JP3141944B2 - Pretreatment method for catalyst slurry - Google Patents

Pretreatment method for catalyst slurry

Info

Publication number
JP3141944B2
JP3141944B2 JP02031462A JP3146290A JP3141944B2 JP 3141944 B2 JP3141944 B2 JP 3141944B2 JP 02031462 A JP02031462 A JP 02031462A JP 3146290 A JP3146290 A JP 3146290A JP 3141944 B2 JP3141944 B2 JP 3141944B2
Authority
JP
Japan
Prior art keywords
catalyst
catalyst slurry
oil phase
reaction
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP02031462A
Other languages
Japanese (ja)
Other versions
JPH03238047A (en
Inventor
肇 永原
幸治 中川
Original Assignee
旭化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成工業株式会社 filed Critical 旭化成工業株式会社
Priority to JP02031462A priority Critical patent/JP3141944B2/en
Priority to CA002055444A priority patent/CA2055444C/en
Publication of JPH03238047A publication Critical patent/JPH03238047A/en
Application granted granted Critical
Publication of JP3141944B2 publication Critical patent/JP3141944B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、単環芳香族炭化水素を部分水素化し、対応
するシクロオレフィン類、特にシクロヘキセン類を連続
的に製造、採取する方法に関するものであり、さらに詳
しくは、シクロオレフィン類の連続的な製造、採取を容
易かつ安定的に行うための触媒スラリーの前処理方法に
関する。
Description: TECHNICAL FIELD The present invention relates to a method for continuously producing and collecting corresponding cycloolefins, particularly cyclohexenes, by partially hydrogenating a monocyclic aromatic hydrocarbon. In particular, the present invention relates to a method for pretreating a catalyst slurry for easily and stably performing continuous production and collection of cycloolefins.

シクロヘキセン類は有機化学工業製品の中間原料とし
てその価値が高く、特にポリアミド原料、リジン原料な
どとして重要である。
Cyclohexenes have high value as intermediate raw materials for organic chemical products, and are particularly important as polyamide raw materials and lysine raw materials.

(従来の技術) シクロヘキセン類の製造方法としては、例えば、
(1)水およびアルカリ剤と周期表第VIII族元素を含有
する触媒組成物を用いる方法(特公昭56−22850号公
報)、(2)ルテニウム触媒ならびに周期表のI A族金
属、II A族金属、およびマンガンより選ばれた少なくと
も1種の陽イオンの塩を含む中性または酸性水溶液の存
在下に反応を行う方法(特公昭57−7607号公報)、
(3)ケイ素アルコキシドの加水分解生成物から誘導さ
れたシリカゲル中に分散されたルテニウム触媒と水の存
在下に反応を行う方法(特公昭60−59215号公報)、
(4)硫酸バリウムにルテニウムを担持した触媒、水お
よび添加剤の存在下に反応を行う方法(特開昭61−4022
6号公報)、(5)希土類元素含有化合物にルテニウム
を担持した触媒、水およびアルカリ剤の存在下に反応を
行う方法(特公平1−29174号公報)、(6)金属ルテ
ニウム微粒子と酸化ジルコニウムもしくは酸化ハフニウ
ムおよび水の存在下に反応を行う方法(特開昭62−8133
2号公報)、(7)ルテニウム触媒の存在下、イオウ化
合物を実質的に含まない単環芳香族炭化水素を原料とし
て反応を行う方法(特開昭60−255738号公報)、(8)
ルテニウム触媒と水の存在下、触媒上に鉄を蓄積しない
雰囲気下で反応を行う方法(特開昭62−67033号公報)
などが提案されており、これらはすべてルテニウム触媒
や、種々の添加物を水に分散もしくは溶解せしめた触媒
スラリーを単環芳香族炭化水素および水素と液相で混
合、接触せしめてシクロオレフィン類を取得する方法で
ある。
(Prior Art) As a method for producing cyclohexenes, for example,
(1) A method using a catalyst composition containing water and an alkaline agent and a Group VIII element of the periodic table (Japanese Patent Publication No. 56-22850), (2) Ruthenium catalyst, Group IA metal and Group IIA metal of the periodic table A reaction in the presence of a neutral or acidic aqueous solution containing a salt of at least one cation selected from manganese and manganese (Japanese Patent Publication No. 57-7607);
(3) a method of performing a reaction in the presence of water with a ruthenium catalyst dispersed in silica gel derived from a hydrolysis product of silicon alkoxide (Japanese Patent Publication No. 60-59215);
(4) A method in which a reaction is carried out in the presence of a catalyst in which ruthenium is supported on barium sulfate, water and an additive (JP-A-61-4022)
No. 6), (5) A method of carrying out a reaction in the presence of a catalyst in which ruthenium is supported on a rare earth element-containing compound, water and an alkali agent (Japanese Patent Publication No. 1-29174), (6) Fine particles of metal ruthenium and zirconium oxide Alternatively, a method in which the reaction is carried out in the presence of hafnium oxide and water (Japanese Patent Laid-Open No. 62-8133)
No. 2), (7) a method in which a reaction is carried out in the presence of a ruthenium catalyst using a monocyclic aromatic hydrocarbon substantially containing no sulfur compound as a raw material (Japanese Patent Application Laid-Open No. 60-255738), (8)
A method in which a reaction is carried out in the presence of a ruthenium catalyst and water in an atmosphere in which iron does not accumulate on the catalyst (JP-A-62-67033)
All of these have been proposed, and all of these are mixed with a ruthenium catalyst or a catalyst slurry in which various additives are dispersed or dissolved in water and mixed with monocyclic aromatic hydrocarbons and hydrogen in a liquid phase to contact cycloolefins. How to get.

(発明が解決しようとする課題) これらの従来公知の方法をもってして、現実的なシク
ロオレフィン類の連続製造プロセスを構築しようとする
とき、ルテニウム触媒と水によって構成される触媒スラ
リー(以下、「水相」と略す)と、反応生成物(以下、
「油相」と略す)とを確実に分離することが必要にな
る。仮に、油相に水相の構成成分、例えば、触媒や添加
物(固形物、アルカリ性物質、酸性物質など)が過度に
混入してきた場合、その混入物質によるプロセス配管の
詰まりや、通常使用される材料の腐食などの問題が発生
することが予想される。この問題は、例えば、混入物質
を除去するための濾過装置や、水洗装置などを設けるこ
とにより、ある程度解決することが可能であるが、その
ための設備や操作は、工業的にみて安易なものとは言い
難い。また、連続的な部分水素化反応においても、触媒
や添加物がわずかずつでも過度に油相に混入、流出した
場合、長期的にみて反応系を安定に保つための何らかの
操作や設備が必要となることは明白である。
(Problems to be Solved by the Invention) When a realistic continuous production process of cycloolefins is to be constructed using these conventionally known methods, a catalyst slurry composed of a ruthenium catalyst and water (hereinafter, referred to as “ Aqueous phase) and the reaction product (hereinafter, referred to as
(Abbreviated as "oil phase"). If the components of the water phase, for example, catalysts and additives (solids, alkaline substances, acidic substances, etc.) are excessively mixed into the oil phase, clogging of the process pipes due to the mixed substances and the usual use Problems such as corrosion of materials are expected to occur. This problem can be solved to some extent, for example, by providing a filtration device for removing contaminants or a washing device, but the equipment and operation for that purpose are industrially easy. Is hard to say. Also, in the case of continuous partial hydrogenation, if catalysts and additives are mixed in and out of the oil phase, even if they are added little by little, some operation or equipment is required to keep the reaction system stable over the long term. It is clear that it will be.

したがって、工業的見地に立った場合、スラリー相の
構成成分が油相に過度に混入しないような何らかの方法
が強く望まれるのである。
Therefore, from an industrial point of view, there is a strong demand for some method that does not excessively mix the components of the slurry phase into the oil phase.

ここで「過度」とは、部分水素化反応条件もしくは相
分離条件(例えば、温度や反応生成物からなる油相の組
成)において、油相に対する水相成分の飽和溶解度を越
える量を指し、現実的にはかかる飽和溶解度の数倍程度
から問題となるので、その量を指す。さらに具体的に言
えば、例えば、本発明者らの検討によると、水相として
18重量%のZnSO4・7H2O水溶液と触媒を用い、水素圧50k
g/cm2G、150℃においてベンゼンの部分水素化反応を行
い、ベンゼン50モル%、シクロヘキセンとシクロヘキサ
ンが合わせて50モル%の反応生成物を採取する場合、か
かる油相への水の飽和溶解度は約1重量%であり、ZnSO
4の飽和溶解度は1ppm以下(油相へ溶解する水に対して
は100ppm以下)となるので、過度とはこれらの数倍以上
の量を指す。つけ加えると、上記成分の過度な混入があ
る場合は、水相の固体成分の混入が併発している場合が
ほとんどである。
Here, “excessive” refers to an amount exceeding the saturation solubility of the aqueous phase component in the oil phase under partial hydrogenation reaction conditions or phase separation conditions (for example, temperature or composition of the oil phase composed of reaction products). In general, it is a problem from about several times the saturation solubility, so the amount is referred to. More specifically, for example, according to the study of the present inventors, the aqueous phase
18 using the weight% of ZnSO 4 · 7H 2 O solution and the catalyst, hydrogen pressure 50k
g / cm 2 G, Partial hydrogenation of benzene at 150 ° C, 50% by mole of benzene, 50% by mole of cyclohexene and cyclohexane in total Is about 1% by weight and ZnSO
Since the saturation solubility of 4 is 1 ppm or less (100 ppm or less with respect to water dissolved in the oil phase), “excess” means an amount several times or more than these. In addition, in the case where the above components are excessively mixed, the mixing of the solid components in the aqueous phase occurs in most cases.

この観点に立って、従来公知の技術をみてみると、例
えば、前記従来の技術(1)〜(6)では、その中に反
応を液相懸濁法にて連続的に行うことなども記載されて
はいるが、実施例はすべてバッチ反応であり、本発明者
らの観点に立った記載はない。
From this viewpoint, if we look at the conventionally known technologies, for example, in the above-mentioned conventional technologies (1) to (6), it is also described that the reaction is continuously performed by a liquid phase suspension method therein. Although all the examples are batch reactions, there is no description from the viewpoint of the present inventors.

また、前記従来の技術(5)〜(8)は、本発明者ら
自身によって発明された技術であり、特に(7),
(8)は実際に連続の流通反応を行い、100ないし500時
間にわたって部分水素化反応を比較的安定した反応成績
で行うことに成功しているが、採取された油相への混入
物質や、その量については記載がなく、本発明の観点に
立った検討はなされていない。
The conventional techniques (5) to (8) are techniques invented by the present inventors themselves.
In (8), a continuous flow reaction was actually performed, and the partial hydrogenation reaction was successfully performed with a relatively stable reaction result for 100 to 500 hours. The amount is not described, and no studies have been made from the viewpoint of the present invention.

一方、単環芳香族炭化水素の部分水素化反応を、ルテ
ニウム触媒と水によって構成される触媒スラリーを用い
て連続的に行った例は(7),(8)しかなく、すなわ
ち、本発明者ら自身による検討しかない。
On the other hand, there are only examples (7) and (8) in which the partial hydrogenation reaction of a monocyclic aromatic hydrocarbon is continuously performed using a catalyst slurry composed of a ruthenium catalyst and water. They can only consider themselves.

換言すれば、本発明が、本発明者ら自身の継続的な注
意深い観察、検討によって初めて明らかとなったもので
あることが自明である。
In other words, it is obvious that the present invention has been clarified for the first time by the present inventors' continuous and careful observation and examination.

(課題を解決するための手段) 本発明者らは、前述のように、単環芳香族炭化水素の
部分水素化反応を様々な触媒スラリーを用いて連続的に
行い、反応成績だけでなく、スラリー相と油相の分離に
ついても詳細な検討を行った。その結果、かかる流通反
応を安易に開始すると、本来、水相に保持されるべき触
媒スラリーの構成物質が、一部ではあるが油相へ混入、
流出し、後々の工程操作や、材質に悪影響をもたらすこ
とを見出すに到った。しかも、この現象は、触媒スラリ
ーの構成成分の違いによって程度の差があるものの、か
なり普遍的に発生するものであるとの見解に達した。さ
らに、この現象は、通常のバッチ反応を行った後の反応
混合物を観察するだけでは判らず、たとえバッチ反応後
の油相とスラリー相がきれいに分離しているように見え
ても、流通反応において観測される場合があることも判
り、この現象を防ぐためには、触媒スラリーのほとんど
を油相と分離するのに充分な大きさを有する静置分離槽
を設けるだけでは不充分であるとの知見も得た。
(Means for Solving the Problems) As described above, the present inventors have performed a partial hydrogenation reaction of a monocyclic aromatic hydrocarbon continuously using various catalyst slurries, and not only the reaction results, A detailed study was also made on the separation of the slurry phase and the oil phase. As a result, when such a flow reaction is easily started, the constituent materials of the catalyst slurry, which should be originally held in the aqueous phase, are partially mixed into the oil phase,
It has been found that it leaks out and has a negative effect on later process operations and materials. In addition, it has been concluded that this phenomenon occurs quite universally, although the degree varies depending on the difference in the components of the catalyst slurry. Furthermore, this phenomenon is not only apparent by observing the reaction mixture after performing a normal batch reaction, but also in the flow reaction even if the oil phase and the slurry phase after the batch reaction seem to be clearly separated. It is also known that observations may be made, and to prevent this phenomenon, it is not enough to provide a stationary separation tank having a size large enough to separate most of the catalyst slurry from the oil phase. Also got.

本発明者らは、かかる現象を回避するため鋭意検討を
重ねた結果、本発明に到達した。すなわち、本発明は、
ルテニウム触媒と水によって構成される触媒スラリーに
単環芳香族炭化水素および水素を連続的に供給して部分
水素化反応を行い、該触媒スラリーである水相と、反応
生成物からなる油相を相分離して、油相を連続的に採取
する方法において、該触媒スラリーを混合下に、原料単
環芳香族炭化水素などの油相成分のが存在しない状態
で、60〜180℃の温度に所定時間保持することを特徴と
する触媒スラリーの前処理方法であり、スラリー相と油
相とを確実に分離し、油相への触媒スラリーの構成成分
の混入を抑制する方法を提供するものである。
The present inventors have made intensive studies to avoid such a phenomenon, and as a result, have reached the present invention. That is, the present invention
A monocyclic aromatic hydrocarbon and hydrogen are continuously supplied to a catalyst slurry composed of a ruthenium catalyst and water to perform a partial hydrogenation reaction, and an aqueous phase as the catalyst slurry and an oil phase composed of a reaction product are separated. In a method of separating the phase and continuously collecting the oil phase, the catalyst slurry is mixed, and at a temperature of 60 to 180 ° C. in the absence of an oil phase component such as a raw material monocyclic aromatic hydrocarbon. A method for pretreating a catalyst slurry characterized by holding for a predetermined time, which provides a method for reliably separating a slurry phase and an oil phase and suppressing mixing of a component of the catalyst slurry into the oil phase. is there.

以下、本発明の具体的な実施態様を説明する。 Hereinafter, specific embodiments of the present invention will be described.

本発明におけるルテニウム触媒と水によって構成され
る触媒スラリーは、ルテニウム触媒と水以外の各種の添
加物を含んでいてもよい。ルテニウム触媒としては、金
属ルテニウム微粒子やルテニウムを種々の担体、例え
ば、希土類元素化合物、Ti、Zr、Hf、Nb、Ta、Cr、Fe、
Co、Al、Ga、Siなどの酸化物や水酸化物もしくはそれら
の水和物、硫酸バリウムのような非水溶性塩などに担持
したものを挙げることができ、触媒はルテニウム以外の
成分、例えば、Cu、Fe、Zn、Agなどを含んでいてもさし
つかえない。添加物としては水に溶解するもの、しない
ものなど数多くあるが、I A族金属、II A族金属の塩
類、Zn、Coなどの塩類、各種アルカリ剤、Ti、Zr、Hf、
Nb、Ta、Cr、Fe、Co、Al、Ga、Siなどの酸化物や水酸化
物もしくはそれらの水和物、さらには活性炭などを挙げ
ることができる。
The catalyst slurry composed of the ruthenium catalyst and water in the present invention may contain various additives other than the ruthenium catalyst and water. As the ruthenium catalyst, metal ruthenium fine particles and ruthenium in various supports, for example, rare earth element compounds, Ti, Zr, Hf, Nb, Ta, Cr, Fe,
Co, Al, Ga, oxides and hydroxides such as Si or hydrates thereof, and those supported on water-insoluble salts such as barium sulfate can be mentioned, the catalyst is a component other than ruthenium, for example, , Cu, Fe, Zn, Ag, etc. may be included. There are many additives such as those that dissolve in water and those that do not, but salts of Group IA metals, Group IIA metals, salts such as Zn and Co, various alkali agents, Ti, Zr, Hf,
Examples include oxides and hydroxides of Nb, Ta, Cr, Fe, Co, Al, Ga, Si and the like, hydrates thereof, and activated carbon.

特に、金属ルテニウム微粒子とTi、Zr、Hf、Nb、Ta、
Cr、Fe、Co、Al、Ga、Siなどの酸化物や水酸化物もしく
はそれらの水和物を固形成分として用い、Znの塩類の水
溶液を用いる方法(例えば、前記従来の技術(6))
は、部分水素化反応によるシクロオレフィン生成の選択
率、収率が高く、好ましく用いることができる。スラリ
ー濃度、すなわち、水相の固形成分の濃度としては、共
存する水に対し1×10-3〜0.3重量倍、好ましくは1×1
0-2〜0.1重量倍である。
In particular, metal ruthenium fine particles and Ti, Zr, Hf, Nb, Ta,
A method of using an oxide or hydroxide of Cr, Fe, Co, Al, Ga, Si or the like or a hydrate thereof as a solid component, and using an aqueous solution of a salt of Zn (for example, the conventional technology (6)).
Can be preferably used because of high selectivity and yield of cycloolefin production by partial hydrogenation reaction. The slurry concentration, that is, the concentration of the solid component in the aqueous phase is 1 × 10 −3 to 0.3 times by weight, preferably 1 × 1 to 3 times the weight of coexisting water.
0 -2 to 0.1 times by weight.

部分水素化反応に供給される単環芳香族炭化水素と
は、ベンゼン、トルエン、キシレン類、炭素数4以下の
アルキル基を有する低級アルキルベンゼン類をいう。
The monocyclic aromatic hydrocarbon supplied to the partial hydrogenation reaction refers to benzene, toluene, xylenes, and lower alkylbenzenes having an alkyl group having 4 or less carbon atoms.

部分水素化反応は通常100〜200℃、10〜100kg/cm2Gの
水素圧下で行われる。油相として取り出そうとする反応
生成物は、シクロヘキセン類、シクロヘキサン類および
未反応原料の混合物である。
The partial hydrogenation reaction is usually performed at 100 to 200 ° C. under a hydrogen pressure of 10 to 100 kg / cm 2 G. The reaction product to be taken out as an oil phase is a mixture of cyclohexenes, cyclohexanes and unreacted raw materials.

本発明は、かかる触媒スラリーによる部分水素化反応
を連続的に行い、反応生成物を油水分離によって連続的
に採取するに際し、該触媒スラリーを混合下に、60〜18
0℃の温度に所定時間保持する触媒スラリーの前処理方
法である。
In the present invention, the partial hydrogenation reaction using the catalyst slurry is continuously performed, and the reaction product is continuously collected by oil-water separation.
This is a method for pretreating a catalyst slurry which is maintained at a temperature of 0 ° C. for a predetermined time.

本発明方法の触媒スラリーの前処理にあたっては、原
料単環芳香族炭化水素などの油相成分が存在しない状態
で行う。ただし、処理中の条件下においてスラリー相へ
溶解できる程度のごく微量の存在はかまわない。また、
本発明の触媒スラリーの前処理は、初めて部分水素化反
応に使用するものについてであって、一度本発明の前処
理をされた触媒スラリーは、部分水素化反応に使用後、
冷却して再度反応に使用するに際し、本発明の前処理を
施す必要は特になくなる。
The pretreatment of the catalyst slurry of the method of the present invention is performed in the absence of an oil phase component such as a raw material monocyclic aromatic hydrocarbon. However, the presence of a very small amount that can be dissolved in the slurry phase under the conditions during the treatment does not matter. Also,
The pretreatment of the catalyst slurry of the present invention is for the first time used in a partial hydrogenation reaction, and the catalyst slurry once subjected to the pretreatment of the present invention is used after the partial hydrogenation reaction,
When cooled and used again in the reaction, the pretreatment of the present invention is not particularly required.

本発明方法を実施する際の気相は、水蒸気もしくは水
素や空気、窒素など触媒に悪影響を与えない限り特に制
限はないが、水素や窒素雰囲気で行うことが好ましい。
また、水素の存在下に行うと、触媒の反応に対する活性
や選択性を流通反応開始直後から安定して得ることがで
きる場合もあるので、より好ましい方法ということがで
き、この場合、水素圧は1ないし100kg/cm2G、好ましく
は部分水素化反応における圧と同等の水素圧下で行う。
The gas phase for carrying out the method of the present invention is not particularly limited as long as it does not adversely affect the catalyst, such as water vapor, hydrogen, air, or nitrogen, but is preferably carried out in a hydrogen or nitrogen atmosphere.
In addition, when the reaction is performed in the presence of hydrogen, the activity and selectivity to the reaction of the catalyst can be stably obtained immediately after the start of the flow reaction. It is carried out under a hydrogen pressure of 1 to 100 kg / cm 2 G, preferably equivalent to the pressure in the partial hydrogenation reaction.

本発明は、60〜180℃の温度で行う。60℃より低い温
度では、前処理としては著しく時間を要したり、本発明
の目的とする効果が得られなかったりするので好ましく
なく、また、180℃を超える温度では、触媒自身変性を
伴う場合もあるので好ましくない。100〜150℃の温度で
行えばさらに好適である。
The present invention is performed at a temperature of 60-180 ° C. If the temperature is lower than 60 ° C., the pretreatment takes an extremely long time, or the desired effects of the present invention cannot be obtained, which is not preferable.If the temperature exceeds 180 ° C., the catalyst itself may be denatured. It is not preferable because there is also. It is more preferable to carry out at a temperature of 100 to 150 ° C.

本発明は、上記の条件下で所定時間保持する。ここ
で、所定時間とは、触媒スラリーの構成成分や、処理温
度によって異なるため一概にはいえないが、通常数時間
ないし数日である。
In the present invention, the above-mentioned condition is maintained for a predetermined time. Here, the predetermined period of time is different from the constituent components of the catalyst slurry and the treatment temperature and cannot be unconditionally determined, but is usually several hours to several days.

本発明の処理を触媒スラリーに施すことにより、連続
的な部分水素化反応において、水相(触媒スラリー相)
と油相とを確実に分離し、油相への触媒スラリーの構成
成分の混入を抑制できる理由は必ずしも定かではない
が、おそらくは、一般に親水性といわれるような化合物
においても、微視的には一部に親油性の表面が存在し、
これが油相への混入の一因となっていると考えられ、本
発明の処理により、この親油性の表面が親水性へと変化
するためと本発明者らは考えている。
By subjecting the catalyst slurry to the treatment of the present invention, an aqueous phase (catalyst slurry phase) is obtained in a continuous partial hydrogenation reaction.
The reason why the oil and the oil phase can be surely separated from each other and the mixing of the components of the catalyst slurry into the oil phase can be suppressed is not always clear, but probably, even in a compound generally referred to as hydrophilic, microscopically, Some have a lipophilic surface,
This is considered to be one of the causes of contamination of the oil phase, and the present inventors believe that the treatment of the present invention changes the lipophilic surface to hydrophilic.

(発明の効果) 本発明によれば、油相への触媒スラリーの構成成分の
過度の混入なしに、連続的に部分水素化反応の生成物を
取得することができ、工業的にみて分離に要する操作、
設備等を軽減できるなど、その価値は非常に大きいもの
である。
(Effects of the Invention) According to the present invention, the product of the partial hydrogenation reaction can be continuously obtained without excessive mixing of the constituent components of the catalyst slurry into the oil phase. Required operations,
The value is very large, as the equipment can be reduced.

(実施例) 次に、実施例をもって本発明をさらに詳細に説明する
が、本発明は、これらの実施例に限定されるものではな
い。
(Examples) Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

実施例1 あらかじめ亜鉛化合物を含有させたRU(OH)を還元
して得た亜鉛を7.4重量%含む金属ルテニウム微粒子触
媒(平均結晶子径55Å)2.5g、ZrO2粉末(平均粒径0.35
μ)15g、ZnSO4・3Zn(OH)2250mg、ZnSO4・7H2Oの18%
水溶液1,400mlからなる触媒スラリーを、内容積が3
で約100mlの油水分離用静置槽を内部に有し、かつ、接
液部にテフロンコーティングを施した連続流通反応装置
に仕込んだ。
Example 1 2.5 g of a metal ruthenium fine particle catalyst (average crystallite size: 55 °) containing 7.4% by weight of zinc obtained by reducing RU (OH) 3 previously containing a zinc compound, ZrO 2 powder (average particle size: 0.35
μ) 15g, ZnSO 4 · 3Zn (OH) 2 250mg, ZnSO 4 · 7H 2 O 18%
A catalyst slurry consisting of 1,400 ml of an aqueous solution was prepared with an internal volume of 3
And a continuous flow reactor having a standing tank for oil / water separation of about 100 ml inside and a Teflon coating applied to the liquid contact part.

次に、気相部を水素で置換した後、攪拌しながら150
℃まで1時間かけて昇温し、水素を導入して全圧を50kg
/cm2Gとして20時間保持し、触媒スラリーの前処理を行
った。この後、ベンゼンを2/Hrで供給し、150℃、水
素圧下50kg/cm2Gを保ちながらベンゼンの部分水素化反
応を連続的に行った。
Next, after replacing the gas phase with hydrogen, the mixture was stirred for 150 minutes.
Temperature to 1 ° C over 1 hour, introduce hydrogen and bring the total pressure to 50kg
/ cm 2 G and kept for 20 hours to pretreat the catalyst slurry. Thereafter, benzene was supplied at a rate of 2 / Hr, and a partial hydrogenation reaction of benzene was continuously performed while maintaining the pressure at 150 ° C. and the hydrogen pressure at 50 kg / cm 2 G.

油水分離用静置槽から出てくる油相は冷却した後、ポ
リプロピレン製の微孔フィルターを通し、冷却されるこ
とによって過飽和状態になって析出する油相中の水分、
もしくは油相に過度に混入してくる触媒スラリーの構成
成分を濾別、凝集せしめて、油相からこれらを除去し、
反応生成物である油相を連続的に取り出した。一方、凝
集採取された水、および水に溶解する成分は、適宜反応
装置へ循環せしめた。この操作を500時間連続的に行
い、部分水素化反応生成物であるベンゼン、シクロヘキ
セン、シクロヘキサンを得た。
After cooling the oil phase coming out of the oil-water separation standing tank, it passes through a polypropylene microporous filter, and becomes supersaturated by cooling, and the water in the oil phase that precipitates,
Alternatively, the components of the catalyst slurry excessively mixed in the oil phase are separated by filtration and aggregated, and these are removed from the oil phase,
The oil phase as a reaction product was continuously taken out. On the other hand, the water collected by coagulation and the components soluble in water were appropriately circulated to the reactor. This operation was continuously performed for 500 hours to obtain benzene, cyclohexene, and cyclohexane as partial hydrogenation reaction products.

この間、凝集採取した水の一部を取り出し、この中に
含まれる水溶性の触媒スラリーの構成成分(ZnSO4)な
どの量を分析したところ、凝集採取される水に対し、Zn
として10〜30重量ppmと極めて微量であった。また、流
通反応終了後、微孔フィルターを取り出して固形物の付
着の有無を観察したところ、痕跡量の白色のZrO2が認め
られる程度であった。これらのことより、流通反応中に
おいて油相中に混入してきた触媒スラリーの構成成分は
極めて微量であり、150℃での油相への飽和溶解量の水
分以外には実質的にないことが判った。
During this time, a part of the water collected by coagulation was taken out, and the amount of the constituents (ZnSO 4 ) of the water-soluble catalyst slurry contained therein was analyzed.
As very small as 10 to 30 ppm by weight. Further, after the completion of the flow reaction, the microporous filter was taken out, and the presence or absence of solid matter was observed. As a result, traces of white ZrO 2 were observed. From these facts, it was found that the constituent components of the catalyst slurry mixed into the oil phase during the flow reaction were extremely small, and there was substantially no component other than the amount of water saturated at 150 ° C. in the oil phase. Was.

実施例2 触媒スラリーの前処理操作を80℃に30分かけて昇温
し、この温度で48時間行った他は、実施例1と同様の操
作を200時間連続的に行った。この間、凝集採取される
水中のZn含量は10〜50重量ppmであり、また、微孔フィ
ルターには痕跡量の白色のZrO2が付着している程度であ
り、流通反応中において油相中に混入してきた触媒構成
成分は極めて微量であり、150℃での油相への飽和溶解
量の水分以外には実質的にないことが判った。
Example 2 The same operation as in Example 1 was continuously performed for 200 hours except that the pretreatment operation of the catalyst slurry was heated to 80 ° C. over 30 minutes and performed at this temperature for 48 hours. During this time, the Zn content in the water collected by coagulation is 10 to 50 ppm by weight, and a trace amount of white ZrO 2 is attached to the microporous filter. It was found that the amount of the catalyst component mixed was extremely small, and there was substantially no water other than the amount of water saturated at 150 ° C. in the oil phase.

比較例1 触媒スラリーの前処理をせず、150℃への昇温過程で1
00℃においてベンゼンの供給を開始した以外は、実施例
1と同様の操作を200時間連続的に行った。この間、凝
集採取される水中のZn含量は80〜600重量ppmであった。
また、微孔フィルターには約1.0gのZrO2とルテニウム触
媒の混合物が付着しており、触媒スラリーの構成成分が
過度に油相中へ混入していたことが判った。
Comparative Example 1 The catalyst slurry was not pre-treated,
The same operation as in Example 1 was continuously performed for 200 hours except that the supply of benzene was started at 00 ° C. During this time, the Zn content in the water collected by coagulation was 80 to 600 ppm by weight.
Further, about 1.0 g of a mixture of ZrO 2 and ruthenium catalyst was attached to the microporous filter, and it was found that the components of the catalyst slurry were excessively mixed into the oil phase.

実施例3 水酸化ランタンに1%のルテニウムを担持した水素化
触媒70g、酸化亜鉛700mg、水酸化ナトリウム35g、およ
び水1400mlからなる触媒スラリーを用いた他は、実施例
1と同様の操作で触媒スラリーの前処理、およびベンゼ
ンの部分水素化反応を行った。途中、凝集採取した水の
一部を取り出し、この中に含まれる触媒スラリーの構成
成分の量を分析したところ、凝集採取される水に対し、
Naとして30〜70重量ppmと極めて微量であり、また、Zn
は0.2重量ppm以下であった。流通反応終了後、微孔フィ
ルターを取り出して固形物の付着の有無を観察したとこ
ろ、痕跡量の水素化触媒が認められる程度であった。
Example 3 A catalyst was prepared in the same manner as in Example 1 except that a catalyst slurry comprising 70 g of a hydrogenation catalyst having 1% ruthenium supported on lanthanum hydroxide, 700 mg of zinc oxide, 35 g of sodium hydroxide, and 1400 ml of water was used. Pretreatment of the slurry and partial hydrogenation of benzene were performed. On the way, a part of the coagulated and collected water was taken out, and the amount of the constituent components of the catalyst slurry contained therein was analyzed.
It is an extremely small amount of 30 to 70 wt ppm as Na, and Zn
Was less than 0.2 ppm by weight. After the completion of the flow reaction, the microporous filter was taken out, and the presence or absence of solid matter was observed. As a result, only a trace amount of the hydrogenation catalyst was observed.

比較例2 実施例3の触媒スラリーを用いた他は、比較例1と同
様の操作を行った。この間、凝集採取される水中のNa含
量は150〜500重量ppmであり、Zn含量は0.5〜2重量ppm
であった。流通反応終了後の微孔フィルターには、約2.
5gの水素化触媒が付着していた。
Comparative Example 2 The same operation as in Comparative Example 1 was performed except that the catalyst slurry of Example 3 was used. During this time, the Na content in the water collected by coagulation is 150 to 500 ppm by weight, and the Zn content is 0.5 to 2 ppm by weight.
Met. Approximately 2.
5 g of hydrogenation catalyst had been deposited.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) B01J 21/00 - 37/36 C07C 13/20 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int. Cl. 7 , DB name) B01J 21/00-37/36 C07C 13/20

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ルテニウム触媒と水によって構成される触
媒スラリーに単環芳香族炭化水素および水素を連続的に
供給して部分水素化反応を行い、該触媒スラリーである
水相と、反応生成物からなる油相を相分離して、油相を
連続的に採取する方法において、該触媒スラリーを混合
下に、原料単環芳香族炭化水素などの油相成分が存在し
ない状態で、60〜180℃の温度に所定時間保持すること
を特徴とする触媒スラリーの前処理方法。
1. A partial hydrogenation reaction is carried out by continuously supplying a monocyclic aromatic hydrocarbon and hydrogen to a catalyst slurry composed of a ruthenium catalyst and water, and an aqueous phase as the catalyst slurry and a reaction product In the method of separating the oil phase consisting of and continuously collecting the oil phase, the catalyst slurry is mixed, and in the absence of an oil phase component such as a raw material monocyclic aromatic hydrocarbon, 60 to 180. A method for pretreating a catalyst slurry, wherein the catalyst slurry is maintained at a temperature of ° C for a predetermined time.
JP02031462A 1990-02-14 1990-02-14 Pretreatment method for catalyst slurry Expired - Lifetime JP3141944B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP02031462A JP3141944B2 (en) 1990-02-14 1990-02-14 Pretreatment method for catalyst slurry
CA002055444A CA2055444C (en) 1990-02-14 1991-08-13 A method for pretreating a catalyst slurry and a method for the continuous partial hydrogenation of a monocyclic aromatic hydrocarbons by using the pretreated catalyst slurry

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP02031462A JP3141944B2 (en) 1990-02-14 1990-02-14 Pretreatment method for catalyst slurry
CA002055444A CA2055444C (en) 1990-02-14 1991-08-13 A method for pretreating a catalyst slurry and a method for the continuous partial hydrogenation of a monocyclic aromatic hydrocarbons by using the pretreated catalyst slurry

Publications (2)

Publication Number Publication Date
JPH03238047A JPH03238047A (en) 1991-10-23
JP3141944B2 true JP3141944B2 (en) 2001-03-07

Family

ID=25674858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02031462A Expired - Lifetime JP3141944B2 (en) 1990-02-14 1990-02-14 Pretreatment method for catalyst slurry

Country Status (2)

Country Link
JP (1) JP3141944B2 (en)
CA (1) CA2055444C (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010073481A1 (en) 2008-12-22 2010-07-01 旭化成ケミカルズ株式会社 Process for preparing ruthenium catalyst for use in production of cycloolefin, and process and apparatus for producing cycloolefin

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2606113B2 (en) * 1993-12-22 1997-04-30 三菱化学株式会社 Method for producing cyclohexene
JP2646986B2 (en) * 1993-12-22 1997-08-27 三菱化学株式会社 Method for producing cycloolefin

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010073481A1 (en) 2008-12-22 2010-07-01 旭化成ケミカルズ株式会社 Process for preparing ruthenium catalyst for use in production of cycloolefin, and process and apparatus for producing cycloolefin
US9056309B2 (en) 2008-12-22 2015-06-16 Asahi Kasei Chemicals Corporation Method for preparing ruthenium catalyst for producing cycloolefin and method and apparatus for producing cycloolefin
US10010855B2 (en) 2008-12-22 2018-07-03 Asahi Kasei Chemicals Corporation Method for preparing ruthenium catalyst for producing cycloolefin and method and apparatus for producing cycloolefin

Also Published As

Publication number Publication date
JPH03238047A (en) 1991-10-23
CA2055444A1 (en) 1993-02-14
CA2055444C (en) 1999-04-13

Similar Documents

Publication Publication Date Title
US4200553A (en) Process for producing cyclohexanone
US7947859B2 (en) Process for production of cycloolefin
WO2010073481A1 (en) Process for preparing ruthenium catalyst for use in production of cycloolefin, and process and apparatus for producing cycloolefin
EP0562113B1 (en) Continuous partial hydrogenation of monocyclic aromatic hydrocarbon with pretreated catalyst slurry
JP3141944B2 (en) Pretreatment method for catalyst slurry
AU2005304604B2 (en) Treatment of high molar mass hydrocarbon streams
JP5254338B2 (en) Method and apparatus for producing cycloolefin
JP4111768B2 (en) Water treatment catalyst and water treatment method
EP1896363A1 (en) Euo structural type zeolite containing the cation n,n- dimethyl-n,n-di(3,3-dimethylbutyl)ammonium, and the production method thereof
EP0577213B1 (en) Process for the purification of a hydroxylammonium salt solution
KR950003112B1 (en) Pretreatment of catalyst sludge and contineous partial hydrogenation of monocyclic aromatic hydrocarbon with pretreated catalyst sludge
AU2016238725B2 (en) Treatment of degraded oxime metal extractants in process organic solutions
DE1758837A1 (en) Process for the recovery of precious metals from catalysts
DE69130395T2 (en) CONTINUOUS PARTIAL HYDROGEN OF MONOCYCLIC AROMATIC HYDROCARBON WITH PRETREATED CATALYST SLURRY
JP4025407B2 (en) Method for producing cycloolefin
JP2606113B2 (en) Method for producing cyclohexene
JPS63243039A (en) Production of cycloolefin
WO2024029418A1 (en) Method for producing cycloolefin
JP3125913B2 (en) Method for producing cycloolefin
JPH0987208A (en) Production of cycloolefin
JPH07267882A (en) Production of cycloolefin
JPH0781173B2 (en) Recovery method for metallic ruthenium
JP2979991B2 (en) Method for producing cycloolefin
JPH1135305A (en) Production of purified aqueous hydrogen peroxide solution
JPH08217699A (en) Production of cycloolefin

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081222

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081222

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 10

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 10