JP3143970U - Vibration control device for existing large structures - Google Patents
Vibration control device for existing large structures Download PDFInfo
- Publication number
- JP3143970U JP3143970U JP2008000788U JP2008000788U JP3143970U JP 3143970 U JP3143970 U JP 3143970U JP 2008000788 U JP2008000788 U JP 2008000788U JP 2008000788 U JP2008000788 U JP 2008000788U JP 3143970 U JP3143970 U JP 3143970U
- Authority
- JP
- Japan
- Prior art keywords
- existing large
- vibration
- mass
- wind
- large structure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000001133 acceleration Effects 0.000 claims abstract description 48
- 239000006096 absorbing agent Substances 0.000 claims abstract description 33
- 238000005259 measurement Methods 0.000 claims abstract description 31
- 238000004458 analytical method Methods 0.000 claims abstract description 26
- 238000013016 damping Methods 0.000 claims abstract description 26
- 238000009434 installation Methods 0.000 claims abstract description 21
- 230000004044 response Effects 0.000 claims abstract description 21
- 238000012360 testing method Methods 0.000 claims abstract description 14
- 230000001629 suppression Effects 0.000 claims description 6
- 238000010276 construction Methods 0.000 description 17
- 238000000034 method Methods 0.000 description 17
- 238000013461 design Methods 0.000 description 15
- 230000002787 reinforcement Effects 0.000 description 14
- 238000005516 engineering process Methods 0.000 description 8
- 238000004364 calculation method Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 230000009467 reduction Effects 0.000 description 6
- 238000001514 detection method Methods 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 5
- 238000011068 loading method Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000012790 confirmation Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 238000012423 maintenance Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000003014 reinforcing effect Effects 0.000 description 3
- 208000019901 Anxiety disease Diseases 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000036506 anxiety Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 244000145841 kine Species 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 238000013178 mathematical model Methods 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 238000013439 planning Methods 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 238000009419 refurbishment Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000012384 transportation and delivery Methods 0.000 description 1
Images
Landscapes
- Buildings Adapted To Withstand Abnormal External Influences (AREA)
Abstract
【課題】強風時・長周期地震時に居住性を損なう程度の揺れを感じる既存大型構造物においてその現状を的確に把握した上で効果的に振動低減を図る制振装置を提供する。
【解決手段】既存大型構造物の設置現場に設置された質量マスを用いたアクティブ動吸振器(AMD)と、前記質量マスを駆動制御する制御装置と、を含み、既存大型構造物の強風時、長周期地震時における制振を行う既存大型構造物の制振装置であって、前記アクティブ動吸振器は、既存大型構造物の現状測定としての風速、風向、風に伴う振動の加速度の測定結果と、既存大型構造物の解析モデルとに基づき既存大型構造物に関する固有値を解析し、この固有値の解析結果と、理論的な風荷重とに基づいて既存大型構造物の模型を使用した風洞試験を行って推定した応答加速度によって仕様を決定し製作されたものであり、制御装置によりAMDの質量マスを駆動制御して既存大型構造物の制振を行う。
【選択図】図1An object of the present invention is to provide a vibration damping device that effectively reduces vibration after accurately grasping the current state of an existing large structure that feels a swing that impairs comfortability during strong winds and long-period earthquakes.
An active dynamic vibration absorber (AMD) using a mass mass installed at an installation site of an existing large structure, and a control device for driving and controlling the mass mass, when the existing large structure has a strong wind A vibration control device for an existing large structure that performs vibration control during a long-period earthquake, wherein the active dynamic vibration absorber measures wind speed, wind direction, and acceleration of vibration associated with the wind as the current measurement of the existing large structure A wind tunnel test that analyzes the eigenvalues of an existing large structure based on the result and an analysis model of the existing large structure, and uses the model of the existing large structure based on the analysis result of this eigenvalue and the theoretical wind load The specifications are determined based on the response acceleration estimated by performing the above, and the mass of the AMD is driven and controlled by the control device to control the existing large structure.
[Selection] Figure 1
Description
本考案は、既存大型構造物(特に高層・超高層ビル等)の強風時、長周期地震時の安全性、居住性を効果的に改善する既存大型構造物の制振装置に関するものである。 The present invention relates to a vibration control device for an existing large structure that effectively improves the safety and habitability of existing large structures (particularly high-rise and high-rise buildings) during strong winds and long-period earthquakes.
昨今、日本においては高層・超高層ビル等の新設大型構造物については地震時、強風時の安全性、居住性を効果的に改善・向上するために、構造物の設計当初から振動低減のため下記のような制振(震)装置(エネルギー吸収装置、マスダンバー)等が計画、検討されており、数多く設置もされている。 In recent years, in Japan, in order to effectively improve and improve safety and comfort in the event of earthquakes and strong winds for newly built large structures such as high-rise buildings and skyscrapers, in order to reduce vibration from the beginning of the design of the structure. The following vibration control (seismic) devices (energy absorbers, mass dampers), etc. have been planned and studied, and many have been installed.
制震装置(エネルギー吸収装置)は、原理的に粘性、粘弾性、弾塑性又は摩擦等を利用するものであり、また、制振装置(マスダンパー)は、パッシブ型、セミアクティブ型、アクティブ型等が存在する。 The vibration control device (energy absorption device) uses viscosity, viscoelasticity, elastoplasticity, friction, etc. in principle, and the vibration control device (mass damper) is passive, semi-active, or active. Etc. exist.
通常、高層・超高層構造物は、地震荷重よりも風荷重で構造強度が決まってくるので、強風時の振動低減対策が重要となる。 Normally, the structural strength of high-rise / super-high-rise structures is determined by wind load rather than seismic load, so vibration reduction measures during strong winds are important.
また、大都市の既存高層・超高層構造物は、深さ約数キロメートルの堆積層の上に建築されているため、遠隔地で大きな地震が発生した時、大都市では短周期成分は距離減衰で消滅し長周期成分しか残らなくなり、その振動が高層・超高層構造物に伝達されて居住者にとっては不快な揺れを与えることになる。 In addition, the existing high-rise and super-high-rise structures in large cities are built on a sedimentary layer with a depth of about several kilometers, so when a large earthquake occurs in a remote area, short-period components are attenuated in the large cities. It disappears and only the long-period component remains, and the vibration is transmitted to the high-rise / super-high-rise structure, giving unpleasant shaking to the resident.
例えば東京の例では、北海道の地震、鳥取の地震、最近では新潟県中越沖地震等の影響で既存の高層・超高層ビルが数秒の長周期地振動と共振し居住性を損なうという事態が起きている。 For example, in the case of Tokyo, existing high-rise buildings and skyscrapers resonated with long-period ground vibrations of several seconds due to the Hokkaido earthquake, Tottori earthquake, and recently the Niigata Chuetsu-oki earthquake. ing.
このように既存の高層・超高層構造物の一部は強風時、長周期地震時には振動問題を抱えた状態で存在していることになる。 In this way, some of the existing high-rise and super-high-rise structures exist in a state with vibration problems during strong winds and long-period earthquakes.
上述の通り新設大型構造物の場合では、地震対策としての制震、強風対策としての制振装置は多く設置されているが、例えばエネルギー吸収装置である制震装置(質量数百キロ程度)を既存構造物内部に設置する場合には、室内空間確保のため壁の中に仕込むので改修、設置工事が大掛かりになる。 As described above, in the case of a new large structure, there are many vibration control devices as a countermeasure against earthquakes and strong winds. For example, a vibration control device (mass of several hundred kilometers) that is an energy absorption device is installed. When installing inside an existing structure, refurbishment and installation work will be a major issue because it will be installed in the wall to secure indoor space.
また、建物外部に設置する場合には、大きな反力を受けるので基礎工事が十分にされることが必要となり敷地が狭い場合には施工が困難になる。 In addition, when installed outside the building, it receives a large reaction force, so it is necessary to perform sufficient foundation work, and construction becomes difficult when the site is small.
上記の如く高層・超高層ビルでは地震荷重より風荷重が構造強度に影響を大きく与えるので、制震、制振装置は寿命や性能の観点から多くの場合風振動対策として積極的に採用されないことが多い。 As mentioned above, in high-rise buildings and skyscrapers, wind loads have a greater effect on structural strength than earthquake loads. Therefore, vibration control devices are often not actively used as wind vibration countermeasures in terms of life and performance. There are many.
また、既存大型構造物に対してのパッシブ制振装置の場合には、可動マス質量の大きさは対象構造物の振動質量に対して質量比1%〜3%が性能上必要であり数十トンから数百トンになるため、居住者・周辺環境との関係から十分な施工計画の基で短期間で完了する必要が有ること、このように大きな質量のため設置する床の補強が十分検討されていること、更に一番重要なことであるが、非常に高い設置場所(通常は屋上付近)までの揚重が行われるため、装置の分割、組立が安全、かつ、容易に、しかも精度良くできること等が必要となる。 Further, in the case of a passive vibration damping device for an existing large structure, the mass of the movable mass is required to have a mass ratio of 1% to 3% with respect to the vibration mass of the target structure. Because it is several hundred tons from tons, it must be completed in a short period of time based on a sufficient construction plan based on the relationship with the residents and the surrounding environment. And most importantly, because it is lifted to a very high installation location (usually near the rooftop), it is safe, easy and accurate to divide and assemble the equipment. Things that can be done well are necessary.
通常、新設大型構造物については、例えば強風時の居住性を高めるための制振装置は構造物の設計段階の与条件で検討する。すなわち、必要となる制振装置の設計仕様の決定は対象物件の計画値で行うことになる。 In general, for a large new structure, for example, a vibration control device for improving the comfort in a strong wind is examined under the conditions of the structure design stage. That is, the required design specifications of the vibration damping device are determined based on the planned value of the target property.
当然のことながら、制振装置は実際の構造物の振動特性が分かっていない時点での設計となるため、十分に効果を発揮するためには竣工後構造物の振動特性の把握は必ず必要となり、最終的には制振装置設置後、制振装置の再調整を行うことになる。 Naturally, the vibration control device is designed at a time when the vibration characteristics of the actual structure are not known, so it is absolutely necessary to understand the vibration characteristics of the structure after completion in order to fully demonstrate its effects. Finally, after the damping device is installed, the damping device is readjusted.
また、設計時の装置仕様が竣工後に大概変わることから、装置の再製作、設置工事が必要となる点を考慮し、設計段階で予め装置の調整範囲を予想しており、予想外の調整範囲となった場合には更に制振装置の修正・改良や部品の追加手配等が必要となり、不経済である。 In addition, since the device specifications at the time of design change largely after completion, the adjustment range of the device is predicted in advance at the design stage, taking into account the need for remanufacturing and installation of the device. In such a case, it is necessary to correct or improve the vibration control device or to arrange additional parts, which is uneconomical.
更に、パッシブ制振装置の場合には、装置設置後の対象構造物付加減衰の大きさは約7%程度であり、この場合加速度低減率は1/2.65となる。
また、構造物の振動特性が分からないと装置の最適減衰や最適振動数を決めることができないので性能的には不安が残る。
Further, in the case of the passive vibration damping device, the magnitude of the target structure additional attenuation after the device installation is about 7%, and in this case, the acceleration reduction rate is 1 / 2.65.
In addition, if the vibration characteristics of the structure are not known, the optimum damping and the optimum frequency of the device cannot be determined, so that there remains anxiety in terms of performance.
構造物頂上部付近に設置される装置施工は、上述の通り新設の場合には通常構造物の柱・梁等の施工時に使用する重機を使用することになるが、大部分は柱・梁サイズや大型設備機械で決められる重機の能力及び現場環境により装置の設計そのものが制限される。 As for the construction of equipment installed near the top of the structure, in the case of a new construction as described above, heavy machinery that is usually used for construction of pillars and beams of the structure will be used. The design of the equipment itself is limited by the capacity of heavy machinery determined by large-scale equipment and the field environment.
しかし、既存の超高層構造物の場合には特別の重機を使用する必要から、その分割方法や組立精度及び短期間での工事完了のため、格別の工夫と施工技術が必要になる。このように色々な問題(特に性能上・現場施工上・構造物の補強技術上等の諸問題)があり対策が困難となっており、実際の施工例は存在しない。 However, in the case of an existing super-high-rise structure, special heavy machinery needs to be used, so that special methods and construction techniques are required for the division method, assembly accuracy, and completion of construction in a short period of time. In this way, there are various problems (especially various problems in terms of performance, on-site construction, structural reinforcement technology, etc.), and countermeasures are difficult, and there are no actual construction examples.
上述のように、新築ではなく既存大型構造物(例えば高さ60m以上の高層・超高層ビル)の場合には、強風時、長周期地震動に対する振動低減対策がされた例が無く、多くの超高層構造物は問題・不安を抱えた状態である。 As described above, in the case of an existing large structure (for example, a high-rise / high-rise building with a height of 60 m or more) instead of a new construction, there are no examples of measures to reduce vibration against long-period ground motion during strong winds. High-rise structures are in trouble and anxiety.
すなわち、既存超高層ビルに対しては、上述したように強風時、最近話題になってきている長周期地震動に対しての対策手法も確立されてない等、居住性改善のための振動低減対策は実施されていない。 In other words, for existing high-rise buildings, measures to reduce vibrations for improving habitability have been established, such as a countermeasure method for long-period ground motion, which has recently become a hot topic during strong winds as described above. Is not implemented.
特許文献1には、建物に対して相対移動可能な所定重量の付加質量体をアクチュエーターにより駆動させて建物に制御力を与えるアクティブ動吸振器を、建物の上層部と中層部にそれぞれ設置し、この上層部と下層部の相対運動をセンサーにより検出し、前記上層部と中層部のアクティブ動吸振器に前記相対運動に比例した逆位相の制御信号を入力することで建物の制振を行うように構成したアクティブ動吸振器による制振方法が提案されている。
In
この制振方法の場合、アクティブ動吸振器を用いるものではあるが、既存建物の風等に対する振動応答性の解析、アクティブ動吸振器の設計、製作、搬入、組み立て、性能試験等の一連の過程までは配慮されていない。
本考案が解決しようとする問題点は、強風時・長周期地震時に居住性を損なう程度の揺れを感じる既存大型構造物においてその現状を的確に把握した上で効果的に振動低減を図る制振装置が従来存在しない点である。 Problems that the present invention is to provide, strong winds at the time and long-period seismic Figure Ru system effectively vibration reduction on that to accurately grasp the current situation in the existing large structures to feel the shaking of the extent to which detract from the comfort at the time of There is no vibration device in the past.
本考案は、既存大型構造物の設置現場に設置された質量マスを用いたアクティブ動吸振器と、このアクティブ動吸振器の質量マスを駆動制御する制御装置と、を含み、既存大型構造物の強風時、長周期地震時における制振を行う既存大型構造物の制振装置であって、前記アクティブ動吸振器は、床面上に設置する基台と、基台上に設置したX方向架台と、X方向架台上に配置した平行一対構成のX方向レールと、X方向架台上に配置したX方向モータと、X方向モータによりX方向架台上でX方向に往復駆動されるX方向質量マスと、X方向レール上にY方向に沿って配置したY方向架台と、Y方向架台上に配置した平行一対構成のY方向レールと、Y方向架台上に配置したY方向モータと、Y方向レール上にY方向に移動可能に配置され、Y方向モータによりY方向に往復駆動されるY方向質量マスと、加速度センサーと、を有し、前記X方向質量マス、Y方向質量マスは、既存大型構造物の現状測定としての風速、風向、風に伴う振動の加速度の測定結果を前提として既存大型構造物の建物質量の1/3程度の値を制御対象となる1次振動モードの一般化質量と仮定して、この一般化質量の凡そ0.6%程度の質量に設定されたものであり、前記制御装置は、前記加速度センサーの検出信号と予め設定されたLQ制御理論又はロバスト制御理論のアルゴリズムに基づき、X方向、Y方向の制御信号を生成する制御部と、X方向の制御信号に基づきX方向モータを往復駆動するX方向駆動部と、Y方向の制御信号に基づきY方向モータを駆動するY方向駆動部とを具備し、フィードバック制御によりアクティブ動吸振器のX方向質量マス、Y方向質量マスを各々制御するものであることことを最も主要な特徴とする。 The present invention includes an active dynamic vibration absorber using a mass mass installed at an installation site of an existing large structure, and a control device for driving and controlling the mass mass of the active dynamic vibration absorber. A vibration control device for an existing large structure that performs vibration control during strong winds and long-period earthquakes, wherein the active dynamic vibration absorber includes a base installed on a floor surface and an X-direction frame installed on the base A parallel pair of X-direction rails arranged on the X-direction gantry, an X-direction motor arranged on the X-direction gantry, and an X-direction mass mass that is reciprocated in the X-direction on the X-direction gantry by the X-direction motor A Y-direction frame disposed along the Y-direction on the X-direction rail, a parallel pair of Y-direction rails disposed on the Y-direction frame, a Y-direction motor disposed on the Y-direction frame, and a Y-direction rail It is arranged on the top to be movable in the Y direction, A Y-direction mass mass that is reciprocally driven in the Y-direction by a direction motor, and an acceleration sensor, and the X-direction mass mass and the Y-direction mass mass are the wind speed, wind direction, and wind as current measurements of existing large structures. Assuming the measurement result of the acceleration of vibration accompanying the above, assuming that a value of about 1/3 of the building mass of an existing large structure is a generalized mass of the primary vibration mode to be controlled, this generalized mass is approximately 0. The control device is configured to control signals in the X and Y directions based on the detection signal of the acceleration sensor and a preset algorithm of LQ control theory or robust control theory. A control unit that generates the X direction motor, an X direction drive unit that reciprocates the X direction motor based on the X direction control signal, and a Y direction drive unit that drives the Y direction motor based on the Y direction control signal. The most important feature that it is for each control X direction weight masses of the active dynamic vibration absorber, the Y-direction weight mass by the back control.
請求項1、2記載の考案によれば、既存大型構造物の現状測定としての風速、風向、風に伴う振動の加速度の測定を行ない、測定結果を前提として既存大型構造物の建物質量の1/3程度の値を制御対象となる1次振動モードの一般化質量と仮定して、この一般化質量の凡そ0.6%程度の質量に設定したX方向質量マス、Y方向質量マスを含むアクティブ動吸振器と、アクティブ動吸振器に設けた加速度センサーの検出信号と予め設定されたLQ制御理論又はロバスト制御理論のアルゴリズムに基づき、アクティブ動吸振器をフィードバック制御により駆動制御する制御装置と、を含む構成で、既存の大型構造物に対する効果予測を経て、既存大型構造物の強風等に伴う振動低減を実現し、居住性改善を実現できる既存大型構造物の制振装置を提供できる。 According to the first and second aspects of the present invention, wind speed, wind direction, and acceleration of vibration associated with wind are measured as the current measurement of the existing large structure, and 1 of the building mass of the existing large structure is premised on the measurement result. Assuming a value of about / 3 as the generalized mass of the primary vibration mode to be controlled, the X-direction mass mass and the Y-direction mass mass set to a mass of about 0.6% of this generalized mass are included. An active dynamic vibration absorber, a control device that drives and controls the active dynamic vibration absorber by feedback control based on a detection signal of an acceleration sensor provided in the active dynamic vibration absorber and a preset algorithm of LQ control theory or robust control theory; The existing large structure damping system that can reduce the vibration caused by strong winds, etc., and improve the comfortability of the existing large structure after predicting the effect on the existing large structure. Can be provided.
この場合に、風速風向計、加速度計による風速、風向、加速度の測定、既存大型構造物の設置現場の床への2台のアクティブ動吸振器とフィードバック制御を行う制御装置の設置等の手段を通じて既存大型構造物に最適の既存大型構造物の制振装置を提供できる。また、アクティブ動吸振器(AMD)は、TMDやHMDに比べ、質量は1/3程度で構成でき、制御系を効率的に設計することで、部品点数の削減、揚重、床補強の設計、施工の簡略化、工期の短縮化等によりトータルコストを低減でき、かつ、既存大型構造物の居住者の負担軽減をも図ることができる。 In this case, through wind speed anemometer, measurement of wind speed, wind direction, acceleration by accelerometer, installation of two active dynamic vibration absorbers and control device for feedback control on the floor of existing large structure installation site, etc. It is possible to provide a vibration control device for an existing large structure that is optimal for the existing large structure. Active dynamic vibration absorbers (AMD) can be configured with a mass of about 1/3 compared to TMD and HMD. By designing the control system efficiently, the number of parts can be reduced, lifting and floor reinforcement can be designed. In addition, the total cost can be reduced by simplifying the construction and shortening the construction period, and the burden on the residents of the existing large structure can be reduced.
本考案は、強風時・長周期地震時に居住性を損なう程度の揺れを感じる既存大型構造物においてその現状を的確に把握した上で効果的に振動低減を図る制振装置を提供することを目的とする。 The purpose of the present invention is to provide a vibration control device that effectively reduces the vibration of an existing large structure that feels shaking that impairs comfortability in strong winds and long-period earthquakes. And
本考案は、既存大型構造物の設置現場に所定の配置で設置された2台の質量マスを用いたアクティブ動吸振器と、この2台のアクティブ動吸振器の質量マスを各々駆動制御する制御装置と、を含み、既存大型構造物の強風時、長周期地震時における制振を行う既存大型構造物の制振装置であって、前記2台のアクティブ動吸振器は、床面上に設置する基台と、基台上に設置したX方向架台と、X方向架台上に配置した平行一対構成のX方向レールと、X方向架台上に配置した2台のX方向モータと、X方向モータによりX方向架台上でX方向に往復駆動されるX方向質量マスと、X方向レール上にY方向に沿って配置したY方向架台と、Y方向架台上に配置した平行一対構成のY方向レールと、Y方向架台上に配置した一台のY方向モータと、Y方向レール上にY方向に移動可能に配置され、Y方向モータによりY方向に往復駆動されるY方向質量マスと、加速度センサーと、を有し、前記X方向質量マス、Y方向質量マスは、既存大型構造物の現状測定としての風速、風向、風に伴う振動の加速度の測定結果を前提として既存大型構造物の建物質量の1/3程度の値を制御対象となる1次振動モードの一般化質量と仮定して、この一般化質量の凡そ0.6%程度の質量に設定されたものであり、前記制御装置は、前記加速度センサーの検出信号と予め設定されたLQ制御理論又はロバスト制御理論のアルゴリズムに基づき、X方向、Y方向の制御信号を生成する制御部と、X方向の制御信号に基づき2台のX方向モータを往復駆動するX方向駆動部と、Y方向の制御信号に基づき一台のY方向モータを駆動するY方向駆動部とを具備し、フィードバック制御により2台のアクティブ動吸振器のX方向質量マス、Y方向質量マスを各々制御するものである構成により上記目的を実現した。 The present invention is an active dynamic vibration absorber using two mass masses installed in a predetermined arrangement at an installation site of an existing large structure, and a control for driving and controlling the mass masses of the two active dynamic vibration absorbers. A vibration control device for an existing large structure that performs vibration control during strong winds and long-period earthquakes of the existing large structure, and the two active dynamic vibration absorbers are installed on the floor surface Base, an X-direction stand installed on the base, a pair of parallel X-direction rails arranged on the X-direction stand, two X-direction motors arranged on the X-direction stand, and an X-direction motor The X-direction mass mass reciprocally driven in the X-direction on the X-direction stand, the Y-direction stand arranged along the Y-direction on the X-direction rail, and the parallel Y-direction rail arranged on the Y-direction stand And one Y-direction motor arranged on the Y-direction mount A Y-direction mass mass, which is arranged on the Y-direction rail so as to be movable in the Y-direction and is reciprocated in the Y-direction by a Y-direction motor, and an acceleration sensor. The X-direction mass mass and the Y-direction mass mass are Assuming the measurement results of wind speed, wind direction, and acceleration due to wind as the current measurement of existing large structures, the value of about 1/3 of the building mass of the existing large structures is controlled in the primary vibration mode. Assuming a generalized mass, the mass is set to about 0.6% of the generalized mass , and the control device detects a detection signal of the acceleration sensor and a preset LQ control theory or robustness. A control unit that generates control signals in the X and Y directions based on an algorithm of control theory, an X direction drive unit that reciprocally drives two X direction motors based on the X direction control signals, and a Y direction control signal Based on ; And a Y-direction drive unit for driving the platform in the Y direction motor, realizing the above object X direction weight masses of the two active dynamic vibration absorber by the feedback control, the configuration is for each control the Y direction Mass Mass did.
以下に、本考案の実施例に係る既存大型構造物の制振装置について図面を参照して詳細に説明する。 Hereinafter, a vibration control device for an existing large structure according to an embodiment of the present invention will be described in detail with reference to the drawings.
本実施例の既存大型構造物の制振装置は、強風時・長周期地震時等において、高層・超高層構造物等の既存大型構造物の居住性を向上するための効果的な対策として、対象構造物に大きな負荷減衰を付与するものである。 The vibration control device for the existing large structure of this embodiment is an effective measure for improving the habitability of existing large structures such as high-rise and super-high-rise structures during strong winds and long-period earthquakes. A large load damping is given to the target structure.
本実施例に係る既存大型構造物1の制振装置は、AMD11の質量は小さいが性能が良く、従って、床補強工事、装置の移動組み立て等が容易であり、短期間、かつ、高精度で既存高層・超高層構造物のような既存大型構造物1の強風等に伴う振動低減を図り居住性改善を実現できる制振システム、制振装置、AMD11を提供するものである。
The vibration damping device of the existing
すなわち、本実施例では、制振手段として、パッシブ制振装置ではなくAMD11(アクティブマスダンパー(アクティブ動吸振器))を使用して図18に示す既存大型構造物1の強風等に伴う振動低減を実現するものである。
In other words, in this embodiment, AMD11 (active mass damper (active dynamic vibration absorber)) is used as a vibration suppression unit instead of a passive vibration suppression device, and vibration associated with strong winds or the like of the existing
また、本実施例に係るAMD11は、質量比(=可動マス/振動質量)は0.6%程度なのでパッシブ制振装置に比較して質量は1/2乃至1/6程度で済む。更に付加減衰は16%から20%強になるので加速度低滅率も1/3.9乃至1/4.5となり、大きな振動低減効果を得ることができる利点がある。
Further, the
更に、本実施例に係るAMD11は、既存大型構造物1の現状測定としての詳細は後述する風速風向計2、加速度計3を用いた風速、風向、風に伴う振動の加速度の測定結果と、既存大型構造物1の解析モデルとに基づき既存大型構造物1に関する一次等価マス、一次固有値、等価減衰等の固有値を解析し、この固有値の解析結果と、理論的な風荷重とに基づいて既存大型構造物1の模型を使用した風洞試験を行って推定した応答加速度によって仕様を決定し製作されたものであり、実際の既存大型構造物1の強風等に伴う振動特性を反映させた高性能の振動低減機能を発揮するものである。
Furthermore, AMD11 which concerns on a present Example is the measurement result of the acceleration of the vibration which accompanies the wind speed and wind direction which used the
一般的な既存高層・超高層ビルを想定した場合、制振装置(AMD:アクティブマスダンパー:アクティブ動吸振器)を使用して効果的に強風等による振動を低減するために必要な事項は概ね下記の通りである。 When assuming general existing high-rise and high-rise buildings, the items necessary to effectively reduce vibrations caused by strong winds etc. using damping devices (AMD: active mass dampers: active dynamic vibration absorbers) are mostly It is as follows.
(1)営業中・居住中を前提とした施工方法の構築(特に納期・振動・騒音に対して)
(2)建物振動特性の把握(既存構造物の加振試験、或いは常時微動測定による振動質量・振動数・減衰等(実測値による))
(3)その結果に基づく風洞試験を行うと同時に計算による設置後の結果推定
(4)上記(3)で得られた結果に基づく装置仕様確定・装置設計(無駄な設計を無くし経済性を向上)・装置製作
(5)現場補強のための解析技術と補強方法の検討
(6)現場における装置の搬入・揚重等の計画
(7)現場施工
(8)効果確認試験
(1) Construction of construction methods based on business and residence conditions (especially for delivery time, vibration and noise)
(2) Understanding of building vibration characteristics (vibration test of existing structures or vibration mass, frequency, attenuation, etc. by microtremor measurement (by actual measurement))
(3) Conduct wind tunnel tests based on the results, and simultaneously estimate the results after installation by calculation. (4) Establish equipment specifications and design based on the results obtained in (3) above (eliminate unnecessary design and improve economy) ) ・ Device production (5) Study of analysis technique and reinforcement method for on-site reinforcement (6) Planning of equipment loading / lifting etc. on site (7) On-site construction (8) Effect confirmation test
なお、既存超高層ビル等が振動対策されない理由は、構造物床の補強工事、補強部材の搬入、装置の揚重、設置(組立)等制約条件が多いことに起因すると思われる。逆に言うと、実施するには上述しただけの作業が必要と言うことである。 The reason why existing high-rise buildings are not subject to vibration measures is thought to be due to the fact that there are many constraint conditions such as reinforcement work for structural floors, loading of reinforcing members, lifting of equipment, and installation (assembly). In other words, only the work described above is necessary for implementation.
以下に本実施例に係る既存大型構造物の制振システム、装置について具体的に説明する。本実施例においては、図1に示すように、以下の処理過程ステップS1A乃至S10により既存大型構造物に対する振動低減対策を実現するものである。 The vibration control system and apparatus for existing large structures according to the present embodiment will be specifically described below. In this embodiment, as shown in FIG. 1, the following processing steps S1A to S10 realize vibration reduction measures for existing large structures.
すなわち、本実施例に係る既存大型構造物の制振システム、装置は、
既存建物の現状測定(ステップS1A)
建物解析モデル作成(ステップS1B)
風荷重の作成(ステップS1C)
固有値解析(ステップS2)
建物風の応答解析(ステップS3)
制振装置設計(ステップS4)
制振装置製作(ステップS5)
工場試験(ステップS6)
解体・搬入(ステップS7)
現場設置・調整(ステップS8)
現場性能確認試験(ステップS9)
維持管理(ステップS10)
That is, the vibration control system and device for the existing large structure according to the present embodiment are
Current measurement of existing building (Step S1A)
Building analysis model creation (step S1B)
Creation of wind load (step S1C)
Eigenvalue analysis (step S2)
Response analysis of building wind (Step S3)
Vibration control device design (step S4)
Vibration control device production (step S5)
Factory test (step S6)
Dismantling and carrying in (Step S7)
On-site installation and adjustment (step S8)
On-site performance confirmation test (step S9)
Maintenance (Step S10)
以下に各処理過程について詳述する。 Each processing process will be described in detail below.
まず、既存大型構造物の現状測定を実行する(ステップS1A)。
図2に示すように、既存大型構造物1の例えばヘリポート階上例えば3.5mの高さの位置に風速風向計2を設置し、この既存大型構造物1に対する最大風速(瞬間)、平均風速(10分)及び風向(度)を測定する。
First, the current state measurement of the existing large structure is executed (step S1A).
As shown in FIG. 2, a
実際の測定結果を図3、図4に示す。図3は風速風向計2により測定した17時間分の最大風速(瞬間)(m/s)、平均風速(10分)(m/s)の測定結果を示すものである。図4は、同じく17時間分の風向き(度)の測定結果を示すものであり、風速風向計2により上述した場合と同様17時間にわたって計測した風向データ(10分毎に集計)である。
The actual measurement results are shown in FIGS. FIG. 3 shows the measurement results of the maximum wind speed (instant) (m / s) and average wind speed (10 minutes) (m / s) for 17 hours measured by the
また、既存大型構造物1の例えば屋上塔の隅部の測定点2箇所及び中央部に、図5、図6、図7に示すように、合計3個の加速度計3を設置し、既存大型構造物1のX方向、Y方向及びねじれ方向の各振動に伴う加速度を測定する。
In addition, as shown in FIGS. 5, 6, and 7, a total of three
加速度計3の他に、図示しないがカットオフ周波数5Hzのローパスフィルタ、データロガーを使用し低周波数帯域、微振動測定可能な仕様が選定される。
また、加速度計3を使用して測定した大型構造物1の風による振動に伴うX方向、Y方向及びねじれ方向の各加速度データを図8、図9に示す。
Further, FIG. 8 and FIG. 9 show acceleration data in the X direction, the Y direction, and the torsional direction accompanying the vibration caused by the wind of the
図8は、平均風速(10分)(m/s)に対応する既存大型構造物1における700(sec)分のセンターねじれX方向、隅X方向、隅Y方向の加速度の時間経過を示している。
FIG. 8 shows the time course of acceleration in the center twist X direction, corner X direction, and corner Y direction for 700 (sec) in the existing
図9は、最大風速(瞬間)(m/s)に対応する既存大型構造物1における700(sec)分のセンターねじれX方向、隅X方向、隅Y方向の加速度の時間経過を示している。
FIG. 9 shows the time course of acceleration in the center twist X direction, corner X direction, and corner Y direction for 700 (sec) in the existing
なお、後述する居住性評価は通常再現期間として一年間の最大加速度を用いるため、最低限一年の観測が必要である。 In addition, since the habitability evaluation to be described later uses a maximum acceleration of one year as a normal reproduction period, it requires at least one year of observation.
図10は、図示しないスペクトラムアナライザーを用いて解析した既存大型構造物1のX方向、Y方向及びねじれ方向の4種類(ケース1乃至ケース4)の振動周波数データを、図11は、図10に示すケース1の場合の既存大型構造物1のセンターX方向、隅X方向及び隅Y方向の周波数−振幅特性を示すものである。
FIG. 10 shows vibration frequency data of four types (
次に、既存大型構造物1の解析モデルを作成する(ステップS1B)。すなわち、図12に示すような既存大型構造物1の力学的な解析モデルを作成する。
Next, an analysis model of the existing
この解析モデルは、X,Y方向の並進一次モードと、ねじれ一次モードとからなる三自由度系である。そして、この解析モデルの平面二箇所にAMDの二方向の制御力が作用するようにする。 This analysis model is a three-degree-of-freedom system composed of a translational primary mode in the X and Y directions and a torsional primary mode. And the control force of two directions of AMD acts on two planes of this analysis model.
これにより、ねじれに対してはX,Y方向それぞれの制御力を同時に作用させることができる。 Thereby, the control forces in the X and Y directions can be simultaneously applied to the twist.
次に、既存大型構造物1に対する理論的な風荷重の作成を行う(ステップS1C)。 Next, a theoretical wind load is created for the existing large structure 1 (step S1C).
具体的には、
基準風速の決定
粗度区分の選定
鉛直方向分布係数の決定
再現期間の決定
再現期間換算係数の算定
設計風速の算定
設計速度圧の算定
風力係数の決定
ガスト影響係数の決定
風荷重の算定
等の検討を行い、各々理論的な値を設定する。
In particular,
Determination of standard wind speed Selection of roughness classification Determination of vertical distribution coefficient Determination of reproduction period Calculation of reproduction period conversion coefficient Calculation of design wind speed Calculation of design speed pressure Determination of wind coefficient Coefficient determination of gust effect coefficient Calculation of wind load, etc. And set theoretical values for each.
次に、既存大型構造物1の固有値解析を行う(ステップS2)。
Next, eigenvalue analysis of the existing
すなわち、上述したステップS1で実測した既存大型構造物1の風速、風向、加速度の各データと、ステップS1Bで作成した解析モデルを使用して、その固有値を解析する。
That is, the eigenvalues are analyzed using the wind speed, wind direction, and acceleration data of the existing
この場合、既存大型構造物1の固有値解析に際しては、AMDの一次等価マス、一次固有値、等価減衰仮定、1質点系に置換(風荷重の場合)等について検討し解析する。
In this case, in the eigenvalue analysis of the existing
次に、既存大型構造物1の建物風応答解析を行い、風による応答加速度の推定を行う(ステップS3)。
Next, the building wind response analysis of the existing
この場合に、風に関しては上述したステップS2で解析した固有値のデータを用い、また、10分間平均風速、最大風速、1年期待値、5年期待値、50年期待値、100年期待値等の点を考慮して応答加速度の推定を行う。 In this case, for the wind, the eigenvalue data analyzed in step S2 described above is used, and the 10-minute average wind speed, maximum wind speed, 1-year expected value, 5-year expected value, 50-year expected value, 100-year expected value, etc. The response acceleration is estimated considering this point.
更に、AMDの設置有無による比較を行うために、既存大型構造物1の模型を作成して、その振動特性を考慮しての風応答の解析を行う。この場合、風洞試験を行うことで、既存大型構造物1のための精度の高い予測を得ることができ、正確な評価が可能となる。
Furthermore, in order to make a comparison based on whether AMD is installed or not, a model of the existing
このようにして、既存の大型構造物1に設置するAMD、制御装置の装置仕様を決定する。
In this way, the device specifications of the AMD and control device to be installed in the existing
次に、AMD、制御装置の設計を行う(ステップS4)。すなわち、上述のようにしてAMD、制御装置の装置仕様を決定した後、下記の点を考慮しつつ計画図面、製作図面の作成、設置場所のスペース検討等を行い、AMD、制御装置を設計する。 Next, the AMD and control device are designed (step S4). That is, after determining the device specifications of the AMD and the control device as described above, the AMD and the control device are designed by creating a plan drawing, a production drawing, and examining the space of the installation place, taking the following points into consideration. .
すなわち、AMDの質量マスの大きさとしては、制御対象となる1次振動モードの一般化質量が建物質量の1/3程度と仮定すると、1次振動モードの一般化質量に対して凡そ0.6%程度の付加錘質量と推定される。 That is, as for the mass mass of AMD, assuming that the generalized mass of the primary vibration mode to be controlled is about 1/3 of the building mass, it is approximately 0. 0 with respect to the generalized mass of the primary vibration mode. An additional weight mass of about 6% is estimated.
また、質量マスのストロークの大きさや、制御系について検討する。 We will also examine the mass stroke and control system.
更に、制御系の設計に関しては、下記数1の運動方程式、数2の特性式、更には、運動方程式を状態方程式に書き換える式、最適レギュレータを得るためのフィードバック制御系等について考慮する。
Further, regarding the design of the control system, consideration is given to the following equation of motion, the characteristic equation of
次に、制振装置4を構成する2台のAMD11と、制御装置12の製作を行う(ステップS5)。この場合、必要電気容量、構造強度、稼動時の騒音等を考慮する。ここで、AMD11、制御装置12について図13乃至図16を参照して具体的に説明する。
Next, the two
AMD11は、図13乃至図15に示すように、床面上に設置する基台20と、基台20上に設置したX方向架台21と、X方向架台12上に配置した平行一対構成のX方向レール22と、X方向架台21上に配置した2台のX方向モータ23と、X方向モータ23によりX方向架台12上でX方向に往復駆動されるX方向質量マス24と、X方向レール22の上方で、Y方向に沿って配置したY方向架台25と、Y方向架台25上に配置した平行一対構成のY方向レール26と、Y方向架台25上に配置した一台のY方向モータ27と、Y方向レール26上にY方向に移動可能に配置され、Y方向モータ27によりY方向に往復駆動されるY方向質量マス28と、加速度センサー29と、を有している。
As shown in FIGS. 13 to 15, the
前記AMD11としては、例えばアクティブ式の例を挙げることができる。また、モータ制御のアクティブ式であれば、本機構に限定されず、パッシブ機構(ばね要素、減衰要素)を組み合わせたハイブリッド式でも可能である。
Examples of the
制御装置12は、図16に示すように、前記加速度センサー29の検出信号をデジタル信号に変換するA/D変換器31と、制御ソフト(大概は現代制御理論に基づくソフト等)を格納したメモリ32と、前記加速度センサー29の検出信号と制御ソフトに基づいてX方向、Y方向の制御信号を生成する制御部30と、X方向の制御信号に基づき2台のX方向モータ23を往復駆動するX方向駆動部33と、Y方向の制御信号に基づきY方向モータ26を駆動するY方向駆動部34とを具備している。
As shown in FIG. 16, the
これらの基幹技術は、
1 制御対象構造物が強風等の外乱を受けて応答する(振動解析技術)
2 計測装置である加速度センサーがこの応答を計測し(一般には応答の一部、場合によっては外乱も応答とともに計測する(計測技術)
3 この情報が制御装置に送られる
4 制御装置は受け取った情報を元に予め設定されたアルゴリズム(現代制御理論に基づく:LQ制御、ロバスト制御等)に沿ってX方向駆動部、Y方向駆動部に制御指令を送る(フィードバック制御技術)
5 制御装置は制御のためのアクションをAMDに与える(起動技術)
等からなる。
These core technologies
1 Control target structure responds to disturbance such as strong wind (vibration analysis technology)
2 Acceleration sensor, which is a measuring device, measures this response (generally, part of the response, and in some cases disturbance is also measured along with the response (measurement technology)
3 This information is sent to the control device. 4 The control device is based on the received information in accordance with a preset algorithm (based on modern control theory: LQ control, robust control, etc.). Send control commands to (feedback control technology)
5 The control device gives control actions to AMD (startup technology)
Etc.
ここで、現代制御理論は、制御系を状態方程式で記述し、2次形式で表された評価関数を最小にする状態フィードバックゲインを決定する制御系設計理論であり、LQ制御理論等がある。 Here, the modern control theory is a control system design theory that describes a control system by a state equation and determines a state feedback gain that minimizes an evaluation function expressed in a quadratic form, such as an LQ control theory.
このLQ制御理論を使用するには制御対象の内部構造が解明されていることが必要となる。すなわち、最適レギュレータ理論を適用するためには制御システム全体が線形な数学モデルに表現されることが前提となる。 In order to use this LQ control theory, it is necessary to elucidate the internal structure of the controlled object. That is, in order to apply the optimal regulator theory, it is assumed that the entire control system is expressed in a linear mathematical model.
具体的には、
・制御対象の内部を明確にする対象構造物の運動方程式、可動質量の運動方程式
・状態フィードバックできるセンサーの配置
・重み係数の設計バラメータとしての位置付け
等が必要となる。
In particular,
-The motion equation of the target structure that clarifies the inside of the controlled object, the motion equation of the movable mass, the placement of sensors that can provide state feedback, the positioning of weighting factors as design parameters, etc. are required.
例えば、
対象構造物の絶対速度のフィードバック係数 0.35tonf/kine
AMDのストローク変位のフィードバック係数 0.02tonf/cm
AMDのストローク速度のフィードバック係数 0.001tonf/kine
等の検討を要する。
For example,
Feedback coefficient of absolute velocity of target structure 0.35tonf / kine
AMD stroke displacement feedback coefficient 0.02tonf / cm
AMD Stroke Speed Feedback Factor 0.001tonf / kine
Etc. need to be considered.
前記最適レギュレータ理論は、現代制御理論の基本であるレギュレータ問題として取り扱うことができる。すなわち、レギュレータとは、外乱によって平衡点からずれた出力信号を速やかに元に帰還するフィードバック制御システムであり、状態フィードバック制御、出力フィードバック制御の2通りが存在する。 The optimal regulator theory can be treated as a regulator problem that is the basis of modern control theory. That is, the regulator is a feedback control system that quickly returns an output signal that deviates from the equilibrium point due to disturbance, and there are two types of state feedback control and output feedback control.
また、前記ロバスト制御(H∞制御など)は、古典制御と最適レギュレータ制御とが融合した技術であり、多入力多出力系、時間領域と周波数領域、評価関数の設定、制御対象のモデル化誤差評価等の諸点で極めて理論的であり、有用な制御技術として活用される。 The robust control (H∞ control, etc.) is a technology in which classical control and optimal regulator control are merged. Multi-input multi-output system, time domain and frequency domain, evaluation function setting, control target modeling error It is extremely theoretical in terms of evaluation, and is used as a useful control technology.
次に、各種測定機器類を用いて製作したAMD11、制御装置12の工場試験を行い(ステップS6)、その性能、稼動時の騒音チェックを行って、試験要領を作成する。
Next, a factory test is performed on the
次に、AMD11の解体を行い、既存大型構造物1へ搬入する(ステップS7)が、搬入に先立ち、既存大型構造物1の設置箇所の床補強の要否を検討する。床補強工事が必要な場合には、公知の3次元有限要素法を活用した補強方式等を検討し、具体的な補強方式を決定する。
Next, the
図17に既存大型構造物1の既存床40に対する床補強の一例を示す。この場合にはH形鋼を井桁状に組み込んで補強床41とし、この補強床41をスパン10mの梁42、43、梁44、45間に両端固定する。
FIG. 17 shows an example of floor reinforcement for the existing
また、荷重条件は梁中央部分に30トンの静荷重がかかるとものした。この場合の応力、撓みの計算結果は各々750kgf/cm2、8mmであった。 Also, the load condition was that a static load of 30 tons was applied to the central part of the beam. The calculation results of stress and deflection in this case were 750 kgf / cm 2 and 8 mm, respectively.
なお、既存大型構造物1の既存床40に対して直接に床補強工事を施すことも勿論可能である。
Of course, it is possible to carry out the floor reinforcement work directly on the existing
次に、AMD11、制御装置12の現場設置・調整を行う(ステップS8)。
Next, the installation and adjustment of the
この場合には、AMD11の現地搬入及び揚重に際して、機械加工品等の精度確保した上での組立方法、分割方法、揚重方法に留意する。基本的には仮設クレーンを設置し、揚重する。高さ110m程度までの超高層ビルでは地上走行クレーン等の利用も考える。
In this case, attention should be paid to the assembly method, the division method, and the lifting method after ensuring the accuracy of the machined product or the like when the
また、必要に応じて揚重用の各種工具等も使用し、更に、仮設、組み立て治具を活用した組立工事、レベリング等を施工上の品質管理を十分行いながら実行する。 In addition, various lifting tools are used as necessary, and temporary construction, assembly work using an assembly jig, leveling, etc. are executed while performing quality control on construction.
このようにして、図18に示すように既存大型構造物1の所定の階にAMD11を2台、制御装置12を一台設置する。
In this way, two
次に、設置した2台のAMD11、制御装置12の現場性能確認試験を行う(ステップS9)。
Next, an on-site performance confirmation test is performed on the two installed
すなわち、この場合には、AMD11を利用した加振試験による実際の既存大型構造物1の振動特性を測定し、その結果を記録し試験要領を作成する。
That is, in this case, the vibration characteristics of the actual existing
次に、設置したAMD11を2台、制御装置12に関して維持管理のための交換部品リスト作成、メンテナンス契約の締結等を行う(ステップS10)。
Next, two installed
図19に再現期間1年の風に対するAMD11を設置しない場合の既存大型構造物1の応答加速度(風向270度:1200秒)の想定される測定データを、図20にAMD11を設置した場合の既存大型構造物1の応答加速度(風向270度:1200秒)の想定される測定データを示す。
FIG. 19 shows the expected measurement data of the response acceleration (wind direction 270 degrees: 1200 seconds) of the existing
図21に既存大型構造物1の居住性能指針であるX方向、Y方向及びねじれ方向の周波数−加速度特性を示す。
FIG. 21 shows frequency-acceleration characteristics in the X direction, the Y direction, and the torsional direction, which are guidelines for living performance of the existing
本考案は、上述した高層・超高層ビル等の他、鉄道、道路のための橋梁、電力送電用等の鉄塔、各種タワー等に広範に応用可能である。 The present invention can be widely applied to railways, bridges for roads, steel towers for power transmission, various towers, etc. in addition to the above-described high-rise and skyscraper buildings.
1 既存大型構造物
2 風速風向計
3 加速度計
4 制振装置
11 AMD
12 制御装置
20 基台
21 X方向架台
22 X方向レール
23 X方向モータ
24 X方向質量マス
25 Y方向架台
26 Y方向レール
27 Y方向モータ
28 Y方向質量マス
29 加速度センサー
30 制御部
31 A/D変換器
32 メモリ
33 X方向駆動部
34 Y方向駆動部
40 既存床
41 補強床
42 梁
43 梁
44 梁
45 梁
DESCRIPTION OF
DESCRIPTION OF
Claims (3)
このアクティブ動吸振器の質量マスを駆動制御する制御装置と、
を含み、既存大型構造物の強風時、長周期地震時における制振を行う既存大型構造物の制振装置であって、
前記アクティブ動吸振器は、既存大型構造物の現状測定としての風速、風向、風に伴う振動の加速度の測定結果と、既存大型構造物の解析モデルとに基づき既存大型構造物に関する固有値を解析し、この固有値の解析結果と、理論的な風荷重とに基づいて既存大型構造物の模型を使用した風洞試験を行って推定した応答加速度によって仕様を決定し製作されたものであり、
前記制御装置は、前記応答加速度によって仕様を決定し製作された現代制御理論に基づくソフトを含むものであること、
を特徴とする既存大型構造物の制振装置。 Active dynamic vibration absorbers using mass mass installed at the installation site of existing large structures,
A control device that drives and controls the mass of the active dynamic vibration absorber;
A vibration control device for an existing large structure that performs vibration suppression during strong winds and long-period earthquakes of existing large structures,
The active dynamic vibration absorber analyzes eigenvalues related to existing large structures based on the measurement results of wind acceleration, wind direction, and acceleration of vibration associated with wind as the current measurement of existing large structures, and the analysis model of existing large structures. The specifications were determined based on the response acceleration estimated by conducting a wind tunnel test using a model of an existing large structure based on the analysis result of this eigenvalue and the theoretical wind load.
The control device includes software based on modern control theory, which is produced by determining specifications based on the response acceleration.
A vibration control device for existing large structures.
この2台のアクティブ動吸振器の質量マスを各々駆動制御する制御装置と、
を含み、既存大型構造物の強風時、長周期地震時における制振を行う既存大型構造物の制振装置であって、
前記2台のアクティブ動吸振器は、既存大型構造物の現状測定としての風速風向計、加速度計を用いた風速、風向、風に伴う振動の加速度の測定結果と、既存大型構造物の解析モデルとに基づき既存大型構造物に関する一次等価マス、一次固有値、等価減衰等の固有値を解析し、この固有値の解析結果と、理論的な風荷重とに基づいて既存大型構造物の模型を使用した風洞試験を行って推定した応答加速度によって仕様を決定し製作されたものであり、
前記制御装置は、前記応答加速度によって仕様を決定し製作された現代制御理論に基づくソフトを含むものであること、
を特徴とする既存大型構造物の制振装置。 An active dynamic vibration absorber using two masses installed in a predetermined arrangement at the installation site of an existing large structure;
A control device for driving and controlling the mass of each of the two active dynamic vibration absorbers;
A vibration control device for an existing large structure that performs vibration suppression during strong winds and long-period earthquakes of existing large structures,
The two active dynamic vibration absorbers are the wind speed anemometer as the current measurement of the existing large structure, the measurement result of the wind speed, wind direction, and the vibration acceleration accompanying the accelerometer, and the analysis model of the existing large structure Based on the above, we analyze eigenvalues such as primary equivalent mass, primary eigenvalue, and equivalent damping for existing large structures, and wind tunnels using existing large structure models based on the analysis results of these eigenvalues and theoretical wind loads The specifications were determined based on the response acceleration estimated through testing,
The control device includes software based on modern control theory, which is produced by determining specifications based on the response acceleration.
A vibration control device for existing large structures.
この2台のアクティブ動吸振器の質量マスを各々駆動制御する制御装置と、
を含み、既存大型構造物の強風時、長周期地震時における制振を行う既存大型構造物の制振装置であって、
前記2台のアクティブ動吸振器は、既存大型構造物の現状測定としての風速風向計、加速度計を用いた風速、風向、風に伴う振動の加速度の測定結果と、既存大型構造物の解析モデルとに基づき既存大型構造物に関する一次等価マス、一次固有値、等価減衰等の固有値を解析し、この固有値の解析結果と、理論的な風荷重とに基づいて既存大型構造物の模型を使用した風洞試験を行って推定した応答加速度によって仕様を決定し製作されたものであって、床面上に設置する基台と、基台上に設置したX方向架台と、X方向架台上に配置した平行一対構成のX方向レールと、X方向架台上に配置した2台のX方向モータと、X方向モータによりX方向架台上でX方向に往復駆動されるX方向質量マスと、X方向レール上にY方向に沿って配置したY方向架台と、Y方向架台上に配置した平行一対構成のY方向レールと、Y方向架台上に配置した一台のY方向モータと、Y方向レール上にY方向に移動可能に配置され、Y方向モータによりY方向に往復駆動されるY方向質量マスと、加速度センサーと、を有し、
前記制御装置は、前記応答加速度によって仕様を決定し製作された現代制御理論に基づくソフトを含み、フィードバック制御により2台のアクティブ動吸振器のX方向質量マス、
Y方向質量マスを各々制御するものであること、
を特徴とする既存大型構造物の制振装置。 An active dynamic vibration absorber using two masses installed in a predetermined arrangement at the installation site of an existing large structure;
A control device for driving and controlling the mass of each of the two active dynamic vibration absorbers;
A vibration control device for an existing large structure that performs vibration suppression during strong winds and long-period earthquakes of existing large structures,
The two active dynamic vibration absorbers are the wind speed anemometer as the current measurement of the existing large structure, the measurement result of the wind speed, wind direction, and the vibration acceleration accompanying the accelerometer, and the analysis model of the existing large structure Based on the above, we analyze eigenvalues such as primary equivalent mass, primary eigenvalue, and equivalent damping for existing large structures, and wind tunnels using existing large structure models based on the analysis results of these eigenvalues and theoretical wind loads It was produced by determining the specifications based on the response acceleration estimated from the test, and was constructed with a base installed on the floor, an X-direction stand installed on the base, and a parallel placed on the X-direction stand A pair of X-direction rails, two X-direction motors arranged on the X-direction mount, an X-direction mass mass that is reciprocated in the X direction on the X-direction mount by the X-direction motor, and an X-direction rail Place along the Y direction A Y-direction gantry, a parallel pair of Y-direction rails arranged on the Y-direction gantry, a Y-direction motor arranged on the Y-direction gantry, and a Y-direction rail movably arranged in the Y-direction, A Y-direction mass mass that is reciprocated in the Y-direction by a Y-direction motor, and an acceleration sensor,
The control device includes software based on modern control theory that is manufactured by determining specifications based on the response acceleration, and X-direction mass masses of two active dynamic vibration absorbers by feedback control.
Control each of the Y-direction masses;
A vibration control device for existing large structures.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008000788U JP3143970U (en) | 2008-02-15 | 2008-02-15 | Vibration control device for existing large structures |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008000788U JP3143970U (en) | 2008-02-15 | 2008-02-15 | Vibration control device for existing large structures |
Publications (1)
Publication Number | Publication Date |
---|---|
JP3143970U true JP3143970U (en) | 2008-08-14 |
Family
ID=43293861
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008000788U Expired - Fee Related JP3143970U (en) | 2008-02-15 | 2008-02-15 | Vibration control device for existing large structures |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3143970U (en) |
-
2008
- 2008-02-15 JP JP2008000788U patent/JP3143970U/en not_active Expired - Fee Related
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2009191961A (en) | Vibration control system and vibration control device for existing large-sized structure | |
CA3018790C (en) | Seismic response assessment of man-made structures | |
Ikeda | Active and semi‐active vibration control of buildings in Japan—Practical applications and verification | |
Ventura et al. | Dynamic characteristics of a base isolated building from ambient vibration measurements and low level earthquake shaking | |
Lourenco | Design, construction and testing of an adaptive pendulum tuned mass damper | |
Casciati et al. | Dynamic behavior of a masonry civic belfry under operational conditions | |
Tse et al. | Vibration control of a wind-excited benchmark tall building with complex lateral-torsional modes of vibration | |
CN114964680A (en) | Floating floor slab vibration experiment table based on distributed optical fiber monitoring and testing method | |
Li et al. | Shaking table test and numerical simulation on a mega-sub isolation system under near-fault ground motions with velocity pulses | |
Kwok et al. | Field measurements of dynamic properties of high-rise buildings | |
Ghorbanzadeh et al. | Seismic performance assessment of semi active tuned mass damper in an MRF steel building including nonlinear soil–pile–structure interaction | |
Dai et al. | Inerter location effect on the generalized tuned mass damper inerter control | |
KR200452377Y1 (en) | Vibration Control Apparatus for Large scale Building | |
Utne | Numerical models for dynamic properties of a 14 storey timber building | |
JP3143970U (en) | Vibration control device for existing large structures | |
Wen et al. | Distributed ATMD for buffeting control of cable-stayed bridges under construction | |
CN109142069B (en) | Light steel grouting wall detection device and application method thereof | |
Wang et al. | Floor response spectral analysis and fitting of museum building before and after isolation | |
Ryu et al. | Preliminary design of structural health monitoring for high-rise buildings | |
Li et al. | Resonance measurement and vibration reduction analysis of an office building induced by nearby crane workshop vibration | |
Aly | Design of buildings for wind and earthquake | |
Yamada et al. | Seismic retrofitting effects of reinforcing over-track buildings with knee-brace dampers | |
Breccolotti et al. | Active displacement control of a wind‐exposed mast | |
Xie et al. | Structural Vibration Comfort: A Review of Recent Developments | |
Clarke | Full-Scale Monitoring of Tall Reinforced Concrete Building, and Modelling of Slab-Induced Inherent Damping |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080610 |
|
A623 | Registrability report |
Free format text: JAPANESE INTERMEDIATE CODE: A623 Effective date: 20080215 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110723 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110723 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110723 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R323114 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110723 Year of fee payment: 3 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110723 Year of fee payment: 3 |
|
R370 | Written measure of declining of transfer procedure |
Free format text: JAPANESE INTERMEDIATE CODE: R370 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110723 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R323114 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110723 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20091218 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R323115 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110723 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120723 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |