JP3148115B2 - Determination method of additive amount in copper electrorefining - Google Patents

Determination method of additive amount in copper electrorefining

Info

Publication number
JP3148115B2
JP3148115B2 JP03557596A JP3557596A JP3148115B2 JP 3148115 B2 JP3148115 B2 JP 3148115B2 JP 03557596 A JP03557596 A JP 03557596A JP 3557596 A JP3557596 A JP 3557596A JP 3148115 B2 JP3148115 B2 JP 3148115B2
Authority
JP
Japan
Prior art keywords
additive
amount
electrolytic
copper
determined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP03557596A
Other languages
Japanese (ja)
Other versions
JPH09209185A (en
Inventor
孝治 安藤
直行 土田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP03557596A priority Critical patent/JP3148115B2/en
Publication of JPH09209185A publication Critical patent/JPH09209185A/en
Application granted granted Critical
Publication of JP3148115B2 publication Critical patent/JP3148115B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Electrolytic Production Of Metals (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、銅の電解精製にお
ける添加剤の添加量を容易、かつ確実に決定し得る銅電
解精製における添加剤の添加量決定方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for determining the amount of an additive in electrolytic copper refining, in which the amount of the additive in the electrolytic copper refining can be easily and reliably determined.

【0002】[0002]

【従来の技術】銅などの金属の電解精製において、平滑
な電着物(電気銅)表面を得るために電解液にチオ尿
素、にかわ、塩素イオンなどの添加剤を加えることが一
般に行われている。しかして、添加剤は、カソード表面
に吸着することによって特定部分の電着の進行を抑え電
着物表面全体を平滑にする作用があるとされている。し
たがって、前記した添加剤の添加量が少な過ぎると粒や
瘤の発生など電気銅の外観を悪化するものであり、逆
に、添加剤の総量が過剰であっても粒などを発生するこ
とが知られていて、添加量の総量を適量に保つことが重
要である。また、チオ尿素、にかわ、塩素イオンなどの
個々の添加剤の添加量もどの程度の範囲にすべきかは、
経験的に知られている。
2. Description of the Related Art In the electrolytic refining of metals such as copper, it is common practice to add additives such as thiourea, glue, and chloride ions to an electrolytic solution in order to obtain a smooth electrodeposited (electrolytic copper) surface. . Thus, it is said that the additive has an effect of suppressing the progress of electrodeposition at a specific portion by adsorbing on the cathode surface and smoothing the entire surface of the electrodeposit. Therefore, if the amount of the additive is too small, the appearance of the electrolytic copper is deteriorated such as generation of particles and bumps, and conversely, even if the total amount of the additive is excessive, particles may be generated. It is known, and it is important to keep the total amount of addition to a suitable amount. Also, to what extent the amount of each additive such as thiourea, glue, chloride ion should be added,
Known empirically.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、添加剤
は、一般に微量な上に電解の途中で分解することも多く
添加剤のそれぞれ、およびその総量を定量分析を行い得
られた値によって行う管理は困難である。さらに電解操
業に当たっては、添加剤以外にも電流密度、電解液組
成、液温、極板の面間距離や歪みなど、電着状態に影響
する数多くの要因があり、添加剤量は、操業条件の変化
につれ細かく調整する必要があるにもかかわらず、経験
的にしか決定することができず、電解条件の変更に対し
て添加剤量の迅速な決定と操業管理は現在のところ殆ど
困難であるという問題がある。
However, additives are generally very small and are often decomposed in the course of electrolysis, so that each of the additives and the total amount thereof are controlled by the values obtained by performing quantitative analysis. Have difficulty. In addition, in the electrolytic operation, there are many factors other than additives, such as current density, electrolyte composition, liquid temperature, distance between electrode plates and distortion, which affect the electrodeposition condition. Despite the need to make fine adjustments as the temperature changes, it can only be determined empirically, and it is currently difficult to quickly determine the amount of additives and manage the operation for changing electrolysis conditions. There is a problem.

【0004】本発明は、銅の電解精製において、必要と
する添加剤量を迅速に決定し得る手段を提供することを
目的とするものである。
[0004] It is an object of the present invention to provide means for rapidly determining the amount of additive required in electrolytic refining of copper.

【0005】[0005]

【課題を解決するための手段】本発明者らは、前記問題
を解決し、前記目的を達成するために研究を重ねた結
果、添加剤の量による電着表面粗さへの影響を、濃度の
近似式から添加剤強度として定義し、添加剤量の組み合
わせを決定すること、また電解条件と添加剤強度、さら
に得られた電気銅表面の外観評価の関係式から電解条件
に応じた添加剤量の選定を行うことによって目的を達し
得ることを見出して本発明を完成するに至った。すなわ
ち、本発明は、銅の電解精製方法において、添加剤の添
加量をハルセル試験によって得られるカソードの電着物
表面粗さ(Rz)と、異なる電流密度による粗さのバラ
ツキ(σ)との双方を下記する2つの数式5、6により
最小にするよう決定する銅電解精製における添加剤の添
加量決定方法を特徴とする。
Means for Solving the Problems The inventors of the present invention have conducted various studies to solve the above-mentioned problems and achieve the above-mentioned object. As a result, the influence of the amount of the additive on the electrodeposition surface roughness is determined by the concentration. Define the additive strength from the approximate formula, determine the combination of additive amounts, and also determine the additive conditions according to the electrolytic conditions from the relational expression between the electrolytic conditions and additive strength, and the resulting appearance evaluation of the copper surface. The inventors have found that the object can be achieved by selecting the amount, and have completed the present invention. That is, in the present invention, in the method for electrolytic refining of copper, the amount of the additive to be added is determined by both the electrodeposit surface roughness (Rz) obtained by the Hull cell test and the roughness variation (σ) due to different current densities. Is determined so as to be minimized by the following two equations (5) and (6).

【式5】Rz=−0.187Ctu−0.053Cgl
ue−3.115CCl+4.16
Formula 5: Rz = −0.187 Ctu−0.053 Cgl
ue-3.115CCl + 4.16

【式6】σ =−0.068Ctu+0.131Cgl
ue−14.6CCl+1.742 (式中、Ctuはチオ尿素の添加量、Cglueはにか
わの添加量、CClは塩素イオン濃度である) また前記銅の電解精製において、電気銅の外観評価を下
記する数式7によって70以上となるよう添加剤量を決
定することを特徴とする。
Equation 6 σ = −0.068 Ctu + 0.131 Cgl
ue-14.6CCl + 1.742 (where Ctu is the amount of thiourea added, Cglu is the amount of glue added, and CCl is the chloride ion concentration) In the electrolytic refining of copper, the appearance evaluation of electrolytic copper is described below. It is characterized in that the amount of the additive is determined so as to be equal to or greater than 70 according to Equation 7.

【式7】外観=21.10Ip+0.397L+5.1
8(Cu/Dk)×1000+25.38 (式中、Lは極間距離、Ipは式[(1/Rz)
(1/σ)1/2から得られる添加剤強度、Cuは
電解液濃度、Dkは電流密度である) さらに、添加剤として、チオ尿素を増加する代わりに塩
素イオンを増加することによって添加剤強度を増加する
ことを特徴とする。
[Formula 7] Appearance = 21.10Ip + 0.397L + 5.1
8 (Cu / Dk) × 1000 + 25.38 (where L is the distance between the electrodes, Ip is the formula [(1 / Rz) 2 +
(1 / σ) 2 ] The additive strength obtained from 1/2 , Cu is the concentration of the electrolytic solution, and Dk is the current density.) Further, as an additive, by increasing chloride ions instead of increasing thiourea. It is characterized by increasing additive strength.

【0006】[0006]

【発明の実施の形態】電解精製において添加剤は、電着
物(電気銅)表面を平滑にするために使用されているも
のである。したがって、カソード上の電着物表面の粗さ
が最小の粗さとなる量の添加剤を加えればよいことにな
る。しかしながら、実際に操業している電解槽では、通
電による経時変化、電解液の浮遊物、液温度のバラツキ
など添加剤の影響以外の変動要因も多く、実際に使用し
ているカソードの正確な表面粗さを測定することは困難
である。また、実電解槽では、極板の歪み、接点抵抗の
バラツキ、アノード溶減などにより電流分布のバラツキ
が生ずるが、添加剤には、電流分布のバラツキによる均
一電着性の低下を防止する作用もあるものである。した
がって、表面粗さは、通電電流密度の場所だけでなく、
電流密度のバラツク範囲にわたって評価することが必要
となるものである。
BEST MODE FOR CARRYING OUT THE INVENTION In electrolytic refining, additives are used to smooth the surface of an electrodeposit (copper). Therefore, it is only necessary to add an amount of the additive that minimizes the roughness of the electrodeposit surface on the cathode. However, in actual operation of the electrolytic cell, there are many factors other than the effects of additives, such as changes over time due to energization, suspended matter in the electrolyte, and variations in the solution temperature. It is difficult to measure roughness. In an actual electrolytic cell, current distribution varies due to electrode plate distortion, contact resistance variation, anode dissolution, etc. Additives act to prevent a decrease in uniform electrodeposition due to current distribution variation. There are also things. Therefore, the surface roughness is not only the location of the current density,
It is necessary to evaluate over the variation range of the current density.

【0007】しかしながら、実操業において、添加剤の
あらゆる組み合わせによる試験を行うことは実際には困
難である。そこで電着物(電気銅)表面粗さと、電流密
度範囲にわたるバラツキを評価するためには、それぞれ
の影響を数式化し、次に、それぞれを1つの項目として
評価することが望ましいと考えられる。
However, in actual operation, it is actually difficult to perform tests using all combinations of additives. Therefore, in order to evaluate the surface roughness of the electrodeposit (electrolytic copper) and the variation over the current density range, it is considered desirable to formulate the respective effects and then evaluate each as one item.

【0008】電着物表面粗さを簡易に測定するために
は、たとえば、特開平5ー72167号公報に示されて
いるように、ハルセル試験を用いる方法がある。この方
法は、異なる電流密度における電着状態と、その表面粗
さとを短時間で容易に測定することができる特徴があ
る。したがって、操業状態の変化、あるいは日常の操業
管理により添加剤量を決定する時点では、添加剤を含ま
ない基準となる電解液に、既知量の添加剤を加えてハル
セル試験により表面粗さを測定し、最適な添加剤の量を
決定すればよいことになる。
In order to easily measure the surface roughness of an electrodeposit, there is a method using a Hull cell test as disclosed in, for example, JP-A-5-72167. This method is characterized in that the electrodeposition states at different current densities and the surface roughness thereof can be easily measured in a short time. Therefore, when the amount of additives is determined by changes in operating conditions or by daily operation management, a known amount of additives is added to the reference electrolyte containing no additives, and the surface roughness is measured by the Hull cell test. Then, the optimum amount of the additive may be determined.

【0009】各電流密度における10点平均電着物表面
粗さ(Rz)の平均値や10点表面粗さのバラツキ
(σ)を、添加した添加剤(チオ尿素、にかわ、塩素イ
オン)の組み合わせにより重回帰することによって、た
とえば、下記の数式(1)、(2)に示すような添加剤
量と電着物表面粗さとの関係式が得られる。Rzとσと
の両方ともを小さくする添加剤の組み合わせが電着物の
表面を平滑にするためにもっとも効果が大きいことか
ら、この2つの数式を、例えば数式(3)に示すように
添加剤強度と名付けた新たな定数を構成する数式に定義
することによって、毎回ハルセル試験を行わなくても、
電解操業条件の変化につれて電解条件に応じた最適な添
加剤量の決定をし得ることを見出したものである。
The average value of the 10-point average electrodeposit surface roughness (Rz) and the variation of 10-point surface roughness (σ) at each current density are determined by the combination of the added additives (thiourea, glue, chloride ion). By performing multiple regression, for example, a relational expression between the additive amount and the electrodeposit surface roughness as shown in the following formulas (1) and (2) is obtained. Since the combination of additives that reduces both Rz and σ is the most effective for smoothing the surface of the electrodeposit, the two mathematical formulas are represented by, for example, as shown in mathematical formula (3). By defining it in a mathematical formula that constructs a new constant named
It has been found that the optimum amount of the additive can be determined according to the electrolysis conditions as the electrolysis operation conditions change.

【0010】[0010]

【式1】 Rz=aCtu+aCglue+aCCl+a [Formula 1] Rz = a 1 Ctu + a 2 Cglu + a 3 CCl + a 0

【式2】 σ =bCtu+bCglue+bCCl+b Equation 2 σ = b 1 Ctu + b 2 Cglu + b 3 CCl + b 0

【式3】 Ip=[(1/Rz)+(1/σ)1/2 (式中、Ctuはチオ尿素の添加量、Cglueはにか
わの添加量、CClは塩素イオン濃度、a〜a、b
〜bは各項の係数である。)
Ip = [(1 / Rz) 2 + (1 / σ) 2 ] 1/2 (where Ctu is the amount of thiourea added, Cglu is the amount of glue added, CCl is the chloride ion concentration, a 0 ~a 3, b
0 ~b 3 is a coefficient of each term. )

【0011】また、同様な考えから添加剤強度と他の電
解に及ぼす条件の関係も下記する数式4のように公式化
することによって、所定の電気銅の外観評価を得るのに
必要とする添加剤、液組成、電流密度などの電解条件が
決定し得ることを見出している。
From the same idea, the relationship between the additive strength and other conditions on electrolysis is also formulated as shown in the following equation (4), whereby the additive required for obtaining a predetermined appearance evaluation of electrolytic copper is obtained. It has been found that the electrolysis conditions such as the composition, the liquid composition, and the current density can be determined.

【0012】[0012]

【式4】外観=cIp+cL+c(Cu/Dk)
×1000+c (式中、Lは極間距離、Ipは添加剤強度、Cuは電解
液濃度、Dkは電流密度、c〜cは係数である。)
[Formula 4] Appearance = c 1 Ip + c 2 L + c 3 (Cu / Dk)
× 1000 + c 0 (where L is the distance between the electrodes, Ip is the additive strength, Cu is the concentration of the electrolyte, Dk is the current density, and c 0 to c 3 are the coefficients.)

【0013】すなわち、各添加剤の各添加量は、従来の
経験から大体の添加量範囲は知られているが、その範囲
内で各添加量を組み合わせて前記数式1、2、3から添
加剤強度Ipを求めることによって、その添加量が適当
であるかどうかを判断でき、さらに予定操業条件と組み
合わせ数式4を使用して外観値を求め、この値が、所定
の値である70以上、好ましくは72以上になっていれ
ば、その操業条件における各添加剤の添加量とし得るこ
とが分かる。また、逆に所望外観値と、予定操業条件と
を使用して数式4から添加剤強度Ipを求めて各添加剤
の各添加量を求めることができる。さらに、各添加剤の
多くの組み合わせによる電着物表面粗さ(Rz)やその
バラツキ(σ)、および添加剤強度(Ip)、さらに
は、表面の外観などの計算値をその操業条件とともに表
として作っておけば、予定操業条件における各添加剤の
添加量をその表から探すことによって容易に決定するこ
とができる。
That is, although the range of the additive amount of each additive is generally known from the experience of the prior art, the respective additive amounts are combined within the range to obtain the additive amount from the above formulas 1, 2, and 3. By determining the strength Ip, it is possible to determine whether or not the addition amount is appropriate. Further, an appearance value is determined using the planned operating conditions and the combination formula 4, and this value is a predetermined value of 70 or more, preferably It can be seen that if the value is 72 or more, it can be the amount of each additive under the operating conditions. Conversely, the additive strength Ip can be determined from Equation 4 using the desired appearance value and the scheduled operating conditions to determine the amount of each additive. Further, the calculated values of the electrodeposit surface roughness (Rz) and its variation (σ), the additive strength (Ip), and the appearance of the surface due to many combinations of the respective additives, together with the operating conditions, are tabulated. If prepared, the amount of each additive to be added under the expected operating conditions can be easily determined by searching the table for the amount of each additive.

【0014】なお、本発明においては、たとえば、ステ
ンレス母板に銅を1mm以下に電着させて表面粗さを測
定することなど、ハルセル試験以外の試験方法によって
表面粗さを定義することができるならば、ハルセル試験
に代用することができる。
In the present invention, the surface roughness can be defined by a test method other than the Hull cell test, for example, by measuring the surface roughness by electrodepositing copper on a stainless steel base plate to 1 mm or less. If so, it can be substituted for the Hull cell test.

【0015】[0015]

【実施例】次に、本発明の実施例を述べる。 実施例1(数式1、2の各係数の決定):ハルセル試験
槽としては、横幅83.5mm、長辺127mm、短辺
47.6mm、深さ63.5mm、電解液容量267m
lの横断面台形のものを使用し、またアノード、カソー
ドは、圧延銅を使用した。電解液は、Cu濃度50g/
l、硫酸190m/l、液温60℃と一定とし、添加剤
は、チオ尿素1.11mg/l、にかわ1.47mg/
lをそれぞれ「1倍」とし、塩素イオン濃度をg/lで
示し、表1に示す組み合わせとし、通電の20分間前に
電解槽に添加し、均一になるように1〜2分間手で軽く
撹拌した。通電電流を2Aとし、撹拌せずに1時間通電
した。
Next, an embodiment of the present invention will be described. Example 1 (determination of each coefficient of Formulas 1 and 2): As a Hull cell test tank, the width is 83.5 mm, the long side is 127 mm, the short side is 47.6 mm, the depth is 63.5 mm, and the electrolyte volume is 267 m.
1 and a trapezoidal cross section, and rolled copper was used for the anode and cathode. The electrolytic solution has a Cu concentration of 50 g /
1, sulfuric acid 190 m / l, liquid temperature 60 ° C., and additives: thiourea 1.11 mg / l, glue 1.47 mg / l
l is "1 time", the chloride ion concentration is shown in g / l, and the combination shown in Table 1 is added to the electrolytic cell 20 minutes before the energization, and lightly lightened by hand for 1-2 minutes so as to be uniform. Stirred. The current was set to 2 A, and current was supplied for 1 hour without stirring.

【0016】通電終了後、カソード表面を洗浄し、触針
式表面粗さ計(MITUTOYO製SURFTEST2
01型)で表面粗さを測定した。通常の平均電流密度
は、200〜300A/m前後であるから、バラツキ
を考えると測定は、150〜600A/m程度に相当
する位置で測定することが好ましい。表面粗さの表し方
は、本実施例では、JIS Bー0601において定義
する10点平均表面粗さ(Rz)を使用した。その結果
を下記する表1に示す。
After the completion of the power supply, the cathode surface is washed, and a stylus type surface roughness meter (SURFTEST2 manufactured by Mitutoyo) is used.
01 type). The average current density usually is because it is 200~300A / m 2 before and after the measurement considering the variation, it is preferable to measure at a position corresponding to approximately 150~600A / m 2. In the present embodiment, the 10-point average surface roughness (Rz) defined in JIS B-0601 was used to represent the surface roughness. The results are shown in Table 1 below.

【0017】[0017]

【表1】 [Table 1]

【0018】Rzとσとは、表1に示す値が得られた。
添加剤条件と表面粗さ測定値、バラツキを重回帰し、数
式1、2の係数a〜a、b〜bが以下のように
得られ、数式5、6を得ることができた。
The values shown in Table 1 were obtained for Rz and σ.
Multiple regression of the additive condition, the measured surface roughness value, and the variation were performed, and the coefficients a 0 to a 3 and b 0 to b 3 of the formulas 1 and 2 were obtained as follows, and the formulas 5 and 6 could be obtained. Was.

【式5】Rz=−0.187Ctu−0.053Cgl
ue−3.115CCl+4.16
Formula 5: Rz = −0.187 Ctu−0.053 Cgl
ue-3.115CCl + 4.16

【式6】σ =−0.068Ctu+0.131Cgl
ue−14.6CCl+1.742 上式によって添加剤量と電着物の表面粗さ、すなわち1
0点平均表面粗さ(Rz)や10点表面粗さ(σ)の関
係が数式5、6で表現できた。
Equation 6 σ = −0.068 Ctu + 0.131 Cgl
ue-14.6CCl + 1.742 According to the above formula, the additive amount and the surface roughness of the electrodeposit, that is, 1
The relationship between the zero-point average surface roughness (Rz) and the ten-point surface roughness (σ) was expressed by Expressions 5 and 6.

【0019】実施例2(数式4の係数の決定):電解槽
(長さ3000×幅1260×深さ1390mm)に、
銅精製アノード(幅1030×長さ1050×厚さ38
mm)26枚または22枚とカソード(幅1070×長
さ1050×厚さ0.7mm)27枚または23枚をア
ノード・アノード間隔が105mmになるように装入し
た。電解槽は直列に接続されているので電流密度は、2
50A/mまたは300A/mとなる。表2に示す
条件のCu・硫酸濃度の電解液を60℃の温度で20l
/minの流量で給液した。各槽には、表2に示す量の
添加剤(チオ尿素、にかわ、塩素イオン)を定量ポンプ
で供給した。なお、実施例1に示した数式5、6並びに
数式3で計算した添加剤強度(Ip)を同時に下記する
表2に示す。電流密度250A/mの槽は240時
間、300A/mの槽は200時間通電した。その
後、カソードを交換し、さらに、同様に240時間、2
00時間通電した。カソードの各面をそれぞれ9分割
し、1枚の電気銅で90点満点となるように目視によっ
て5点満点で評価して前後半の評価を平均した。
Example 2 (Determining the coefficient of Equation 4): An electrolytic cell (length 3000 × width 1260 × depth 1390 mm) was placed in an electrolytic cell.
Copper refined anode (width 1030 x length 1050 x thickness 38
mm) 26 or 22 and 27 or 23 cathodes (width 1070 x length 1050 x thickness 0.7 mm) were loaded so that the anode-to-anode distance was 105 mm. Since the electrolytic cells are connected in series, the current density is 2
It will be 50 A / m 2 or 300 A / m 2 . 20 l of an electrolytic solution having a Cu / sulfuric acid concentration under the conditions shown in Table 2 at a temperature of 60 ° C.
/ Min at a flow rate of / min. The amount of the additive (thiourea, glue, chloride ion) shown in Table 2 was supplied to each tank by a metering pump. In addition, the additive strength (Ip) calculated by Formulas 5 and 6 and Formula 3 shown in Example 1 is also shown in Table 2 below. Current density 250A / m 2 is the tank 240 hours, the bath of 300A / m 2 was energized for 200 hours. Thereafter, the cathode was replaced, and the same procedure was repeated for another 240 hours.
The electricity was supplied for 00 hours. Each surface of the cathode was divided into nine parts, and one piece of electrolytic copper was visually evaluated on a scale of five out of five points so as to reach a maximum of 90 points, and the evaluations in the first half and the second half were averaged.

【0020】[0020]

【表2】 [Table 2]

【0021】表2に示すような電解液Cu濃度(mol
/l)、電流密度Dk(A/m)、添加剤強度Ip、
前後半でのアノード・カソード極間距離L(前半33m
m、後半40.5mm)と、通電の結果得られた電気銅
の表面の外観評価とを重回帰して、数式7を得た。
The electrolytic solution Cu concentration (mol
/ L), current density Dk (A / m 2 ), additive strength Ip,
The distance L between the anode and cathode in the first half (the first half 33m
m, the latter half of 40.5 mm) and the evaluation of the appearance of the surface of the electrolytic copper obtained as a result of the energization were subjected to multiple regression to obtain Equation 7.

【式7】外観=21.10Ip+0.397L+5.1
8(Cu/Dk)×1000+25.38 所定の外観評価を得るための電流密度Dk、電解液Cu
濃度、極間距離Lなど電解条件が確定すれば、前記数式
5、6、3と数式7から電気銅の表面を平滑にできる7
0以上の数値を得るために必要な個々の添加剤の添加量
を決定でき、操業トラブル時の対処や操業条件変更時で
の添加剤添加量決定など操業管理に使用できる。
[Formula 7] Appearance = 21.10Ip + 0.397L + 5.1
8 (Cu / Dk) × 1000 + 25.38 Current density Dk for obtaining predetermined appearance evaluation, electrolytic solution Cu
If the electrolysis conditions such as the concentration and the distance L between the electrodes are determined, the surface of the electrolytic copper can be smoothed from the above formulas 5, 6, 3 and formula 7
The addition amount of each additive necessary to obtain a value of 0 or more can be determined, and can be used for operation management such as coping with an operation trouble or determining an addition amount of an additive when changing operation conditions.

【0022】実施例3:実施例2と同一大きさの電解
槽、カソード、アノードを使用し、表3に示す電解条件
とした。なお、Dkは300A/m、電解液Cu濃度
は50g/l、Clイオンは50mg/l、にかわは1
倍に固定し、チオ尿素量を1倍、3倍、5倍とした。実
施例1に示した数式5、6並びに数式3で計算した添加
剤強度(Ip)を併せて示す。
Example 3 An electrolytic cell, a cathode and an anode having the same size as in Example 2 were used, and the electrolysis conditions shown in Table 3 were used. Dk is 300 A / m 2 , electrolyte Cu concentration is 50 g / l, Cl ion is 50 mg / l, glue is 1
The amount of thiourea was adjusted to 1, 3, and 5 times. The additive strength (Ip) calculated by Formulas 5 and 6 and Formula 3 shown in Example 1 is also shown.

【0023】[0023]

【表3】 [Table 3]

【0024】240時間通電した後、カソードの各面を
それぞれ9分割し、1枚の電気銅で90点満点となるよ
うに目視によって5点満点で評価し、前後半の評価を平
均した。表4に示すように同一Cu濃度であれば、添加
剤の1つであるチオ尿素の量の変化による添加剤強度が
大きいほど、極間距離が広い後半ほど、外観が良好であ
ることが示されている。
After 240 hours of current supply, each surface of the cathode was divided into nine parts, and one piece of electrolytic copper was visually evaluated on a scale of five out of five points so as to reach a maximum of 90 points. As shown in Table 4, when the Cu concentration is the same, the higher the additive strength due to the change in the amount of thiourea, one of the additives, and the latter half of the interelectrode distance, the better the appearance. Have been.

【0025】[0025]

【表4】 [Table 4]

【0026】実施例4:実施例3と同一な設備で、前記
のようにして決定した表5に示す条件で通電し、外観を
求めた。
Example 4: The same equipment as in Example 3 was energized under the conditions shown in Table 5 determined as described above, and the appearance was determined.

【0027】[0027]

【表5】 [Table 5]

【0028】このように、本発明方法に従って決定した
添加剤の添加量を使用して優れた電気銅面が得られるこ
とが認められ、さらに、試験No.2−Aと5−Aで表
5に示すように、添加剤の1つであるにかわを1.5倍
に増加すると電気銅の外観評価はむしろ低下することを
示し、実施例1における数式5、6並びに実施例2にお
ける数式7の効果を再確認できた。また、No.2−
A、6−Aで示すように塩素イオン濃度が高い方が外観
が向上することも確認できた。No.7−A、8−A、
9−Aに示すように、同一添加強度であればCu濃度が
増加するほど外観が向上することが確認できた。さら
に、No.7−A、10−Aに示すように塩素イオンを
増加した分だけチオ尿素を減少しても同等以上の外観を
維持できることが確認できた。
As described above, it was recognized that an excellent electrolytic copper surface was obtained using the additive amount determined in accordance with the method of the present invention. As shown in Table 5 for 2-A and 5-A, when the glue, which is one of the additives, was increased by a factor of 1.5, the appearance evaluation of electrolytic copper was rather lowered. , 6 and the effect of Equation 7 in Example 2 could be confirmed again. In addition, No. 2-
As shown by A and 6-A, it was also confirmed that the higher the chloride ion concentration, the better the appearance. No. 7-A, 8-A,
As shown in 9-A, it was confirmed that the appearance improved as the Cu concentration increased with the same addition strength. In addition, No. As shown in 7-A and 10-A, it was confirmed that the same or higher appearance can be maintained even if the amount of thiourea is reduced by the amount of the increase of the chloride ion.

【0029】[0029]

【発明の効果】本発明は、従来経験に頼るところが大き
かった銅電解精製における操業条件の変化に伴う必要と
する最適添加剤量の決定が、容易、かつ確実に行えるよ
うになり、表面が平滑な電気銅が得られるなど顕著な効
果が認められる。
According to the present invention, it is possible to easily and surely determine the optimum amount of an additive required in response to a change in operating conditions in copper electrolytic refining, which has traditionally relied on experience, and to achieve a smooth surface. A remarkable effect is obtained, such as obtaining excellent electrolytic copper.

フロントページの続き (56)参考文献 特開 平5−72167(JP,A) 特開 平6−264278(JP,A) 特開 平8−178893(JP,A) 特開 平8−178894(JP,A) 実開 昭61−155760(JP,U) 特表 昭60−500453(JP,A) (58)調査した分野(Int.Cl.7,DB名) C25C 1/00 - 7/08 Continuation of front page (56) References JP-A-5-72167 (JP, A) JP-A-6-264278 (JP, A) JP-A-8-178893 (JP, A) JP-A 8-178894 (JP) , A) Actually open Showa 61-155760 (JP, U) Special table Showa 60-500453 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C25C 1/00-7/08

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 銅の電解精製方法において、添加剤の添
加量をハルセル試験によって得られるカソードの電着物
表面粗さ(Rz)と、異なる電流密度による粗さのバラ
ツキ(σ)との双方を下記する2つの数式により最小に
するよう決定することを特徴とする銅電解精製における
添加剤の添加量決定方法。 Rz=−0.187Ctu−0.053Cglue−
3.115CCl+4.16 σ =−0.068Ctu+0.131Cglue−1
4.6CCl+1.742 (式中、Ctuはチオ尿素の添加量、Cglueはにか
わの添加量、CClは塩素イオン濃度である)
In the method for electrolytically refining copper, the amount of an additive to be added is determined by adjusting both the electrodeposit surface roughness (Rz) obtained by a Hull cell test and the roughness variation (σ) due to different current densities. A method for determining an additive amount of an additive in electrolytic copper refining, wherein the additive amount is determined to be minimized by the following two mathematical expressions. Rz = -0.187Ctu-0.053Cglu-
3.115CCl + 4.16σ = −0.068Ctu + 0.131Cglu-1
4.6 CCl + 1.742 (where Ctu is the amount of thiourea added, Cglu is the amount of glue added, and CCl is the chloride ion concentration)
【請求項2】 銅の電解精製において、電気銅の外観評
価を下記する数式によって70以上となるよう添加剤量
を決定することを特徴とする請求項1記載の銅電解精製
における添加剤の添加量決定方法。 外観=21.10Ip+0.397L+5.18(Cu
/Dk)×1000+25.38 (式中、Lは極間距離、Ipは式[(1/Rz)
(1/σ)1/2から得られる添加剤強度、Cuは
電解液濃度、Dkは電流密度である)
2. The addition of an additive in electrolytic copper refining according to claim 1, wherein, in the electrolytic copper refining, the amount of the additive is determined so that the appearance evaluation of the electrolytic copper becomes 70 or more by the following formula. How to determine quantity. Appearance = 21.10Ip + 0.397L + 5.18 (Cu
/Dk)×1000+25.38 (where L is the distance between the poles, Ip is the formula [(1 / Rz) 2 +
(1 / σ) 2 ] The additive strength obtained from 1/2 , Cu is the electrolyte concentration, and Dk is the current density.)
【請求項3】 添加剤として、チオ尿素を増加する代わ
りに塩素イオンを増加することによって添加剤強度を増
加することを特徴とする請求項1または2記載の銅電解
精製における添加剤の添加量決定方法。
3. The amount of an additive in copper electrolytic refining according to claim 1, wherein the additive strength is increased by increasing chloride ions instead of increasing thiourea. Decision method.
JP03557596A 1996-01-30 1996-01-30 Determination method of additive amount in copper electrorefining Expired - Lifetime JP3148115B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03557596A JP3148115B2 (en) 1996-01-30 1996-01-30 Determination method of additive amount in copper electrorefining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03557596A JP3148115B2 (en) 1996-01-30 1996-01-30 Determination method of additive amount in copper electrorefining

Publications (2)

Publication Number Publication Date
JPH09209185A JPH09209185A (en) 1997-08-12
JP3148115B2 true JP3148115B2 (en) 2001-03-19

Family

ID=12445569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03557596A Expired - Lifetime JP3148115B2 (en) 1996-01-30 1996-01-30 Determination method of additive amount in copper electrorefining

Country Status (1)

Country Link
JP (1) JP3148115B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6100499B2 (en) * 2012-10-23 2017-03-22 パンパシフィック・カッパー株式会社 Method for producing electrolytic copper
JP6045481B2 (en) * 2013-01-23 2016-12-14 パンパシフィック・カッパー株式会社 Method for producing electrolytic copper

Also Published As

Publication number Publication date
JPH09209185A (en) 1997-08-12

Similar Documents

Publication Publication Date Title
US8440555B2 (en) Method for analyzing electrolytic copper plating solution
US4324621A (en) Method and apparatus for controlling the quality of electrolytes
AU2002350349B2 (en) Method for the improvement of current efficiency in electrolysis
US20080156655A1 (en) Reducing power consumption in electro-refining or electro-winning of metal
JP3148115B2 (en) Determination method of additive amount in copper electrorefining
Madore et al. Application of the Rotating Cylinder Hull Cell to the Measurement of Throwing Power & the Monitoring of Copper Plating Baths
EP0162322B1 (en) Production of zn-ni alloy plated steel strips
JPH0525957B2 (en)
US5236571A (en) Electrode and method for measuring levelling power
CA1174199A (en) Bipolar refining of lead
JP2783027B2 (en) Quality control method in electrolytic refining of metals
CA1155790A (en) Method and apparatus for controlling the electrodeposition of metals
Murase et al. Measurement of pH in the vicinity of a cathode during the chloride electrowinning of nickel
Janssen High-rate electrochemical copper deposition on bars
JPH10158881A (en) Method for measuring concentration of glue in copper electrolyte
Wilcox et al. Faraday's laws of electrolysis
JPS6333971Y2 (en)
JP5406073B2 (en) Copper electrolytic purification apparatus and copper electrolytic purification method using the same
CA1174200A (en) Method and apparatus for controlling the quality of zinc sulfate electrolyte
Ramachandran et al. Effect of pretreatment on the anodic behaviour of lead alloys for use in electrowinning operations. I
FI71027B (en) FOERFARANDE FOER REGLERING AV EN ELEKTROLYTUTFAELLNINGSPROCESSFOER METALLER
Stevens Electrodeposition of Ductile Palladium
RU2233913C1 (en) Method of electrolytic refining of copper
Claessens et al. Behaviour of minor elements during copper electrorefining
Conard et al. Inco Copper Refinery Addition Agent Monitoring using Cyclic Voltammetry

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100112

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100112

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140112

Year of fee payment: 13

EXPY Cancellation because of completion of term