high melting point is used. The inventors have found that an insulating layer having a uniform thickness can be obtained by using the same, and have completed the present invention.

【0007】すなわち、本発明は、第1の磁性層、絶縁
層、第2の磁性層の順に形成されている多層膜を用いた
磁気抵抗効果型ヘッドにおいて、上記絶縁層が、周期律
表のIVa、Va族元素であるTi,Zr,Hf,V,N
b,Taの群から選択された1つの元素の酸化物又は複
数の元素からなる合金の酸化物からなることを特徴とす
る。合金は、例えばHf−Zr,Nb−Tiなど、任意
の元素の組み合わせを用いることができる。
That is, the present invention relates to a magnetoresistive head using a multilayer film in which a first magnetic layer, an insulating layer, and a second magnetic layer are formed in this order, wherein the insulating layer is formed of a periodic table. IVa, Va group elements Ti, Zr, Hf, V, N
It is characterized by comprising an oxide of one element selected from the group of b and Ta or an oxide of an alloy composed of a plurality of elements. For the alloy, any combination of elements such as Hf-Zr and Nb-Ti can be used.

【0008】Ti,Zr,Hf,V,Nb,Taは、酸
化されやすい金属である。また、融点も比較的高いた
め、均一な厚さを有する金属層を形成することができ
る。このため、均一な厚さおよびトンネルバリアが高く
優れた絶縁性を有する絶縁層を得ることができる。T
i,Zr,Hf,V,Nb,Taのうちでも、Zr,N
b,Hf,Taは原子が大きく磁性層との拡散が生じに
くいので好ましい。また、Ti,Zr,Hfは金属層が
非晶質になりやすいため平坦な絶縁層の形成にとって有
利である。さらに、Zr及びHfは自然酸化しやすいた
め、短時間で酸化させることができ、また酸化物が安定
でトンネルバリアーが破壊されにくいため最も好まし
い。ただ、Hfは高価なのが欠点である。
[0008] Ti, Zr, Hf, V, Nb and Ta are metals that are easily oxidized. Further, since the melting point is relatively high, a metal layer having a uniform thickness can be formed. Therefore, an insulating layer having a uniform thickness, a high tunnel barrier, and excellent insulating properties can be obtained. T
Among i, Zr, Hf, V, Nb, and Ta, Zr, N
b, Hf, and Ta are preferable because the atoms are large and diffusion with the magnetic layer hardly occurs. Further, Ti, Zr, and Hf are advantageous for forming a flat insulating layer because the metal layer tends to become amorphous. Further, Zr and Hf are most preferable because they are easily oxidized spontaneously and can be oxidized in a short time, and the oxide is stable and the tunnel barrier is hardly broken. However, Hf is disadvantageous in that it is expensive.

【0009】第1の磁性層又は第2の磁性層に反強磁性
層が接した構造としてもよい。また、第1の磁性層と第
2の磁性層の保磁力を変えることにより、記録磁化から
の漏洩磁界の作用で一方の磁性層の磁化のみが反転する
ようにしても良い。この磁気抵抗効果型ヘッドは誘導型
磁気ヘッドと組み合わせることができる。本発明による
と、絶縁層の厚さを均一とすることができるため、磁気
抵抗効果型ヘッドの再生出力が高く、超高密度磁気記録
装置の再生用磁気ヘッドとして有効な磁気ヘッドを得る
ことができる。
A structure may be employed in which an antiferromagnetic layer is in contact with the first magnetic layer or the second magnetic layer. Further, by changing the coercive force of the first magnetic layer and the second magnetic layer, only the magnetization of one of the magnetic layers may be reversed by the action of the leakage magnetic field from the recording magnetization. This magnetoresistive head can be combined with an inductive magnetic head. According to the present invention, since the thickness of the insulating layer can be made uniform, the reproducing output of the magnetoresistive head is high, and a magnetic head effective as a reproducing magnetic head of an ultra-high density magnetic recording device can be obtained. it can.

【0010】[0010]

【発明の実施の形態】以下、図面を参照して本発明の実
施の形態を説明する。 [実施の形態1]図1は、多層膜を用いた本発明の磁気
抵抗効果素子の一例の断面模式図である。同図におい
て、基板11にはSi(100)単結晶、下部電極12
には厚さ10nmのAuを用いた。Au層の形成にはイ
オンビームスパッタリング法を用いた。蒸着用イオンガ
ンの加速電圧は300V、イオン電流は40mA、蒸着
中のAr圧力は0.02Paである。下部電極12の上
に、200μm×200μmの正方形の穴の開いた絶縁
体13をスパッタリングおよびリソグラフィにより形成
した。絶縁体13の材料はSiO2である。
Embodiments of the present invention will be described below with reference to the drawings. [Embodiment 1] FIG. 1 is a schematic sectional view of an example of a magnetoresistive element of the present invention using a multilayer film. In the figure, a substrate 11 has a single crystal of Si (100) and a lower electrode 12.
Used was Au having a thickness of 10 nm. The ion beam sputtering method was used for forming the Au layer. The acceleration voltage of the ion gun for vapor deposition is 300 V, the ion current is 40 mA, and the Ar pressure during vapor deposition is 0.02 Pa. On the lower electrode 12, an insulator 13 having a square hole of 200 μm × 200 μm was formed by sputtering and lithography. The material of the insulator 13 is SiO 2 .

【0011】さらに、厚さ5nmのCo層からなる磁性
層14を形成した。磁性層14の保磁力は800A/m
である。磁性層14の上にTi,Zr,Hf,V,N
b,Taからなる厚さ2.0nmの金属層をそれぞれ形
成した6種類の試料を作成した後、一度、大気中に試料
を出した。大気に24時間、試料をさらすことにより、
上記金属の酸化物を形成し、絶縁層15とした。磁性層
16には、厚さ5nmのNi−20at%Fe合金層を
用いた。磁性層16の保磁力は80A/m、異方性磁界
は400A/mである。
Further, a magnetic layer 14 made of a 5 nm-thick Co layer was formed. The coercive force of the magnetic layer 14 is 800 A / m
It is. Ti, Zr, Hf, V, N on the magnetic layer 14
After preparing six types of samples each having a 2.0 nm thick metal layer made of b and Ta, the samples were once taken out to the atmosphere. By exposing the sample to the atmosphere for 24 hours,
An oxide of the above metal was formed to form an insulating layer 15. As the magnetic layer 16, a Ni-20 at% Fe alloy layer having a thickness of 5 nm was used. The coercive force of the magnetic layer 16 is 80 A / m, and the anisotropic magnetic field is 400 A / m.

【0012】また、比較例として、厚さ2.0nmのA
lを同様に大気中にさらすことにより酸化した絶縁層1
5を用いた多層膜も形成した。これらの各層もイオンビ
ームスパッタリング装置により形成した。スパッタリン
グ条件は下部電極形成時と同様である。図1のように、
絶縁体13の上にも多層膜14,15,16は形成され
る。しかし、これらの部分は下部電極12と接していな
いため、磁気抵抗効果膜として機能しない。磁気抵抗効
果膜として機能するのは、下部電極12に接する部分だ
けである。また、図1に示すように、多層膜上に、厚さ
20nmのAuからなる上部電極17を形成した。
As a comparative example, a 2.0 nm thick A
Insulating layer 1 also oxidized by exposing
5 was also formed. Each of these layers was also formed by an ion beam sputtering device. The sputtering conditions are the same as those for forming the lower electrode. As shown in FIG.
The multilayer films 14, 15, 16 are also formed on the insulator 13. However, since these portions are not in contact with the lower electrode 12, they do not function as a magnetoresistive film. Only the portion in contact with the lower electrode 12 functions as a magnetoresistive film. Further, as shown in FIG. 1, an upper electrode 17 made of Au having a thickness of 20 nm was formed on the multilayer film.

【0013】表1に、形成した多層膜の磁気抵抗変化率
を示す。磁気抵抗変化率は、多層膜に−80kA/mか
ら+80kA/mの間の磁界を往復印加して測定した。
この多層膜では2層の磁性層14,16の保磁力が異な
るために、磁化の向きのなす角度が平行と反平行の間を
変化する。そのため絶縁層15をトンネリングする電子
のトンネル確率が変化して磁気抵抗効果が生じる。な
お、表1に示した磁気抵抗変化率は試料10個を測定し
た平均の値である。
Table 1 shows the magnetoresistance ratio of the formed multilayer film. The magnetoresistance ratio was measured by applying a magnetic field between -80 kA / m and +80 kA / m back and forth to the multilayer film.
In this multilayer film, since the coercive forces of the two magnetic layers 14 and 16 are different, the angle between the directions of magnetization changes between parallel and antiparallel. As a result, the tunneling probability of electrons tunneling through the insulating layer 15 changes and a magnetoresistance effect occurs. In addition, the magnetoresistance ratio shown in Table 1 is an average value obtained by measuring 10 samples.

【0014】[0014]

【表1】 表1から分かるように、Alを酸化させた絶縁層を用い
た比較例の多層膜の磁気抵抗変化率は比較的低い。これ
は、形成したAl層の平坦性が悪く、薄い部分と厚い部
分が存在し、ピンホールによる磁性層14と磁性層16
の短絡が生じたりするためである。これに対し、Ti,
Zr,Hf,V,Nb,Ta層を酸化させた場合には、
磁気抵抗変化率は高い。これは、これらの層の平坦性が
良いために、均一な厚さの絶縁層が形成されたためと考
えられる。 [実施の形態2]図2は、多層膜を用いた本発明の磁気
抵抗効果素子の他の例の断面模式図である。同図におい
て、基板21にはSi(100)単結晶、下部電極22
には、厚さ10nmのAuを用いた。Au層の形成には
イオンビームスパッタリング法を用いた。形成条件は実
施の形態1と同様である。下部電極22の上に、200
μm×200μmの正方形の穴の開いた絶縁体23をス
パッタリングおよびリソグラフィにより形成した。絶縁
体23の材料はSiO2である。
[Table 1] As can be seen from Table 1, the multilayer film of the comparative example using the insulating layer obtained by oxidizing Al has a relatively low magnetoresistance ratio. This is because the flatness of the formed Al layer is poor, there are thin portions and thick portions, and the magnetic layers 14 and 16 are formed by pinholes.
This is because a short circuit may occur. In contrast, Ti,
When the Zr, Hf, V, Nb, and Ta layers are oxidized,
The magnetoresistance ratio is high. This is considered to be because the insulating layers having a uniform thickness were formed due to the good flatness of these layers. [Embodiment 2] FIG. 2 is a schematic sectional view of another example of a magnetoresistive element of the present invention using a multilayer film. In the figure, a substrate 21 has a single crystal of Si (100) and a lower electrode 22.
Used was Au having a thickness of 10 nm. The ion beam sputtering method was used for forming the Au layer. The forming conditions are the same as in the first embodiment. On the lower electrode 22, 200
An insulator 23 having a square hole of μm × 200 μm was formed by sputtering and lithography. The material of the insulator 23 is SiO 2 .

【0015】さらに、厚さ5nmのNi−20at%F
eからなる磁性層24を形成した。磁性層24の上にT
i,Zr,Hf,V,Nb,Taからなる厚さ2.0n
mの金属層をそれぞれ形成した6種類の試料を作成した
後、一度、大気中に試料を出した。大気に24時間、試
料をさらすことにより、上記金属の酸化物を形成し、絶
縁層25とした。磁性層26には、厚さ5nmのNi−
20at%Fe合金を用い、磁性層26に接する反強磁
性層27には、厚さ10nmのMn−22at%Ir合
金を用いた。
Further, a Ni-20 at% F having a thickness of 5 nm is used.
The magnetic layer 24 made of e was formed. T on the magnetic layer 24
thickness 2.0n consisting of i, Zr, Hf, V, Nb, Ta
After preparing six types of samples each having m metal layers formed thereon, the samples were once taken out to the atmosphere. The oxide of the above metal was formed by exposing the sample to the air for 24 hours, and the insulating layer 25 was formed. The magnetic layer 26 has a 5 nm-thick Ni-
A 20 at% Fe alloy was used, and a 10 nm thick Mn-22 at% Ir alloy was used for the antiferromagnetic layer 27 in contact with the magnetic layer 26.

【0016】また、比較例として、厚さ2.0nmのA
lを酸化した絶縁層25を用いた多層膜も形成した。こ
れらの各層もイオンビームスパッタリング装置により形
成した。スパッタリング条件は下部電極形成時と同様で
ある。図2のように、絶縁体23の上にも多層膜24〜
27は形成される。しかし、これらの部分は下部電極2
2と接していないため、磁気抵抗効果膜として機能しな
い。磁気抵抗効果膜として機能するのは、下部電極22
に接する部分だけである。また、図2に示すように、多
層膜上に、厚さ20nmのAuからなる上部電極28を
形成した。
As a comparative example, a 2.0 nm thick A
A multilayer film using the insulating layer 25 obtained by oxidizing 1 was also formed. Each of these layers was also formed by an ion beam sputtering device. The sputtering conditions are the same as those for forming the lower electrode. As shown in FIG.
27 are formed. However, these parts are lower electrode 2
2 does not function as a magnetoresistive film. The lower electrode 22 functions as a magnetoresistive film.
Only the part in contact with Further, as shown in FIG. 2, an upper electrode 28 made of Au having a thickness of 20 nm was formed on the multilayer film.

【0017】表2に、形成した多層膜の磁気抵抗変化率
を示す。磁気抵抗変化率は、多層膜に−40kA/mか
ら+40kA/mの磁界を往復印加して測定した。この
多層膜では磁性層26が反強磁性層27に接しているた
め、磁性層24の磁化の方向のみが変化し、2層の磁性
層24,26の磁化のなす角度が平行と反平行の間を変
化する。そのため、絶縁層25をトンネリングする電子
のトンネル確率が変化して磁気抵抗効果が生じる。な
お、表2に示した磁気抵抗変化率は試料10個を測定し
た平均の値である。
Table 2 shows the magnetoresistance ratio of the formed multilayer film. The magnetoresistance ratio was measured by applying a magnetic field of −40 kA / m to +40 kA / m back and forth to the multilayer film. In this multilayer film, since the magnetic layer 26 is in contact with the antiferromagnetic layer 27, only the magnetization direction of the magnetic layer 24 changes, and the angles formed by the magnetizations of the two magnetic layers 24 and 26 are parallel and antiparallel. Change between. Therefore, the tunneling probability of the electrons tunneling through the insulating layer 25 changes, and the magnetoresistance effect occurs. In addition, the magnetoresistance ratio shown in Table 2 is an average value obtained by measuring 10 samples.

【0018】[0018]

【表2】 表2から分かるように、Alを酸化させた絶縁層を用い
た比較例の多層膜の磁気抵抗変化率は比較的低い。これ
は、形成したAl層の平坦性が悪く、薄い部分と厚い部
分が存在し、ピンホールによる磁性層24と磁性層26
の短絡が生じたりするためである。これに対し、Ti,
Zr,Hf,V,Nb,Ta層を酸化させた場合には、
磁気抵抗変化率は高い。これは、これらの層の平坦性が
良いために、均一な厚さの絶縁層が形成されたためと考
えられる。[実施の形態3]実施の形態2で述べた型の
磁気抵抗効果素子を用い、磁気ヘッドを作製した。この
場合、絶縁体の穴は、5μm×5μmの正方形である。
磁気ヘッドの構造を以下に示す。図3は、本実施の形態
による記録再生分離型ヘッドの一部を切断した斜視図で
ある。磁気抵抗効果素子31をシールド層32,33で
挾んだ部分が再生ヘッドとして働き、コイル34を挾む
下部磁極35、上部磁極36の部分が記録ヘッドとして
働く。
[Table 2] As can be seen from Table 2, the multilayer film of the comparative example using the insulating layer obtained by oxidizing Al has a relatively low magnetoresistance ratio. This is because the flatness of the formed Al layer is poor, there are thin portions and thick portions, and the magnetic layers 24 and 26 are formed by pinholes.
This is because a short circuit may occur. In contrast, Ti,
When the Zr, Hf, V, Nb, and Ta layers are oxidized,
The magnetoresistance ratio is high. This is considered to be because the insulating layers having a uniform thickness were formed due to the good flatness of these layers. [Embodiment 3] A magnetic head was manufactured using a magnetoresistive element of the type described in Embodiment 2. In this case, the hole of the insulator is a square of 5 μm × 5 μm.
The structure of the magnetic head is shown below. FIG. 3 is a perspective view in which a part of the recording / reproducing separation type head according to the present embodiment is cut away. The portion where the magnetoresistive element 31 is sandwiched between the shield layers 32 and 33 functions as a reproducing head, and the portions of the lower magnetic pole 35 and the upper magnetic pole 36 which sandwich the coil 34 function as a recording head.

【0019】以下に、このヘッドの作製方法を示す。A
23・TiCを主成分とする焼結体をスライダ用の基
板37とした。シールド層、記録磁極にはスパッタリン
グ法で形成したNi−Fe合金を用いた。各磁性膜の膜
厚は、以下のようにした。上下のシールド層32,33
は1.0μm、下部磁極35、上部磁極36は3.0μ
m、各層間のギャップ材としてはスパッタリングで形成
したAl23を用いた。ギャップ層の膜厚は、シールド
層と磁気抵抗効果素子間で0.2μm、記録磁極間では
0.4μmとした。さらに再生ヘッドと記録ヘッドの間
隔は約4μmとし、このギャップもAl23で形成し
た。コイル34には膜厚3μmのCuを使用した。
Hereinafter, a method of manufacturing the head will be described. A
A sintered body mainly composed of l 2 O 3 .TiC was used as a slider substrate 37. A Ni—Fe alloy formed by a sputtering method was used for the shield layer and the recording magnetic pole. The thickness of each magnetic film was as follows. Upper and lower shield layers 32, 33
Is 1.0 μm, the lower magnetic pole 35 and the upper magnetic pole 36 are 3.0 μm.
m, Al 2 O 3 formed by sputtering was used as a gap material between the respective layers. The thickness of the gap layer was 0.2 μm between the shield layer and the magnetoresistive element, and 0.4 μm between the recording magnetic poles. Further, the distance between the reproducing head and the recording head was about 4 μm, and this gap was also formed of Al 2 O 3 . Cu having a thickness of 3 μm was used for the coil 34.

【0020】上記磁気ヘッドを用いて磁気ディスク装置
を作製した。図4は磁気ディスク装置の構造を示し、図
4(a)は平面図、図4(b)はそのAA′断面図であ
る。磁気記録媒体駆動部42により回転する磁気記録媒
体41には、残留磁束密度0.75TのCo−Ni−P
t−Ta系合金からなる材料を用いた。磁気ヘッド駆動
部44により保持された磁気ヘッド43のトラック幅は
5μmとした。
A magnetic disk drive was manufactured using the above magnetic head. 4A and 4B show the structure of the magnetic disk drive. FIG. 4A is a plan view, and FIG. 4B is a sectional view taken along the line AA '. The magnetic recording medium 41 rotated by the magnetic recording medium driving unit 42 has Co-Ni-P having a residual magnetic flux density of 0.75T.
A material composed of a t-Ta alloy was used. The track width of the magnetic head 43 held by the magnetic head driving unit 44 was 5 μm.

【0021】本実施の形態の磁気ヘッドに用いた再生用
の磁気抵抗効果素子は、従来の磁気抵抗効果素子よりも
再生出力は高いが、ノイズも大きい。このため、記録再
生信号処理系により、ある決められた値以上の信号が検
出された時に、その信号が磁気記録媒体上に記録されて
いることとした。トンネリング型磁気抵抗効果素子は、
磁気抵抗変化率が高く、超高密度磁気記録装置用の再生
用磁気ヘッドとして有効である。ノイズが大きいことの
問題は、上述の方法で回避できた。
The reproducing magnetoresistive element used in the magnetic head of this embodiment has a higher reproduction output than the conventional magnetoresistive element, but also has a larger noise. Therefore, when a signal having a certain value or more is detected by the recording / reproducing signal processing system, the signal is recorded on the magnetic recording medium. The tunneling type magnetoresistive element is
It has a high magnetoresistance change rate and is effective as a reproducing magnetic head for an ultra-high density magnetic recording device. The problem of high noise could be avoided by the method described above.

【0022】本発明によると、絶縁膜としてAlの酸化
膜を用いた場合に比べて再生出力がほぼ3倍となり、高
記録密度化に対応できる磁気ヘッド、及びその磁気ヘッ
ドを組み込んだ超高密度磁気記録装置を得ることができ
る。
According to the present invention, the read output is almost tripled as compared with the case where an Al oxide film is used as an insulating film, and a magnetic head capable of coping with high recording density and an ultra-high density incorporating the magnetic head are provided. A magnetic recording device can be obtained.

【0023】[0023]

【発明の効果】上述のように、磁性層、絶縁層、磁性層
の順に形成されている多層膜を用いた磁気抵抗効果型ヘ
ッドにおいて、上記絶縁層をTi,Zr,Hf,V,N
b,Taの酸化物とすることにより、絶縁層の厚さが均
一になり、磁気抵抗効果型ヘッドの出力が高くなる。ま
た、上記磁気抵抗効果型ヘッドを用いることにより高性
能磁気記録再生装置を得ることができる。
As described above, in a magnetoresistive head using a multilayer film formed in the order of a magnetic layer, an insulating layer and a magnetic layer, the insulating layer is made of Ti, Zr, Hf, V, N
By using oxides of b and Ta, the thickness of the insulating layer becomes uniform, and the output of the magnetoresistive head increases. Further, a high-performance magnetic recording / reproducing apparatus can be obtained by using the above-mentioned magnetoresistive head.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の磁気抵抗効果素子の一例の断面模式
図。
FIG. 1 is a schematic cross-sectional view of an example of a magnetoresistance effect element according to the present invention.

【図2】本発明の磁気抵抗効果素子の他の例の断面模式
図。
FIG. 2 is a schematic cross-sectional view of another example of the magnetoresistive element of the present invention.

【図3】本発明の磁気記録再生装置に用いた磁気ヘッド
の構造を示す斜視図。
FIG. 3 is a perspective view showing the structure of a magnetic head used in the magnetic recording / reproducing apparatus of the present invention.

【図4】磁気ディスク装置の構造を示す図。FIG. 4 is a diagram showing the structure of a magnetic disk drive.

【符号の説明】[Explanation of symbols]

11,21…基板、12,22…下部電極、13,23
…絶縁体、14,16,24,26…磁性層、12,2
5…絶縁層、17,28…上部電極、27…反強磁性
層、31…磁気抵抗効果素子、32,33…シールド
層、34…コイル、35…下部磁極、36…上部磁極、
37…基板、41…磁気記録媒体、42…磁気記録媒体
駆動部、43…磁気ヘッド、44…磁気ヘッド駆動部、
45…記録再生信号処理系
11, 21 ... substrate, 12, 22 ... lower electrode, 13, 23
... Insulator, 14, 16, 24, 26 ... Magnetic layer, 12, 2
5: insulating layer, 17, 28: upper electrode, 27: antiferromagnetic layer, 31: magnetoresistive element, 32, 33: shield layer, 34: coil, 35: lower magnetic pole, 36: upper magnetic pole,
37: substrate, 41: magnetic recording medium, 42: magnetic recording medium drive, 43: magnetic head, 44: magnetic head drive,
45 Recording / reproduction signal processing system

───────────────────────────────────────────────────── フロントページの続き (72)発明者 清水 昇 東京都国分寺市東恋ヶ窪一丁目280番地 株式会社 日立製作所 中央研究所内 (56)参考文献 特開 平10−190092(JP,A) 特開 平11−168249(JP,A) (58)調査した分野(Int.Cl.7,DB名) G11B 5/39 ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Noboru Shimizu 1-280 Higashi Koigabo, Kokubunji-shi, Tokyo Inside the Central Research Laboratory, Hitachi, Ltd. (56) References JP-A-10-190092 (JP, A) JP-A-11 -168249 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) G11B 5/39

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 第1のNiFe合金層、絶縁層、第2の
NiFe合金層の順に形成されている多層膜を用いた磁
気抵抗効果型ヘッドにおいて、上記絶縁層が、Ti,
V,Taの群から選択された1つの元素の酸化物または
Ti,V,Ta,Zr,Hf,Nbの群から選択された
複数の元素からなる合金の酸化物からなることを特徴と
する磁気抵抗効果型ヘッド。
A first NiFe alloy layer, an insulating layer, a second
In a magnetoresistive head using a multilayer film formed in the order of a NiFe alloy layer, the insulating layer is made of Ti,
An oxide of one element selected from the group of V, Ta, or
Selected from the group of Ti, V, Ta, Zr, Hf, Nb
A magnetoresistive head comprising an oxide of an alloy comprising a plurality of elements .
【請求項2】 請求項1に記載の磁気抵抗効果型ヘッド
において、前記第1の磁性層又は第2の磁性層に反強磁
性層が接していることを特徴とする磁気抵抗効果型ヘッ
ド。
2. The magnetoresistive head according to claim 1, wherein an antiferromagnetic layer is in contact with the first magnetic layer or the second magnetic layer.
【請求項3】 請求項1又は2に記載の磁気抵抗効果型
ヘッドと誘導型磁気ヘッドとを組み合わせたことを特徴
とする磁気ヘッド。
3. A magnetic head comprising a combination of the magnetoresistive head according to claim 1 and an inductive magnetic head.
【請求項4】 請求項1,2又は3に記載の磁気ヘッド
を備えることを特徴とする磁気記録再生装置。
4. A magnetic recording and reproducing apparatus comprising the magnetic head according to claim 1, 2, or 3.
JP33589897A 1997-12-05 1997-12-05 Magnetoresistive head and magnetic recording / reproducing device Expired - Fee Related JP3148703B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33589897A JP3148703B2 (en) 1997-12-05 1997-12-05 Magnetoresistive head and magnetic recording / reproducing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33589897A JP3148703B2 (en) 1997-12-05 1997-12-05 Magnetoresistive head and magnetic recording / reproducing device

Publications (2)

Publication Number Publication Date
JPH11175921A JPH11175921A (en) 1999-07-02
JP3148703B2 true JP3148703B2 (en) 2001-03-26

Family

ID=18293613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33589897A Expired - Fee Related JP3148703B2 (en) 1997-12-05 1997-12-05 Magnetoresistive head and magnetic recording / reproducing device

Country Status (1)

Country Link
JP (1) JP3148703B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6653154B2 (en) * 2001-03-15 2003-11-25 Micron Technology, Inc. Method of forming self-aligned, trenchless mangetoresistive random-access memory (MRAM) structure with sidewall containment of MRAM structure
US6731477B2 (en) 2001-09-20 2004-05-04 Hitachi Global Storage Technologies Netherlands B.V. Current-perpendicular-to-plane spin-valve sensor with metallic oxide barrier layer and method of fabrication
FR2860910B1 (en) 2003-10-10 2006-02-10 Commissariat Energie Atomique MAGNETIC TUNNEL JUNCTION DEVICE AND METHOD OF WRITING / READING SUCH A DEVICE

Also Published As

Publication number Publication date
JPH11175921A (en) 1999-07-02

Similar Documents

Publication Publication Date Title
JP2771128B2 (en) Magnetoresistive element, magnetoresistive head using the same, memory element, and amplifying element
JP3447468B2 (en) Magnetoresistive element, method of manufacturing the same, and magnetic head using the same
US6631055B2 (en) Tunnel valve flux guide structure formed by oxidation of pinned layer
US6947263B2 (en) CPP mode magnetic sensing element including a multilayer free layer biased by an antiferromagnetic layer
US20040218310A1 (en) Magnetic head and tunnel junction magneto-resistive head having plural ferromagnetic layers associated with an antiferromagnetic coupling layer for magnetically biasing the sensing free layer
JPH11134620A (en) Ferromagnetic tunnel junction element sensor and its manufacture
KR20000023047A (en) Magnetic element, magnetic memory device, magnetoresistance effect head, and magnetic storage system
JPH11175920A (en) Magneto-resistance effect type combined head and its manufacture
JP3050189B2 (en) Magnetoresistive element and method of manufacturing the same
JP3231313B2 (en) Magnetic head
JPH1196515A (en) Gmr magnetic sensor, its production and magnetic head
US6765769B2 (en) Magnetoresistive-effect thin film, magnetoresistive-effect element, and magnetoresistive-effect magnetic head
JPH10255231A (en) Magneto-resistive element
JP3177184B2 (en) Magnetoresistive element, magnetic head and magnetic recording / reproducing apparatus using the same
JP3559722B2 (en) Magnetoresistive element, solid-state memory
JP2001094173A (en) Magnetic sensor, magnetic head and magnetic disk device
JP2001184613A (en) Magneto resistive sensor
JP3420152B2 (en) Magnetoresistive head and magnetic recording / reproducing device
JP3148703B2 (en) Magnetoresistive head and magnetic recording / reproducing device
JP3527786B2 (en) Multilayer magnetoresistive film and magnetic head
JPH09288807A (en) Thin film magnetic head
JPH10124823A (en) Magneto-resistive element and magnetic head, magnetic recording and reproducing head and magnetic memory device formed by using the same
JP2008192827A (en) Tunnel-type magnetism detecting element
JP2000322714A (en) Tunnel magnetoresistance effect type magnetic field detecting device, its production and magnetic head using the same
JPH11177161A (en) Magnetoresistance effect element and magnetic reluctance effect type thin film head

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080112

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100112

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees