JP3145505U - Liquid chromatography column - Google Patents

Liquid chromatography column Download PDF

Info

Publication number
JP3145505U
JP3145505U JP2008005230U JP2008005230U JP3145505U JP 3145505 U JP3145505 U JP 3145505U JP 2008005230 U JP2008005230 U JP 2008005230U JP 2008005230 U JP2008005230 U JP 2008005230U JP 3145505 U JP3145505 U JP 3145505U
Authority
JP
Japan
Prior art keywords
column
heat
inorganic porous
shrinkable tube
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2008005230U
Other languages
Japanese (ja)
Inventor
博義 水口
道宏 山埜
Original Assignee
株式会社 京都モノテック
道宏 山埜
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 京都モノテック, 道宏 山埜 filed Critical 株式会社 京都モノテック
Priority to JP2008005230U priority Critical patent/JP3145505U/en
Application granted granted Critical
Publication of JP3145505U publication Critical patent/JP3145505U/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

【課題】タンパク質、DNA等の成分を体液・培養液等の試料から分離する液体クラマトグラフィに用いる耐圧性、耐溶媒性を有する無機系多孔質連続体カラムを提供する。
【解決手段】無機系多孔質連続体1の周囲にフッ素樹脂製の熱収縮チューブ2、その周囲にエポキシ樹脂3、その周囲に金属製チューブ4を配置したものである。エポキシ樹脂は200℃以下で硬化するものを用いることによりシリカ表面に化学修飾した官能基が分解することはなく、また耐圧性は30MPa以上を得ることができる。
【選択図】図1
The present invention provides an inorganic porous continuous column having pressure resistance and solvent resistance for use in liquid chromatography that separates components such as proteins and DNA from samples such as body fluid and culture fluid.
A heat-shrinkable tube 2 made of a fluororesin is disposed around an inorganic porous continuous body 1, an epoxy resin 3 is disposed around the heat-shrinkable tube 2, and a metal tube 4 is disposed around the heat-shrinkable tube 2. By using an epoxy resin that cures at 200 ° C. or lower, the functional group chemically modified on the silica surface is not decomposed, and the pressure resistance can be 30 MPa or more.
[Selection] Figure 1

Description

本考案は、タンパク質、DNA等の成分を体液、培養液等の試料から分離するための液体クロマトグラフィー用カラムに関する。   The present invention relates to a liquid chromatography column for separating components such as proteins and DNA from samples such as body fluids and culture fluids.

液体クロマトグラフィー(HPLC)用カラムは、従来球状多孔質粒子をSUSチューブ等の耐圧性、耐溶媒性を有するチューブ内に均一に充填した粒子充填型カラムが用いられてきた。粒子充填カラムでは粒子径が小さいほど分離能はよくなるが反面カラムに溶液を通すための負荷圧が大きくなる。また液体クロマトグラフィーでは種々の溶媒使用するため、粒子を充填するチューブに対しては耐圧性、耐溶媒性が要求され、主にSUSチューブが使用されている。
これに対して、マイクロメーターサイズの連続細孔とナノメーターサイズのメソ孔を有する無機系多孔質連続体では粒子充填カラムよりも小さな負荷圧のカラムの作製が可能であり、低負荷圧で高分離能の固相抽出カラムの作製が可能である(例えば特許文献1)。
無機系多孔質連続体は棒状をしており、これをHPLCカラムとして用いるためには、無機系多孔質連続体の周囲を耐圧、耐溶媒性を有する材料で密着性よく覆わなければならない。
As a column for liquid chromatography (HPLC), a particle packed column in which spherical porous particles are uniformly packed in a tube having pressure resistance and solvent resistance such as a SUS tube has been used. In the particle-packed column, the smaller the particle size, the better the resolution, but the higher the load pressure for passing the solution through the column. In addition, since various solvents are used in liquid chromatography, pressure resistance and solvent resistance are required for tubes filled with particles, and SUS tubes are mainly used.
On the other hand, an inorganic porous continuum having micrometer-sized continuous pores and nanometer-sized mesopores can produce a column with a smaller load pressure than a particle-packed column. It is possible to produce a solid-phase extraction column with resolution (for example, Patent Document 1).
The inorganic porous continuum has a rod-like shape, and in order to use it as an HPLC column, the periphery of the inorganic porous continuum must be covered with a material having pressure resistance and solvent resistance with good adhesion.

無機系多孔質連続体を用いたHPLCカラムに関しては、無機系多孔質連続体の周囲を炭素繊維で強化したPEEK(ポリエーテルエーテルケトン)樹脂を成型して作製したもの(特許文献2)、無機系多孔質連続体の周囲を溶融型のフッ素樹脂層の外側に設けられた非溶融型のフッ素樹脂層の二層構造の熱収縮チューブで覆いさらにその外側に熱硬化性樹脂であるポリイミド樹脂が成型されているもの(特許文献3)、無機系多孔質連続体の周囲にフッ素ゴムを配置したカラムホルダーを用いたもの(特許文献4)などがある。 Regarding an HPLC column using an inorganic porous continuum, a PEEK (polyetheretherketone) resin reinforced with carbon fiber around the inorganic porous continuum is molded (Patent Document 2), inorganic The porous continuum is covered with a heat-shrinkable tube having a two-layer structure of a non-molten fluororesin layer provided outside the melt-type fluororesin layer. There are a molded one (Patent Document 3) and a column holder in which a fluororubber is arranged around an inorganic porous continuous body (Patent Document 4).

特開平11−287791号公報JP-A-11-287791 特許公表2003−530571号公報Patent Publication 2003-530571 特開平10−197508号公報JP-A-10-197508 特開平11−287791号公報JP-A-11-287791

これらのうち、繊維強化PEEK樹脂を用いたものではPEEK樹脂の成型温度が400℃程度である。無機系多孔質連続体ゲルをHPLCカラムとして用いる場合、多くの場合はシリカ表面をオクタデキルシリル基等の官能基で化学修飾するが、400℃ではこの修飾した官能基が分解してしまうため、PEEK樹脂成型後に化学修飾しなければならない。また、繊維強化PEEK樹脂の耐圧性が20MPa程度と十分な耐圧性が得られない。ポリイミド樹脂の場合、熱収縮チューブとポリイミドの間の接着が十分ではなく間に隙間ができその隙間を液が流れるため、カラムとしての十分な特性が得られない。フッ素ゴムを用いる場合は耐圧が5MPa程度であり、HPLCカラムとして用いるには耐圧性が十分とはいえない。 Among these, the one using fiber reinforced PEEK resin has a molding temperature of about 400 ° C. for PEEK resin. When using an inorganic porous continuum gel as an HPLC column, in many cases, the silica surface is chemically modified with a functional group such as an octadecylsilyl group, but at 400 ° C., this modified functional group is decomposed, It must be chemically modified after PEEK molding. Further, the pressure resistance of the fiber reinforced PEEK resin is about 20 MPa, and sufficient pressure resistance cannot be obtained. In the case of a polyimide resin, the adhesion between the heat shrinkable tube and the polyimide is not sufficient, and a gap is formed between them, and the liquid flows through the gap, so that sufficient characteristics as a column cannot be obtained. When using fluororubber, the pressure resistance is about 5 MPa, and the pressure resistance is not sufficient for use as an HPLC column.

本考案は、上記のような欠点を克服するものであり、耐溶媒製および30MPa以上の耐圧製を有し低温で成型可能な無機系多孔質連続体カラムを提供するものである。
本考案の無機系多孔質連続体カラムは、無機系多孔質連続体の周囲にフッ素樹脂製の熱収縮チューブ、その周囲にエポキシ樹脂、その周囲に金属製チューブを配置したものである。熱収縮チューブは200℃以下で収縮するフッソ樹脂製の熱収縮チューブを用いることにより、シリカ表面に化学修飾した官能基が分解することはなく耐溶媒性を確保することができる。エポキシ樹脂は硬化の際に体積変化が小さく、プラスチック、金属に対して密着性がよく、200℃以下で硬化するという特性を有している。このエポキシ樹脂を用いることによりシリカ表面に化学修飾した官能基が分解することはなく、また金属およびフッソ樹脂と密着させ、フッソ樹脂と金属製チューブの間を隙間なく成形できる。さらにその周囲に金属製チューブを配置することにより耐圧性は30MPa以上を得ることができる。
The present invention overcomes the above-described drawbacks and provides an inorganic porous continuous column that is made of a solvent-resistant product and a pressure-resistant product of 30 MPa or more and can be molded at a low temperature.
The inorganic porous continuum column of the present invention has a heat shrinkable tube made of fluororesin around the inorganic porous continuum, an epoxy resin around it, and a metal tube around it. By using a heat-shrinkable tube made of a fluororesin that shrinks at 200 ° C. or less, the functional group chemically modified on the silica surface is not decomposed and the solvent resistance can be ensured. Epoxy resins have a characteristic that they have a small volume change upon curing, good adhesion to plastics and metals, and cure at 200 ° C. or lower. By using this epoxy resin, the functional group chemically modified on the surface of the silica is not decomposed, and it is brought into close contact with the metal and the fluorine resin, so that the gap between the fluorine resin and the metal tube can be molded without any gap. Furthermore, pressure resistance can obtain 30 Mpa or more by arrange | positioning a metal tube in the circumference | surroundings.

無機系多孔質連続体は、相分離を利用したゾル―ゲル法によって調製することが好ましく、本発明における無機系多孔質連続体は、直径100nm〜10000nmのマクロ孔と骨格が共連続構造をした無機系多孔質連続体で、骨格には直径2nm〜100nmのメソ孔が存在する。
無機系多孔質連続体は、シリカを主成分とする反応溶液を相分離を伴うゾル-ゲル転移を起こさせることにより得られる。ゾル−ゲル反応に用いられるゲル形成を起こす網目成分の前駆体としては、金属アルコキシド、錯体、金属塩、有機修飾金属アルコキシド、有機架橋金属アルコキシド、およびこれらの部分加水分解生成物、部分重合生成物である多量体を用いることができる。水ガラスほかケイ酸塩水溶液のpHを変化させることによるゾル−ゲル転移も、同様に利用することができる。
The inorganic porous continuum is preferably prepared by a sol-gel method using phase separation, and the inorganic porous continuum in the present invention has a macropore having a diameter of 100 nm to 10,000 nm and a skeleton having a co-continuous structure. It is an inorganic porous continuum, and mesopores with a diameter of 2 nm to 100 nm exist in the skeleton.
The inorganic porous continuum can be obtained by causing a reaction solution mainly composed of silica to undergo a sol-gel transition accompanied by phase separation. Examples of the precursor of the network component that causes gel formation used in the sol-gel reaction include metal alkoxides, complexes, metal salts, organically modified metal alkoxides, organic cross-linked metal alkoxides, and partial hydrolysis products and partial polymerization products thereof. Can be used. Sol-gel transition by changing the pH of water glass and other silicate aqueous solutions can be used as well.

さらに具体的には、上記目的達成の手段は、水溶性高分子、熱分解する化合物を酸性水溶液に溶かし、それに加水分解性の官能基を有する金属化合物を添加して加水分解反応を行い、生成物が固化した後、次いで湿潤状態のゲルを加熱することにより、ゲル調製時にあらかじめ溶解させておいた低分子化合物を熱分解させ、次いで乾燥し加熱して製造することが好ましい。   More specifically, the means for achieving the above-mentioned object is to generate a water-soluble polymer and a compound that thermally decomposes in an acidic aqueous solution, add a metal compound having a hydrolyzable functional group, and perform a hydrolysis reaction. After the product has solidified, the wet gel is preferably heated to thermally decompose the low molecular weight compound previously dissolved at the time of gel preparation, and then dried and heated.

ここで、水溶性高分子は、理論的には適当な濃度の水溶液と成し得る水溶性有機高分子であって、加水分解性の官能基を有する金属化合物によって生成するアルコールを含む反応系中に均一に溶解し得るものであれば良いが、具体的には高分子金属塩であるポリスチレンスルホン酸のナトリウム塩またはカリウム塩、高分子酸であって解離してポリアニオンとなるポリアクリル酸、高分子塩基であって水溶液中でポリカチオンを生ずるポリアリルアミンおよびポリエチレンイミン、あるいは中性高分子であって主鎖にエーテル結合を持つポリエチレンオキシド、側鎖にカルボニル基を有するポリビニルピロリドン等が好適である。また、有機高分子に代えてホルムアミド、多価アルコール、界面活性剤を用いてもよく、その場合多価アルコールとしてはグリセリンが、界面活性剤としてはポリオキシエチレンアルキルエーテル類が最適である。 Here, the water-soluble polymer is theoretically a water-soluble organic polymer that can be formed into an aqueous solution having an appropriate concentration, and in a reaction system including an alcohol generated by a metal compound having a hydrolyzable functional group. The polymer metal salt is a sodium salt or potassium salt of polystyrene sulfonic acid, which is a polymer metal salt, polyacrylic acid which is a polymer acid and dissociates to form a polyanion, Polyallylamine and polyethyleneimine, which are molecular bases that generate polycations in aqueous solution, or neutral polymers, such as polyethylene oxide having an ether bond in the main chain and polyvinylpyrrolidone having a carbonyl group in the side chain are suitable. . In addition, formamide, polyhydric alcohol, or surfactant may be used in place of the organic polymer. In this case, glycerin is optimal as the polyhydric alcohol, and polyoxyethylene alkyl ethers are optimal as the surfactant.

加水分解性の官能基を有する金属化合物としては、金属アルコキシド又はそのオリゴマーを用いることができ、これらのものは例えば、メトキシ基、エトキシ基、プロポキシ基等の炭素数の少ないものが好ましい。また、その金属としては、最終的に形成される酸化物の金属、例えばSi、Ti、Zr、Alが使用される。この金属としては1種又は2種以上であっても良い。一方オリゴマーとしてはアルコールに均一に溶解分散できるものであればよく、具体的には10量体程度まで使用できる。   As the metal compound having a hydrolyzable functional group, a metal alkoxide or an oligomer thereof can be used, and those having a small number of carbon atoms such as a methoxy group, an ethoxy group, and a propoxy group are preferable. Further, as the metal, an oxide metal finally formed, for example, Si, Ti, Zr, or Al is used. The metal may be one type or two or more types. On the other hand, any oligomer can be used as long as it can be uniformly dissolved and dispersed in alcohol.

また、酸性水溶液としては、通常塩酸、硝酸等の鉱酸0.001モル濃度以上のもの、あるいは酢酸、ギ酸等の有機酸0.01モル濃度以上のものが好ましい。   Moreover, as acidic aqueous solution, the thing of 0.001 mol concentration or more of mineral acids, such as hydrochloric acid and nitric acid, or 0.01 mol concentration or more of organic acids, such as an acetic acid and a formic acid, is preferable normally.

相分離・ゲル化にあたっては、溶液を室温40〜80℃で0.5〜5時間保存することにより達成できる。相分離・ゲル化は、当初透明な溶液が白濁してシリカ相と水相との相分離を生じついにゲル化する過程を経る。この相分離・ゲル化で水溶性高分子は分散状態にありそれらの沈殿は実質的に生じない。 The phase separation and gelation can be achieved by storing the solution at room temperature of 40 to 80 ° C. for 0.5 to 5 hours. Phase separation / gelation is a process in which an initially transparent solution becomes cloudy, causing phase separation between a silica phase and an aqueous phase and finally gelling. By this phase separation / gelation, the water-soluble polymers are in a dispersed state and their precipitation does not substantially occur.

あらかじめ共存させる熱分解性の化合物の具体的な例としては、尿素あるいはヘキサメチレンテトラミン、ホルムアミド、N−メチルホルムアミド、N,N−ジメチルホルムアミド、アセトアミド、N−メチルアセトアミド、N,N−ジメチルアセトアミド等の有機アミド類を利用できるが、加熱後の溶媒のpH値が重要な条件であるので、熱分解後に溶媒を塩基性にする化合物であれば特に制限はない。
共存させる熱分解性化合物は、化合物の種類にもよるが、例えば尿素の場合には、反応溶液10gに対し、0.05〜0.8g、好ましくは0.1〜0.7gである。また、加熱温度は、例えば尿素の場合には40〜200℃で、加熱後の溶媒のpH値は、6.0〜12.0が好ましい。
また、熱分解によってフッ化水素酸のようにシリカを溶解する性質のある化合物を生じるものも、同様に利用できる。
Specific examples of the thermally decomposable compound that coexists in advance include urea or hexamethylenetetramine, formamide, N-methylformamide, N, N-dimethylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide and the like. However, since the pH value of the solvent after heating is an important condition, there is no particular limitation as long as it is a compound that makes the solvent basic after thermal decomposition.
Although the thermally decomposable compound to coexist depends on the kind of the compound, for example, in the case of urea, it is 0.05 to 0.8 g, preferably 0.1 to 0.7 g, with respect to 10 g of the reaction solution. The heating temperature is preferably 40 to 200 ° C. in the case of urea, for example, and the pH value of the solvent after heating is preferably 6.0 to 12.0.
Moreover, what produces the compound with the property to melt | dissolve a silica like hydrofluoric acid by thermal decomposition can be utilized similarly.

上記方法では、水溶性高分子を酸性水溶液に溶かし、それに加水分解性の官能基を有する金属化合物を添加して加水分解反応を行うと、溶媒リッチ相と骨格相とに分離したゲルが生成する。生成物(ゲル)が固化した後、適当な熟成時間を経た後、湿潤状態のゲルを加熱することによって、反応溶液にあらかじめ溶解させておいたアミド系化合物が熱分解し、骨格相の内壁面に接触している溶媒のpHが上昇する。そして、溶媒がその内壁面を浸食し、内壁面の凹凸状態を変えることによって細孔径を徐々に拡大する。
シリカを主成分とするゲルの場合には、酸性あるいは中性領域においては変化の度合は非常に小さいが、熱分解が盛んになり水溶液の塩基性が増すにつれて、細孔を構成する部分が溶解し、より平坦な部分に再析出することによって、平均細孔径が大きくなる反応が顕著に起こるようになる。
In the above method, when a water-soluble polymer is dissolved in an acidic aqueous solution, and a hydrolysis reaction is performed by adding a metal compound having a hydrolyzable functional group thereto, a gel separated into a solvent-rich phase and a skeleton phase is generated. . After the product (gel) has solidified, an appropriate aging time has passed, and then the wet gel is heated to thermally decompose the amide compound dissolved in the reaction solution in advance. The pH of the solvent in contact with increases. The solvent erodes the inner wall surface, and gradually changes the pore size by changing the uneven state of the inner wall surface.
In the case of gels containing silica as the main component, the degree of change is very small in the acidic or neutral region, but as thermal decomposition becomes more vigorous and the basicity of the aqueous solution increases, the part constituting the pore dissolves. Then, by reprecipitation in a flatter portion, a reaction in which the average pore diameter becomes large occurs remarkably.

巨大空孔を持たず3次元的に束縛された細孔のみを持つゲルでは、平衡条件としては溶解し得る部分でも、溶出物質が外部の溶液にまで拡散できないために、元の細孔構造が相当な割合で残る。これに対して巨大空孔となる溶媒リッチ相を持つゲルにおいては、2次元的にしか束縛されていない細孔が多く、外部の水溶液との物質のやり取りが十分頻繁に起こるため、大きい細孔の発達に並行して小さい細孔は消滅し、全体の細孔径分布は顕著に広がることがない。   In gels that have only three-dimensionally confined pores without huge pores, the elution substance cannot be diffused to the external solution even if it can be dissolved as an equilibrium condition. Remains in a considerable proportion. On the other hand, in a gel having a solvent-rich phase that becomes giant pores, there are many pores that are restricted only two-dimensionally, and exchange of substances with an external aqueous solution occurs frequently enough. In parallel with the development, small pores disappear and the entire pore size distribution does not spread significantly.

なお、加熱過程においては、ゲルを密閉条件下に置き、熱分解生成物の蒸気圧が飽和して溶媒のpHが速やかに定常値をとるようにすることが有効である。   In the heating process, it is effective to place the gel in a hermetically sealed condition so that the vapor pressure of the pyrolysis product is saturated and the pH of the solvent quickly takes a steady value.

溶解・再析出反応が定常状態に達し、これに対応する細孔構造を得るために要する、加熱処理時間は、巨大空孔の大きさや試料の体積によって変化するので、それぞれの処理条件において実質的に細孔構造が変化しなくなる、最短処理時間を決定することが必要である。   The heat treatment time required for the dissolution / reprecipitation reaction to reach a steady state and to obtain the corresponding pore structure varies depending on the size of the huge pores and the volume of the sample. It is necessary to determine the shortest processing time at which the pore structure does not change.

加熱処理を終えたゲルは、溶媒を気化させることによって、溝内において、管壁に密着した乾燥ゲルとなる。この乾燥ゲル中には、出発溶液中の共存物質が残存する可能性があるので、適当な温度で熱処理を行い、有機物等を熱分解することによって、目的の無機系多孔質体を得ることができる。なお、乾燥は、30〜80℃で数時間〜数十時間放置して行い、熱処理は、200〜800℃程度で加熱する。 The gel after the heat treatment becomes a dry gel that is in close contact with the tube wall in the groove by vaporizing the solvent. Since the coexisting substances in the starting solution may remain in this dry gel, the target inorganic porous material can be obtained by heat-treating at an appropriate temperature and thermally decomposing organic matter. it can. In addition, drying is performed by leaving at 30-80 degreeC for several hours-several dozen hours, and heat processing is heated at about 200-800 degreeC.

熱収縮チューブは200℃以下で収縮し耐溶媒性を有しているものであればよく、FEP等のフッソ樹脂製の熱収縮チューブを用いることができる。フッソ樹脂の表面は熱硬化性樹脂と密着するよう表面改質を行っておく。 Any heat-shrinkable tube may be used as long as it shrinks at 200 ° C. or less and has solvent resistance, and a heat-shrinkable tube made of a fluorine resin such as FEP can be used. The surface of the fluororesin is subjected to surface modification so as to be in close contact with the thermosetting resin.

エポキシ樹脂は200℃以下で硬化し硬化する際の体積変化が小さく、耐溶媒性を有し金属およびフッソ樹脂と密着するものであればよく、ビスフェノールAを主剤とするエポキシ樹脂、ウレタン変性エポキシ樹脂などを使用することができる。 The epoxy resin only needs to have a small volume change when cured and cured at 200 ° C. or less, has solvent resistance, and is in close contact with a metal and a fluorine resin. Epoxy resin mainly composed of bisphenol A, urethane-modified epoxy resin Etc. can be used.

金属製チューブは耐圧性、耐溶媒性を有していればよく、SUS304、SUS316、チタン等の金属製チューブを用いることができる。 The metal tube should just have pressure resistance and solvent resistance, and metal tubes, such as SUS304, SUS316, titanium, can be used.

実施例1
直径2.3mm、マクロ細孔径1.5μm、メソ細孔径11nmのシリカ多孔質連続体を用い、図1に示すようなHPLCカラムを作製した。シリカ多孔質連続体1をFEP製の熱収縮チューブ(収縮前内径3.2mm)2内にいれ、110℃で収縮させることにより熱収縮チューブ2とシリカ多孔質連続体1を密着させた。FEP製の熱収縮チューブ2は、樹脂との密着性がよくなるように表面をあらかじめサンドブラスト処理を行っておいた。
次に外径1/4インチ、内径4mmのSUS316チューブ4内に熱収縮チューブ2で被覆したシリカ多孔質連続体1をSUS316チューブ4の中央に来るように配置し、その隙間にウレタン変性エポキシ樹脂3(主剤:製品名アデカレジン EPU-17T-6、硬化剤:製品名アデカハードナー EH-3895)を注入し25℃で7日間硬化させた。
Example 1
An HPLC column as shown in FIG. 1 was prepared using a porous silica continuum having a diameter of 2.3 mm, a macropore diameter of 1.5 μm, and a mesopore diameter of 11 nm. The silica porous continuum 1 was placed in a heat shrinkable tube (inner diameter 3.2 mm before shrinkage) 2 made of FEP, and the heat shrinkable tube 2 and the silica porous continuum 1 were brought into close contact with each other by being shrunk at 110 ° C. The surface of the heat shrinkable tube 2 made of FEP was previously sandblasted so as to improve the adhesion to the resin.
Next, the porous silica continuous body 1 covered with the heat-shrinkable tube 2 is placed in the SUS316 tube 4 having an outer diameter of 1/4 inch and an inner diameter of 4 mm so as to come to the center of the SUS316 tube 4, and urethane-modified epoxy resin in the gap. 3 (main agent: product name Adeka Resin EPU-17T-6, curing agent: product name Adeka Hardener EH-3895) was injected and cured at 25 ° C. for 7 days.

作製したものを長さ85mmに切断し、両端に配管が接続可能なエンドフィッティングを固定しHPLCカラムとしての性能を評価した。
移動相としてメタノール80%・水20%、試料としてアルキルベンゼンC6H5(CH2)nH(n=0〜6)を用い、流量を1.2ml/min.とした時に得られたクロマトグラムを図2に示す。
アミルベンゼン(n=5)の段数は8,366であり、また対称性は1.03であった。この結果から十分な理論段数と対称性を有しており各層の間を液が流れていないことがわかる。このとき負荷圧は15.4MPaであった。
同様の試験を流量2.5ml/minにして行った結果を図3に示す。この場合も良好な理論段数と対称性を示している。このときの負荷圧は32.0MPaであり、十分な耐圧性を有していた。
The prepared product was cut into a length of 85 mm, and end fittings to which pipes could be connected were fixed at both ends, and the performance as an HPLC column was evaluated.
FIG. 2 shows the chromatogram obtained when 80% methanol and 20% water are used as the mobile phase, alkylbenzene C6H5 (CH2) nH (n = 0 to 6) is used as the sample, and the flow rate is 1.2 ml / min. .
The number of stages of amylbenzene (n = 5) was 8,366, and the symmetry was 1.03. From this result, it can be seen that the liquid has a sufficient number of theoretical plates and symmetry, and no liquid flows between the layers. At this time, the load pressure was 15.4 MPa.
FIG. 3 shows the result of a similar test performed at a flow rate of 2.5 ml / min. This case also shows a good number of theoretical plates and symmetry. The load pressure at this time was 32.0 MPa, and the pressure resistance was sufficient.

次にこのカラムにトリフルオロ酢酸を1%含むアセトトリル60%・水40%溶媒を流量0.8ml/minで5時間連続流した後に測定したクロマトグラムを図4に示す。この時の移動相はアセトニトリル60%、水40%を用いた。流量が0.4ml/minの時、アミルベンゼンの段数は10,260でありまた対称性は1.11であり、劣化は見られず十分な耐酸性を有していた。 Next, FIG. 4 shows a chromatogram measured after continuously flowing a solvent of 60% acetolyl / 40% water containing 1% trifluoroacetic acid for 5 hours at a flow rate of 0.8 ml / min. At this time, the mobile phase was 60% acetonitrile and 40% water. When the flow rate was 0.4 ml / min, the number of stages of amylbenzene was 10,260, the symmetry was 1.11, no deterioration was observed, and sufficient acid resistance was observed.

次にこのカラムにテトラヒドロキシフラン100%を流量0.8ml/min.で5時間連続で流した後に測定したクロマトグラムを図5に示す。移動相はアセトニトリル60%、水40%で流量が0.4ml/min.の時、アミルベンゼンの段数は9,603でありまた対称性は1.10であり、劣化は見られず十分な耐有機溶媒性を有していた。 Next, 100% tetrahydroxyfuran was added to this column at a flow rate of 0.8 ml / min. FIG. 5 shows a chromatogram measured after flowing for 5 hours continuously. When the mobile phase is 60% acetonitrile, 40% water, and the flow rate is 0.4 ml / min., The number of amylbenzene stages is 9,603 and the symmetry is 1.10. It had organic solvent properties.

産業上の利用分野Industrial application fields

本考案は、クロマトグラフィー用分離カラム、血液および血漿成分分離用カラム、あるいはリアクター用カラムとして利用できる。   The present invention can be used as a chromatographic separation column, a blood and plasma component separation column, or a reactor column.

本考案の固相抽出カラムの概略図Schematic diagram of the solid-phase extraction column of the present invention 本考案の一体型カラムで得られたクロマトグラムChromatogram obtained with the integrated column of the present invention 本考案の一体型カラムで得られたクロマトグラムChromatogram obtained with the integrated column of the present invention 本考案の一体型カラムで得られたクロマトグラムChromatogram obtained with the integrated column of the present invention 本考案の一体型カラムで得られたクロマトグラムChromatogram obtained with the integrated column of the present invention

符号の説明Explanation of symbols

1:シリカ多孔質連続体
2:FEP熱収縮チューブ
3:ウレタン変性エポキシ樹脂
4:SUS316チューブ
1: Silica porous continuous body 2: FEP heat shrinkable tube 3: Urethane modified epoxy resin 4: SUS316 tube

Claims (1)

反応溶液を相分離を伴うゾル−ゲル転移を起こさせて作製したシリカを主成分とする無機系多孔質連続体の周囲にフッ素樹脂製の熱収縮チューブ、その周囲にエポキシ樹脂、その周囲に金属製チューブを配置したことを特徴とする液体クロマトグラフィー用カラム。 A heat-shrinkable tube made of fluororesin, an epoxy resin around it, and a metal around it, around an inorganic porous continuum mainly composed of silica prepared by causing a sol-gel transition with phase separation of the reaction solution A column for liquid chromatography, characterized in that a tube is arranged.
JP2008005230U 2008-07-29 2008-07-29 Liquid chromatography column Expired - Lifetime JP3145505U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008005230U JP3145505U (en) 2008-07-29 2008-07-29 Liquid chromatography column

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008005230U JP3145505U (en) 2008-07-29 2008-07-29 Liquid chromatography column

Publications (1)

Publication Number Publication Date
JP3145505U true JP3145505U (en) 2008-10-09

Family

ID=43295278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008005230U Expired - Lifetime JP3145505U (en) 2008-07-29 2008-07-29 Liquid chromatography column

Country Status (1)

Country Link
JP (1) JP3145505U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022163834A1 (en) * 2021-01-29 2022-08-04 三井金属鉱業株式会社 Porous body, adsorptive material containing said porous body, and method for removing metal and/or metal ion using said adsorptive material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022163834A1 (en) * 2021-01-29 2022-08-04 三井金属鉱業株式会社 Porous body, adsorptive material containing said porous body, and method for removing metal and/or metal ion using said adsorptive material
WO2022163832A1 (en) * 2021-01-29 2022-08-04 三井金属鉱業株式会社 Columnar body, adsorbing material including said columnar body, and method for removing metals and/or metal ions using said adsorbing material
JP7186335B1 (en) * 2021-01-29 2022-12-08 三井金属鉱業株式会社 Porous body, adsorbent containing said porous body, and method for removing metal and/or metal ions using said adsorbent

Similar Documents

Publication Publication Date Title
Ishizuka et al. Performance of a monolithic silica column in a capillary under pressure-driven and electrodriven conditions
Tang et al. Column technology for capillary electrochromatography
Wang et al. Sub-2 μm porous silica materials for enhanced separation performance in liquid chromatography
Fields Silica xerogel as a continuous column support for high-performance liquid chromatography
Sarafraz-Yazdi et al. Application of molecularly-imprinted polymers in solid-phase microextraction techniques
Plieva et al. Preparation of macroporous cryostructurated gel monoliths, their characterization and main applications
US6531060B1 (en) Capillary column including porous silica gel having continuous throughpores and mesopores
Shimizu et al. Transparent ethylene-bridged polymethylsiloxane aerogels and xerogels with improved bending flexibility
Allen et al. Silica‐based monoliths for capillary electrochromatography: Methods of fabrication and their applications in analytical separations
Fujimoto Preparation of fritless packed silica columns for capillary electrochromatography
Yu et al. Preparation and characterization of hydrophobic silica aerogel sphere products by co-precursor method
JPWO2009096044A1 (en) Silica monolith cladding method and separation medium
Ishizuka et al. Chromatographic characterization of macroporous monolithic silica prepared via sol-gel process
Fletcher et al. Permeability of silica monoliths containing micro-and nano-pores
Li et al. Polydopamine‐assisted immobilization of zeolitic imidazolate framework‐8 for open‐tubular capillary electrochromatography
Tao et al. Hydrophilicity-controlled carbon aerogels with high mesoporosity
Jalili et al. The role of aerogel-based sorbents in microextraction techniques
Ongkudon et al. Challenges and strategies in the preparation of large‐volume polymer‐based monolithic chromatography adsorbents
Du et al. An approach to application of mesoporous hybrid as a fiber coating of solid-phase microextraction
JP2015096863A (en) Devices having inert surface and methods of making the same
Xiong et al. Organic–inorganic hybrid fluorous monolithic capillary column for selective solid‐phase microextraction of perfluorinated persistent organic pollutants
Zhang et al. Ultrafast preparation of a polyhedral oligomeric silsesquioxane-based ionic liquid hybrid monolith via photoinitiated polymerization, and its application to capillary electrochromatography of aromatic compounds
Ku et al. Mesoporous silica composites containing multiple regions with distinct pore size and complex pore organization
JP3145505U (en) Liquid chromatography column
Zhao et al. Aerogels

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080730

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110917

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140917

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term