JP3144044B2 - Magnetic field measurement material - Google Patents

Magnetic field measurement material

Info

Publication number
JP3144044B2
JP3144044B2 JP04112754A JP11275492A JP3144044B2 JP 3144044 B2 JP3144044 B2 JP 3144044B2 JP 04112754 A JP04112754 A JP 04112754A JP 11275492 A JP11275492 A JP 11275492A JP 3144044 B2 JP3144044 B2 JP 3144044B2
Authority
JP
Japan
Prior art keywords
magnetic field
resonance
magnetic
magnetic resonance
energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04112754A
Other languages
Japanese (ja)
Other versions
JPH05307071A (en
Inventor
博幸 北原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP04112754A priority Critical patent/JP3144044B2/en
Publication of JPH05307071A publication Critical patent/JPH05307071A/en
Application granted granted Critical
Publication of JP3144044B2 publication Critical patent/JP3144044B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本願発明は、磁場の均一度を測定
する磁場測定材に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic field measuring material for measuring the uniformity of a magnetic field.

【0002】[0002]

【従来の技術】最近の医療機関では、一般に磁気共鳴映
像診断装置(略してMRI)と呼ばれる画像診断装置が多
く使用されるようになっている。
2. Description of the Related Art In recent medical institutions, an image diagnostic apparatus generally called a magnetic resonance image diagnostic apparatus (MRI for short) has been widely used.

【0003】この磁気共鳴映像診断装置は、核物理現象
としての核磁気共鳴(いわゆるNMR)を利用したもの
で、人間の細胞の原子核に所定の周波数の電磁波を照射
し、その共鳴現象をコンピュータを使用した画像処理シ
ステムによって映像化することによって人体の細胞の原
子レベルでの病理状態を視覚的に診断できるようにした
ものである。人体の細胞を構成する原子の大部分は水素
原子(H)であるが、その原子核(1H)は、分かり易く言
うと極く小さな磁石と同じであって、通常の状態では自
転し首振り運動を続けている。ところが、これを強力な
磁場の中に置くと、当該各原子核(1H)は上記磁場の方
向に全てが向きをそろえる。
[0003] This magnetic resonance imaging diagnostic apparatus utilizes nuclear magnetic resonance (so-called NMR) as a nuclear physics phenomenon, and irradiates an atomic nucleus of a human cell with an electromagnetic wave of a predetermined frequency, and uses a computer to analyze the resonance phenomenon. Atomic level pathological states of cells of the human body can be visually diagnosed by imaging using the image processing system used. The majority of the atoms that constitute human cells are a hydrogen atom (H), a Part nucleus (1 H) is the same as the very small magnet say clarity, rotating and swinging in the normal state I keep exercising. However, when this is placed in a strong magnetic field, all the nuclei ( 1 H) are oriented in the direction of the magnetic field.

【0004】そして、その状態において該磁場の方向と
直角な方向から電磁波(ラジオ波)を照射すると、上記各
原子核は特定の周波数の電圧信号を出して、その位置を
知らせる。そこで、該電圧信号をキャッチして画像を構
成し、疾患を診断するというメカニズムとなっている。
When an electromagnetic wave (radio wave) is irradiated from the direction perpendicular to the direction of the magnetic field in each state, each of the above nuclei outputs a voltage signal of a specific frequency to notify its position. Therefore, the mechanism is such that an image is formed by catching the voltage signal and a disease is diagnosed.

【0005】すなわち、磁気共鳴映像診断装置では異常
細胞と正常細胞との違いを原子核レベルで把えることが
できるので、病巣の存在する部分を極めて明瞭にとらえ
ることができる。例えば人体のガン細胞中の水素原子核
は一般に正常細胞中のそれよりも密度が高い。また、同
ガン細胞中の水分子と正常細胞中の水分子とは動きが全
く違う。さらに磁気共鳴後の水素原子核が元の状態に戻
る時間も異なる。
That is, in the magnetic resonance imaging diagnostic apparatus, since the difference between abnormal cells and normal cells can be grasped at the nuclear level, a portion where a lesion exists can be grasped very clearly. For example, hydrogen nuclei in cancer cells of the human body are generally denser than in normal cells. In addition, the movement of water molecules in the cancer cells is completely different from the movement of water molecules in normal cells. Furthermore, the time required for the hydrogen nuclei to return to the original state after magnetic resonance is different.

【0006】したがって、このような違いを原子核の反
応によって追跡すれば、未だ具体的に病変として現れて
いない段階ででも正確に病気を診断する手掛かりをつか
むことができる。
Therefore, if such a difference is tracked by the reaction of the nucleus, a clue for diagnosing the disease accurately can be obtained even at a stage where the disease has not yet specifically appeared as a lesion.

【0007】[0007]

【発明が解決しようとする課題】ところで、該磁気共鳴
映像診断装置のように、広い空間内で精度の高い磁場均
一度が必要な場合、目的の空間内において磁場の均一度
を最低でも1/106(1ppm)以下の偏差量に抑える必要
がある。磁場均一度を向上させる場合、微少な磁場強度
又は磁場勾配を計測し、シムコイルの電流値を調整する
必要があり、微少な磁場強度又は磁場勾配の計測には従
来別にNMR(核磁気共鳴)装置を用意しなければならな
かった。NMR装置は重量が重く移動が困難な上に、高
価であり、さらに移動の都度、校正を行わなければなら
ず、手間がかかる問題がある。そこで、簡易に磁場強度
又は磁場勾配を計測できる測定手段の開発が特に望まれ
ている。
When a highly uniform magnetic field uniformity is required in a wide space as in the magnetic resonance imaging diagnostic apparatus, the magnetic field uniformity in the target space is reduced by at least 1 /. It is necessary to suppress the deviation amount to 10 6 (1 ppm) or less. To improve the uniformity of the magnetic field, it is necessary to measure a small magnetic field strength or a magnetic field gradient and adjust the current value of the shim coil.For measuring the small magnetic field strength or the magnetic field gradient, an NMR (nuclear magnetic resonance) apparatus is conventionally separately provided. Had to be prepared. The NMR apparatus has a problem that it is heavy and difficult to move, is expensive, and requires calibration for each movement, which is troublesome. Therefore, development of a measuring means that can easily measure a magnetic field strength or a magnetic field gradient is particularly desired.

【0008】[0008]

【課題を解決するための手段】本願の請求項1および2
記載の発明は、各々上記の問題を解決することを目的と
してなされたものであって、それぞれ次のように構成さ
れている。
Means for Solving the Problems Claims 1 and 2 of the present application
The described inventions have been made for the purpose of solving the above problems, and have the following configurations.

【0009】(1) 請求項1記載の発明の構成 請求項1記載の発明の磁場測定材は、特定の温度で変色
する示温材を母材とし、該母材の表面に磁気共鳴を生じ
る磁気共鳴材層を設け、磁場強度の分布から磁場均一度
を測定するように構成されている。
(1) Constitution of the invention according to claim 1 The magnetic field measuring material according to the invention according to claim 1 is based on a temperature indicating material that changes color at a specific temperature as a base material, and generates magnetic resonance on the surface of the base material. A resonance material layer is provided to measure the magnetic field uniformity from the distribution of the magnetic field strength.

【0010】(2) 請求項2記載の発明の構成 請求項2記載の発明の磁場測定材は、特定の温度で変色
する示温材を母材とし、該母材の表面に磁気共鳴を生じ
る磁場強度が異なる2種以上の磁気共鳴材層を設け、磁
場勾配から磁場均一度を測定するように構成されてい
る。
(2) Constitution of the invention according to claim 2 The magnetic field measuring material according to the invention according to claim 2 uses a temperature-indicating material that changes color at a specific temperature as a base material, and generates a magnetic field that causes magnetic resonance on the surface of the base material. Two or more magnetic resonance material layers having different intensities are provided, and the magnetic field uniformity is measured from a magnetic field gradient.

【0011】[0011]

【作用】本願の請求項1および2記載の発明の磁場測定
材は、各々上記のように構成されている結果、当該各構
成に対応して次のような作用を奏する。
The magnetic field measuring materials according to the first and second aspects of the present invention are configured as described above and, as a result, exhibit the following operations corresponding to the respective configurations.

【0012】(1) 請求項1記載の発明の磁場測定材の
作用 請求項1記載の発明の磁場測定材では、特定の温度で変
色する示温材を母材とし、該母材の表面に磁気共鳴を生
じる磁気共鳴材層を設け、磁場強度の分布から磁場均一
度を測定するようになっており、上記示温材よりなる母
材は磁気共鳴に伴う電磁エネルギーの吸収による磁気共
鳴材層の発熱により対応する共鳴箇所で変色する。従っ
て、均一度を測りたい箇所に当該測定材を置き、目的の
磁場強度で核や不対電子が共鳴吸収する周波数の電磁波
を照射させると、目的の磁場強度になっている領域だけ
が変色し、磁場が一定になっている領域を簡易に測定す
る事が可能となる。その結果、簡単に磁場均一度の評価
ができるようになる。
(1) Operation of the magnetic field measuring material according to the first aspect of the invention In the magnetic field measuring material according to the first aspect, a temperature indicating material that changes color at a specific temperature is used as a base material, and the surface of the base material has a magnetic property. A magnetic resonance material layer that generates resonance is provided, and the magnetic field uniformity is measured from the distribution of the magnetic field strength. The base material made of the above-described temperature indicating material generates heat in the magnetic resonance material layer due to absorption of electromagnetic energy accompanying magnetic resonance. Changes color at the corresponding resonance point. Therefore, when the measurement material is placed at the place where uniformity is to be measured and the target magnetic field strength is applied with electromagnetic waves of a frequency at which nuclei and unpaired electrons are resonantly absorbed, only the region having the target magnetic field strength changes color. In addition, it is possible to easily measure a region where the magnetic field is constant. As a result, the magnetic field uniformity can be easily evaluated.

【0013】(2) 請求項2記載の発明の磁場測定材の
作用 請求項2記載の発明の磁場測定材では、特定の温度で変
色する示温材を母材とし、該母材の表面に磁気共鳴を生
じる磁場強度が異なる2種以上の磁気共鳴材層を設け、
磁場勾配から磁場の均一度を測定するようになってお
り、磁気共鳴に伴う電磁エネルギーの吸収による発熱の
際に、それぞれの磁場共鳴材層の共鳴磁場に相当する箇
所を別々に変色させて示す。従って、磁場勾配を調べた
い場所に当該測定材を置いて特定の電磁波を照射させ、
2種の共鳴材層の磁場強度の領域を各々検出することに
より磁場勾配を測ることができる。この結果、磁場均一
度の評価ができる。
(2) Operation of the magnetic field measuring material according to the second aspect of the invention In the magnetic field measuring material according to the second aspect of the present invention, a temperature indicating material that changes color at a specific temperature is used as a base material, and the surface of the base material has magnetic properties. Providing two or more magnetic resonance material layers having different magnetic field strengths for causing resonance,
The uniformity of the magnetic field is measured from the magnetic field gradient, and when heat is generated due to the absorption of electromagnetic energy accompanying magnetic resonance, the portions corresponding to the resonance magnetic field of each magnetic field resonance material layer are separately colored and shown . Therefore, place the measurement material in the place where you want to check the magnetic field gradient and irradiate it with a specific electromagnetic wave,
The magnetic field gradient can be measured by detecting the magnetic field strength regions of the two types of resonance material layers. As a result, the magnetic field uniformity can be evaluated.

【0014】[0014]

【発明の効果】したがって、本願発明の磁場測定材によ
ると、NMR等の高価かつ取扱いの不便な装置を用いる
ことなく、簡単に磁場均一度の評価を行い得るようにな
る。
Therefore, according to the magnetic field measuring material of the present invention, it is possible to easily evaluate the magnetic field uniformity without using expensive and inconvenient equipment such as NMR.

【0015】[0015]

【実施例】【Example】

(1) 第1実施例 図1〜図6は、本願発明の第1実施例に係る磁場測定材
の構造および作用を示している。
(1) First Embodiment FIGS. 1 to 6 show the structure and operation of a magnetic field measuring material according to a first embodiment of the present invention.

【0016】先ず、図1は同磁場測定材3Aの構造を示
し、図中符号1は特定の温度T℃になった時に所定の色
に変色する台紙状の示温材である。また、2は該示温材
1を母材として、その表面に塗布された水又は脂肪等の
磁気共鳴(核磁気共鳴又は電子スピン共鳴)を生じる核や
不対電子を多く含むものを主成分とする磁気共鳴材であ
り、上記磁場測定材3Aは、これら示温材1および磁気
共鳴材2を一体化したサーモワッペン構造に形成されて
いる。
First, FIG. 1 shows the structure of the magnetic field measuring material 3A, and reference numeral 1 in the figure denotes a mount-shaped temperature indicating material that changes color to a predetermined color when a specific temperature T.degree. In addition, 2 is mainly composed of a material having a large number of nuclei or unpaired electrons that generate magnetic resonance (nuclear magnetic resonance or electron spin resonance) such as water or fat applied to the surface of the temperature indicator 1 as a base material. The magnetic field measuring material 3A is formed in a thermo emblem structure in which the temperature indicating material 1 and the magnetic resonance material 2 are integrated.

【0017】したがって、上記構造の磁場測定材3A
を、例えば図2に示すような組織選択加熱装置の磁場均
一度を調べたい場所に置き、以下のように所定の周波数
の電磁波を照射して測定する。
Therefore, the magnetic field measuring material 3A having the above structure
Is placed in a place where the magnetic field uniformity of the tissue selective heating device is to be examined as shown in FIG. 2, for example, and is measured by irradiating an electromagnetic wave of a predetermined frequency as follows.

【0018】ところで、図2の組織選択加熱装置は、加
熱システムとして核磁気共鳴吸収による加熱方式を採用
して構成されている。
Incidentally, the tissue selective heating apparatus shown in FIG. 2 employs a heating system based on nuclear magnetic resonance absorption as a heating system.

【0019】そこで、先ず該核磁気共鳴吸収による加熱
の原理について説明しておく。
Therefore, the principle of heating by nuclear magnetic resonance absorption will be described first.

【0020】核磁気共鳴吸収というのは、一般には核磁
気共鳴現象(NMR)の分析、測定法として知られている
ものであるが、要するに、核磁気共鳴に伴うエネルギー
損失、すなわち、共鳴時に生じる電磁波の吸収を意味す
るものである。
Nuclear magnetic resonance absorption is generally known as a method of analyzing and measuring nuclear magnetic resonance phenomena (NMR). In short, the energy loss accompanying nuclear magnetic resonance, that is, the energy loss that occurs at resonance It means the absorption of electromagnetic waves.

【0021】多くの原子核はスピン角運動量を有し、こ
のスピン角運動量も量子化され、核スピン量子数をIと
するスピン角運動量は√{I(I+1)}・(h/2π)とな
る。ここでは主として水素原子核(1H)を取り上げる
が、この場合は核スピン量子数IはI=1/2である。
空間のある方向のスピン角運動量も量子化される。
Many atomic nuclei have a spin angular momentum, and this spin angular momentum is also quantized, and the spin angular momentum where the nuclear spin quantum number is I becomes √ {I (I + 1)} · (h / 2π). . Here, the hydrogen nucleus ( 1 H) is mainly taken up. In this case, the nuclear spin quantum number I is I = 1 /.
Spin angular momentum in a certain direction in space is also quantized.

【0022】磁場が加えられないときは、略同数の+1
/2と−1/2の状態の核があり、そのエネルギー準位
は図3に示すように同じである。ところが、上記水素原
子核(1H)を所定の強さの磁場B0の中に置くと、図4の
ように該磁場の強さに比例して上記+1/2と−1/2
との2つの状態(右回りと左回り)の原子核は、その±1
/2のエネルギー準位間に2μB0のエネルギー準位差
ができる(但しμは磁界の影響によって生じる磁気モー
メントである)。該磁場を加えた場合の水素原子核(1H)
の磁場方向のスピン角運動成分は、+1/2(h/2
π)、または−1/2(h/2π)である。
When no magnetic field is applied, approximately the same number of +1
There are nuclei in the states of / 2 and -1/2, and their energy levels are the same as shown in FIG. However, when the hydrogen nucleus ( 1 H) is placed in a magnetic field B 0 having a predetermined strength, the above +1/2 and −1/2 are proportional to the strength of the magnetic field as shown in FIG.
The nucleus in the two states (clockwise and counterclockwise) is ± 1
An energy level difference of 2 μB 0 is formed between energy levels of / 2 (where μ is a magnetic moment caused by the influence of a magnetic field). Hydrogen nuclei ( 1 H) when the magnetic field is applied
The spin angular motion component in the magnetic field direction is + / (h / 2
π) or-/ (h / 2π).

【0023】つまり、原子核は±1/2(h/2π)のス
ピン角運動量をもち、したがって、磁気モーメントをも
つので、磁場が加えられると上述のように2つの異なっ
たエネルギー準位をもつことになる。
That is, since the nucleus has a spin angular momentum of ± 1/2 (h / 2π) and therefore has a magnetic moment, it has two different energy levels as described above when a magnetic field is applied. become.

【0024】そして、上記のように磁場印加後、一定の
時間が経過すると、やがて次式に基づいて決定されるボ
ルツマン分布にしたがって各スピン核(スピン角運動量
をもつ原子核)はエネルギー準位の低い+1/2のスピ
ン核(白丸)が多くなって図5に示すように熱平衡状態
(速度分布が時間に関係なく一定となった状態)になる。
After a certain time has elapsed after the application of the magnetic field as described above, each spin nucleus (nucleus having spin angular momentum) has a low energy level according to the Boltzmann distribution determined based on the following equation. +1/2 spin nuclei (open circles) increase and thermal equilibrium state as shown in Fig. 5
(A state where the speed distribution is constant regardless of time).

【0025】Ne/Nb=eXP(−ΔE/KT) N:核の個数 ΔE:エネルギー準位差 〔J〕 K:ボルッマン定数(1,380/1023〔J/K〕) T:絶対温度 〔K〕 次に、該熱平衡状態において、例えば上記2μB0のエ
ネルギーに相当する周波数ν0の電磁波(数十MH 程度
のラジオ波)を照射する。
Ne / Nb = eXP (−ΔE / KT) N: Number of nuclei ΔE: Energy level difference [J] K: Bolman constant (1,380 / 10 23 [J / K]) T: Absolute temperature [K] Next, in the thermal equilibrium state, for example, an electromagnetic wave (radio wave of about several tens of MH) having a frequency ν 0 corresponding to the energy of 2 μB 0 is irradiated.

【0026】この時、次式の条件を充足すると図6のよ
うにエネルギー準位面の遷移+1/2→−1/2が起こ
る。
At this time, if the following condition is satisfied, a transition of the energy level surface + 1/2 → −1 / 2 occurs as shown in FIG.

【0027】hν0=2μB0 但し、 h:プランク定数(6.626176/1034J ) ν0:電磁波の周波数(振動数) この現象が核磁気共鳴吸収と呼ばれるものであり、この
時に電磁波のエネルギーは先ず格子の運動エネルギーを
へて次に当該格子を構成している分子系の熱エネルギー
に変換され、発熱する。従って、この熱によって当該原
子によって構成されている組織部分を加熱することがで
きることになる。
0 = 2 μB 0 where h: Planck's constant (6.626176 / 10 34 J) ν 0 : frequency (frequency) of electromagnetic wave This phenomenon is called nuclear magnetic resonance absorption. First, the kinetic energy of the lattice is converted to thermal energy of the molecular system constituting the lattice, and heat is generated. Therefore, the tissue portion constituted by the atoms can be heated by this heat.

【0028】しかも、この際の核磁気共鳴周波数は、同
一核種でも、その原子核を取り巻く環境(例えば分子構
造など)により異なるので、任意の構造の分子を選択的
に加熱することも可能となる。例えば脂肪の水素原子1
Hと水の水素原子1Hとでは共鳴周波数ν0が約3ppm異
なるために、それらを選択的に加熱することができる訳
である。
In addition, since the nuclear magnetic resonance frequency at this time varies depending on the environment (for example, molecular structure) surrounding the atomic nucleus even for the same nuclide, it is possible to selectively heat a molecule having an arbitrary structure. For example, hydrogen atom 1 of fat
Since the resonance frequency ν 0 differs by about 3 ppm between H and water hydrogen atom 1 H, they can be selectively heated.

【0029】ここで、上記核磁気共鳴吸収による発熱量
を概算して見る。
Here, the calorific value due to the nuclear magnetic resonance absorption will be roughly estimated.

【0030】(1)対象例:対象核種・・・プロトン(1H) (2)対象条件:磁場強度Bo=8T 周囲温度=37℃ 先ず1原子核当りの吸収エネルギーをΔEとすると、Δ
Eは、 ΔE=2μBo=2.260258/1025 [J] (但し、μ=1.1412661/1026 [JT−1])となる。
(1) Target example: Target nuclide ... proton ( 1 H) (2) Target condition: magnetic field strength Bo = 8T Ambient temperature = 37 ° C. First, assuming that the absorption energy per nucleus is ΔE, Δ
E is given by ΔE = 2 μBo = 2.260258 / 10 25 [J] (where μ = 1.141661 / 10 26 [JT-1]).

【0031】次に、水素原子(1H)1モル中の基底状態
(+1/2のエネルギー準位)の原子核の個数をNbとす
ると、Nbは、 Nb=Na/{1+(Ne+Nb)}=3.011103×1023個 (但し、Na=6.022045×1023)となる。
Next, the ground state in 1 mole of hydrogen atom ( 1 H)
Assuming that the number of nuclei at (+1/2 energy level) is Nb, Nb is Nb = Na / {1+ (Ne + Nb)} = 3.011103 × 10 23 (where Na = 6.022045 × 10 23 ).

【0032】そして、プロトン1モル当りの吸収エネル
ギーE1は、 E1=ΔE×Nb =0.0680587 [J] となる。
Then, the absorption energy E 1 per mole of proton is given by E 1 = ΔE × Nb = 0.0680587 [J].

【0033】従って、単位時間当りの発熱量Q1は、 Q1=E1×Nb/Na/T1であり、 例えばT1=0.5秒とすると、 Q1=0.0680605 [W] また、T1=1/106秒とすると、 Q1=34.0303 [KW] の発熱量となる。Therefore, the calorific value Q 1 per unit time is Q 1 = E 1 × Nb / Na / T 1. For example, if T 1 = 0.5 sec, Q 1 = 0.0680605 [W] and T 1 Assuming = 1/10 6 seconds, the calorific value is Q 1 = 34.0303 [KW].

【0034】上記T1は、スピン−格子緩和時間と呼ば
れ、核磁気共鳴吸収による電磁波のエネルギーが熱エネ
ルギーに変換される際の時定数であり、原子核を囲む環
境構造により異なる。一般的には、略0.5秒とされてい
るが、1/106秒程度に短縮することも可能である。
The above-mentioned T 1 is called a spin-lattice relaxation time, and is a time constant when energy of electromagnetic waves due to nuclear magnetic resonance absorption is converted into heat energy, and varies depending on an environmental structure surrounding an atomic nucleus. Generally, it is set to about 0.5 seconds, but it can be reduced to about 1/10 6 seconds.

【0035】さらに、1kg当りの発熱量Qは、 Q=1000×Q1×(α/M) [J] α:1分子当りの対象原子核の数 M:分子量 となる。Further, the calorific value Q per kg is as follows: Q = 1000 × Q 1 × (α / M) [J] α: Number of target nuclei per molecule M: Molecular weight

【0036】次に、このような核磁気共鳴吸収の原理を
採用した図2の組織選択加熱装置は、例えば次のように
構成されている。
Next, the tissue selective heating apparatus of FIG. 2 which employs such a principle of nuclear magnetic resonance absorption is configured as follows, for example.

【0037】すなわち、図2において、符号6は印加電
流の値iを変えることによって任意の大きさの磁場を形
成することができる電磁石であり、必要に応じて常伝導
又は超伝導何れかの方式のものが使用される。該電磁石
6は、十分なシールド技術を施した上で装置本体部にス
リーブ状に組み込まれている。
That is, in FIG. 2, reference numeral 6 denotes an electromagnet which can form a magnetic field of an arbitrary magnitude by changing the value i of the applied current. Is used. The electromagnet 6 is incorporated in a sleeve shape in the apparatus main body after performing a sufficient shielding technique.

【0038】該スリーブ状の電磁石6の内側には、例え
ば数十MHz前後の周波数帯域の電磁波(ラジオ波)を中
心部O−O′方向に向けて送信するための電磁波送信ア
ンテナ7が設けられている。
An electromagnetic wave transmitting antenna 7 for transmitting an electromagnetic wave (radio wave) in a frequency band of, for example, about several tens of MHz toward the center OO 'is provided inside the sleeve-shaped electromagnet 6. ing.

【0039】一方、符号8は上述した周波数帯域の電磁
波を発生する電磁波発生器(発振器)であり、その出力端
子は増幅器9を介して上記電磁波送信アンテナ7に接続
されている。
On the other hand, reference numeral 8 denotes an electromagnetic wave generator (oscillator) for generating an electromagnetic wave in the above-mentioned frequency band, and its output terminal is connected to the electromagnetic wave transmitting antenna 7 via an amplifier 9.

【0040】他方、符号3が上述した磁場測定材であ
り、該磁場測定材3は上記電磁石6および送信アンテナ
7の中央部に嵌挿された状態で保持されている。
On the other hand, reference numeral 3 denotes the above-described magnetic field measuring material, and the magnetic field measuring material 3 is held in a state where the magnetic field measuring material 3 is inserted into the center of the electromagnet 6 and the transmitting antenna 7.

【0041】以上の構成において、今上述の如く上記電
磁石6により上記磁場測定材3に対して例えば6テスラ
(60KG)〜8テスラ(80KG)程度の磁場をかけ、該
状態において上記電磁波送信アンテナ7から例えば数十
MHz程度の電磁波を発射して上記磁場測定材3Aに照
射すると、上述したように、hνo=2μBoの条件が成
立した時に核磁気共鳴吸収によって上記磁気共鳴材2部
分に±1/2のエネルギー準位間の遷移が生じ、吸収さ
れた電磁波のエネルギーが格子のエネルギーを経て格子
を構成している分子系のエネルギーに変換されて発熱す
る。そして、その熱によって上記母材側示温材1を所定
の温度に加熱して変色させる。
In the above configuration, as described above, the electromagnet 6 is applied to the magnetic field measuring material 3 by, for example, 6 Tesla.
When a magnetic field of about (60 KG) to 8 Tesla (80 KG) is applied, and an electromagnetic wave of, for example, about several tens of MHz is emitted from the electromagnetic wave transmitting antenna 7 and radiated to the magnetic field measuring material 3A in this state, as described above, hνo = 2μBo, the transition between the energy levels of ± 1/2 occurs in the magnetic resonance material 2 by nuclear magnetic resonance absorption, and the energy of the absorbed electromagnetic wave forms the lattice via the energy of the lattice. It is converted into the energy of the molecular system and generates heat. Then, the base material-side temperature indicating material 1 is heated to a predetermined temperature by the heat to change the color.

【0042】そして、該変色度は上記磁場の強度に比例
する。従って、上記示温材1全体の変色度の分布を見れ
ば磁場強度の均一度を容易に判定評価することができ
る。
The degree of discoloration is proportional to the strength of the magnetic field. Therefore, the uniformity of the magnetic field strength can be easily determined and evaluated by looking at the distribution of the degree of discoloration of the entire temperature indicating material 1.

【0043】(2) 第2実施例 図7は、本願発明の第2実施例に係る磁場測定材の構造
を示している。
(2) Second Embodiment FIG. 7 shows the structure of a magnetic field measuring material according to a second embodiment of the present invention.

【0044】図中符号1は上記第1実施例のものと同様
の特定の温度T℃になった時に所定の色に変色する台紙
状の示温材である。一方、4は該示温材1を母材とし
て、その表面側に第1層として塗布された核や不対電子
を多く含む水(H2O)を主成分とする第1の磁気共鳴
材、また5は更に該第1の磁気共鳴材4の表面側に第2
層として塗布された脂肪を主成分とする第2の磁気共鳴
材であり、上記磁場測定材3Bは、これら示温材1およ
び第1、第2の磁気共鳴材4,5を一体化してサーモワ
ッペン構造に形成されている。
Reference numeral 1 in the drawing denotes a mount-shaped temperature indicating material that changes color to a predetermined color when the temperature reaches a specific temperature T ° C. similar to that of the first embodiment. On the other hand, reference numeral 4 denotes a first magnetic resonance material containing water (H 2 O) containing a large amount of nuclei and unpaired electrons applied as a first layer on the surface side of the temperature indicator 1 as a base material, 5 is further provided on the surface side of the first magnetic resonance material 4 with a second
The magnetic field measuring material 3B is a second magnetic resonance material mainly composed of fat applied as a layer, and the thermomagnetic material 3B is formed by integrating the temperature indicating material 1 and the first and second magnetic resonance materials 4 and 5 with each other. The structure is formed.

【0045】したがって、上記構造の磁場測定材3B
を、上述の図2に示す組織選択加熱装置等の磁場均一度
を調べたい場所に置き、上述の第1実施例の場合と同様
に所定の周波数の電磁波を照射する。
Therefore, the magnetic field measuring material 3B having the above structure
Is placed in a place where the uniformity of the magnetic field is to be checked, such as the tissue selective heating device shown in FIG. 2 described above, and an electromagnetic wave having a predetermined frequency is irradiated similarly to the case of the first embodiment.

【0046】すると、同上記第1実施例の場合と同様に
上記第1、第2の磁気共鳴材4,5で生じる磁場共鳴吸
収によって、それら各部の温度上昇に伴い磁気共鳴して
いる箇所が変色するが、該変色は電磁波の吸収量の差な
どから、それぞれの磁気共鳴材4,5の共鳴箇所を別々
に変色させる。
Then, as in the case of the first embodiment, due to the magnetic field resonance absorption generated in the first and second magnetic resonance members 4 and 5, the portions where magnetic resonance occurs due to the temperature rise in each of these portions. The color of the magnetic resonance materials 4 and 5 is changed separately due to a difference in the amount of electromagnetic wave absorption.

【0047】従って、上記示温材1における2種の変色
領域を見れば磁場勾配が明らかとなり、それに基いて磁
場強度の均一度を容易に判定評価することができること
になる。
Therefore, the magnetic field gradient becomes apparent by looking at the two types of discolored areas in the temperature indicator 1, and the uniformity of the magnetic field intensity can be easily evaluated based on the gradient.

【0048】なお、上述の各実施例では、図2に示す組
織選択加熱装置の加熱方法として核磁気共鳴吸収方式の
ものを示したが、該加熱方式は電子スピン共鳴吸収方式
の加熱システムを採用したものであってもよいことは言
うまでもない。
In each of the embodiments described above, the heating method of the tissue selective heating apparatus shown in FIG. 2 is of the nuclear magnetic resonance absorption type, but the heating system employs an electron spin resonance absorption type heating system. Needless to say, it may be the one that did.

【0049】電子スピン共鳴(ESR)吸収というのは、
一般には電子スピン共鳴の分析測定法として知られてい
るものであれるが、要するに電子スピン共鳴に伴うエネ
ルギー損失、すなわち共鳴時の電磁波の吸収を意味す
る。
Electron spin resonance (ESR) absorption means
In general, it is known as an analytical measurement method of electron spin resonance. In short, it means energy loss accompanying electron spin resonance, that is, absorption of electromagnetic waves at resonance.

【0050】電子スピン共鳴(ESR)には、通常、試料
の磁性によって(a)常磁性共鳴、(b)強磁性共鳴、(c)反
強磁性共鳴などに分けられる。物質の分子やイオンに不
対電子(不対電子とは、要するに電子対を形成していな
い電子であって、奇電子とも呼ばれる)があると、電子
の磁気モーメントβと外部磁場Boとの相互作用により
+βBoと−βBoの2種のエネルギー準位を生じ、上述
した核磁気共鳴の場合のNMRスペクトルと同様のもの
ができる。これが電子スピン共鳴(ESR)と呼ばれるも
のである。上記電子の磁気モーメントβは、上述した核
磁気共鳴における原子核の磁気モーメントμの場合に比
べて遥かに大きいから共鳴による吸収波長はマイクロ波
領域になる。
Electron spin resonance (ESR) is generally classified into (a) paramagnetic resonance, (b) ferromagnetic resonance, and (c) antiferromagnetic resonance according to the magnetism of a sample. When an unpaired electron (an unpaired electron is an electron that does not form an electron pair and is also called an odd electron) in a molecule or ion of a substance, the interaction between the magnetic moment β of the electron and the external magnetic field Bo is caused. By the action, two kinds of energy levels of + βBo and −βBo are generated, and the same NMR spectrum as in the case of nuclear magnetic resonance described above can be obtained. This is called electron spin resonance (ESR). Since the magnetic moment β of the electrons is much larger than the magnetic moment μ of the nucleus in the above-described nuclear magnetic resonance, the absorption wavelength due to the resonance is in the microwave region.

【0051】該方式において、照射された電磁波のエネ
ルギーは先ず格子の運動エネルギーをへて次に当該格子
を構成している分子系の熱エネルギーに変換され、発熱
する。従って、この熱によって当該分子によって構成さ
れている組織部分を加熱することができることになる。
In this method, the energy of the irradiated electromagnetic wave is first converted into the kinetic energy of the lattice and then converted into the thermal energy of the molecular system constituting the lattice, thereby generating heat. Therefore, the tissue portion composed of the molecule can be heated by this heat.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、本願発明の第1実施例に係る磁場測定
材の構造を示す断面図である。
FIG. 1 is a sectional view showing the structure of a magnetic field measuring material according to a first embodiment of the present invention.

【図2】図2は、本願発明の第1実施例において使用さ
れる組織選択加熱装置の構成を示す概略図である。
FIG. 2 is a schematic diagram showing a configuration of a tissue selective heating device used in the first embodiment of the present invention.

【図3】図3は、同組織選択加熱装置の加熱原理を説明
する静磁場を印加しない状態のスピン核配列図である。
FIG. 3 is a spin nucleus arrangement diagram illustrating a heating principle of the tissue selective heating device in a state where a static magnetic field is not applied.

【図4】図4は、同組織選択加熱装置の静磁場印加時に
おけるスピン核のエネルギー準位の変化と準位差を示す
説明図である。
FIG. 4 is an explanatory diagram showing a change in energy level of a spin nucleus and a level difference when a static magnetic field is applied by the tissue selective heating device.

【図5】図5は、同組織選択加熱装置の上記静磁場印加
状態におけるスピン核熱平衡状態の説明図である。
FIG. 5 is an explanatory diagram of a spin nuclear thermal equilibrium state of the tissue selective heating device in a state where the static magnetic field is applied.

【図6】図6は、同加熱装置の電磁波を照射した時のス
ピン核の遷移を示す説明図である。
FIG. 6 is an explanatory view showing transition of spin nuclei when the heating device is irradiated with electromagnetic waves.

【図7】図7は、本願発明の第2実施例に係る磁場測定
材の構成を示す断面図である。
FIG. 7 is a cross-sectional view showing a configuration of a magnetic field measuring material according to a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1は示温材、2は磁気共鳴材、3A,3Bは磁場測定
材、4は第1の磁気共鳴材、5は第2の磁気共鳴材であ
る。
1 is a temperature indicating material, 2 is a magnetic resonance material, 3A and 3B are magnetic field measuring materials, 4 is a first magnetic resonance material, and 5 is a second magnetic resonance material.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 特定の温度で変色する示温材を母材と
し、該母材の表面に磁気共鳴を生じる磁気共鳴材層を設
け、磁場強度の分布から磁場均一度を測定するようにし
た磁場測定材。
1. A magnetic field in which a temperature indicating material that changes color at a specific temperature is used as a base material, a magnetic resonance material layer that generates magnetic resonance is provided on the surface of the base material, and the magnetic field uniformity is measured from a magnetic field intensity distribution. Measurement material.
【請求項2】 特定の温度で変色する示温材を母材と
し、該母材の表面に磁気共鳴を生じる磁場強度が異なる
2種以上の磁気共鳴材層を設け、磁場勾配から磁場均一
度を測定するようにした磁場測定材。
2. A temperature indicator which changes color at a specific temperature is used as a base material, and two or more magnetic resonance material layers having different magnetic field strengths for generating magnetic resonance are provided on the surface of the base material, and the magnetic field uniformity is determined from the magnetic field gradient. Magnetic field measurement material to be measured.
JP04112754A 1992-05-01 1992-05-01 Magnetic field measurement material Expired - Fee Related JP3144044B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04112754A JP3144044B2 (en) 1992-05-01 1992-05-01 Magnetic field measurement material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04112754A JP3144044B2 (en) 1992-05-01 1992-05-01 Magnetic field measurement material

Publications (2)

Publication Number Publication Date
JPH05307071A JPH05307071A (en) 1993-11-19
JP3144044B2 true JP3144044B2 (en) 2001-03-07

Family

ID=14594715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04112754A Expired - Fee Related JP3144044B2 (en) 1992-05-01 1992-05-01 Magnetic field measurement material

Country Status (1)

Country Link
JP (1) JP3144044B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102152408B1 (en) * 2016-12-07 2020-09-04 주식회사 나노브릭 A label for authenticating genuine having hidden image effect and manufacturing method tehreof

Also Published As

Publication number Publication date
JPH05307071A (en) 1993-11-19

Similar Documents

Publication Publication Date Title
Ibrahim et al. Dielectric resonances and B1 field inhomogeneity in UHFMRI: computational analysis and experimental findings
Budker et al. Optical magnetometry
Yang et al. Analysis of wave behavior in lossy dielectric samples at high field
Pykett NMR imaging in medicine
Soohoo A microwave magnetic microscope
Busch et al. Measurements of T1‐relaxation in ex vivo prostate tissue at 132 μT
Parra‐Robles et al. Theoretical signal‐to‐noise ratio and spatial resolution dependence on the magnetic field strength for hyperpolarized noble gas magnetic resonance imaging of human lungs
WO2006026153A1 (en) Applications of a high impedance surface
JPH04500163A (en) Thermal imaging method
US7109706B2 (en) Integrated EWP-STM spin resonance microscope
Yang et al. Phantom design method for high‐field MRI human systems
Bevilacqua et al. Sub-millimetric ultra-low-field MRI detected in situ by a dressed atomic magnetometer
US4799015A (en) Method of mapping the nuclear magnetic properties of an object to be examined
JP3144045B2 (en) Magnetic field measurement material
KR20170115548A (en) System and method for determining the physical quantity of magnetic particles
JP3144044B2 (en) Magnetic field measurement material
US6255816B1 (en) Electromagnetic resonator devices and systems incorporating same, resonance and imaging methods
Lauer et al. Radio frequency versus susceptibility effects of small conductive implants—a systematic MRI study on aneurysm clips at 1.5 and 3 T
Gultekin et al. Measurement of specific heat and specific absorption rate by nuclear magnetic resonance
Graves et al. Basic principles of magnetic resonance imaging
Babailov et al. Dynamic NMR under nonstationary conditions: Theoretical model, numerical calculation, and potential of application
Blanchard et al. Magnetic Resonance Searches
Stepišnik et al. Dipolar spin-lattice relaxation measurement by saturation
Marrugat Arnal Nuclear magnetic resonance imaging using scalable NMR spectrometers based on permanent magnets
Krivdin An overview of Helium-3 NMR: recent developments and applications

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090105

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100105

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100105

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110105

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120105

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees