JP3141013B2 - Activation brain wave monitoring method and activation brain wave monitoring device - Google Patents

Activation brain wave monitoring method and activation brain wave monitoring device

Info

Publication number
JP3141013B2
JP3141013B2 JP11087978A JP8797899A JP3141013B2 JP 3141013 B2 JP3141013 B2 JP 3141013B2 JP 11087978 A JP11087978 A JP 11087978A JP 8797899 A JP8797899 A JP 8797899A JP 3141013 B2 JP3141013 B2 JP 3141013B2
Authority
JP
Japan
Prior art keywords
activation
power
calculating
value
band component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11087978A
Other languages
Japanese (ja)
Other versions
JP2000279388A (en
Inventor
和栄 末永
昇 大木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GE Medical Systems Global Technology Co LLC
Original Assignee
GE Medical Systems Global Technology Co LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GE Medical Systems Global Technology Co LLC filed Critical GE Medical Systems Global Technology Co LLC
Priority to JP11087978A priority Critical patent/JP3141013B2/en
Publication of JP2000279388A publication Critical patent/JP2000279388A/en
Application granted granted Critical
Publication of JP3141013B2 publication Critical patent/JP3141013B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は賦活脳波のモニタ方
法及びモニタ装置に関する。
The present invention relates to a method and a device for monitoring an activated electroencephalogram.

【0002】[0002]

【従来の技術】従来から、脳波計の電極配置として図6
に示す様な国際電極配置法(10−20法)が知られて
いる。
2. Description of the Related Art Conventionally, as an electrode arrangement of an electroencephalograph, FIG.
International electrode arrangement method (10-20 method) as shown in FIG.

【0003】図5A〜Eは頭部の上面前方よりみた電極
配置手順を示すもので、先ず、 (イ)鼻根(nasion)即ち、鼻前額縫合線上の正
中部と後頭極(inion)即ち、後頭骨の分界項の線
と正中矢状面の交点を結ぶ頭蓋表面に沿った正中線を図
5Aに示す様に10%,20%,20%,20%,20
%,10%に分割し、鼻根方向からFPZ ,FZ
Z ,PZ ,OZ とする。 (ロ)CZ 点を通り左右の耳介前点(耳珠の前方で頬骨
根部にある陥凹部)を結ぶ頭部表面に沿った横断線を図
5Bの様に10%,20%,20%,20%,20%,
10%に分割し、右耳からT3 ,C3 ,CZ ,C4 ,T
4 とする。 (ハ)T3 を通りFPZ とOZ を結ぶ冠状線の全長を図
5Cの様に10%,20%,20%,20%,20%,
10%に分割し、鼻根側のFPZ から、右半球に於いて
FP1 ,F7 ,T3 ,T5 ,O1 とする。 (ニ)C3 を通り、FP1 とO1 とを結ぶ内側の冠状線
の全長を図5Dの様に右半球に於いて4等分して前方か
らF3 ,C3 ,P3 とする。 (ホ)左半球でも(ハ)、(ニ)と同様の手順を行うこ
とでFP2 ,F8 ,T4,T6 ,O2 及び、F4
4 ,P4 とする(図5C,D参照)ことで図5Eの様
な各点に電極を配置して脳波測定が行なわれていた。
FIGS. 5A to 5E show an electrode arrangement procedure viewed from the front upper surface of the head. First, (a) a nose root, ie, a median portion and an occipital pole on an anterior forehead suture line; 5A, the median line along the skull surface connecting the intersection of the line of the demarcation term of the occipital bone and the median sagittal plane is 10%, 20%, 20%, 20%, 20% as shown in FIG. 5A.
%, 10%, and FP Z , F Z ,
Let C Z , P Z , O Z. (B) Crossing lines along the head surface passing through the C Z point and connecting the left and right pre-auricular points (recesses at the root of the cheekbone in front of the tragus) are shown as 10%, 20%, and 20% as shown in FIG. 5B. %, 20%, 20%,
10%, T 3 , C 3 , C Z , C 4 , T
And 4 . (C) The total length of the coronal line connecting FP Z and O Z passing through T 3 is 10%, 20%, 20%, 20%, 20%, as shown in FIG. 5C.
It is divided into 10%, and FP 1 , F 7 , T 3 , T 5 , and O 1 in the right hemisphere from FP Z on the root side of the nose. (D) The total length of the inner coronal line passing through C 3 and connecting FP 1 and O 1 is divided into four equal parts in the right hemisphere as shown in FIG. 5D, and these are defined as F 3 , C 3 , and P 3 from the front. . (E) In the left hemisphere, by performing the same procedure as (c) and (d), FP 2 , F 8 , T 4 , T 6 , O 2 and F 4 ,
By setting C 4 and P 4 (see FIGS. 5C and D), electrodes were arranged at each point as shown in FIG. 5E, and the electroencephalogram measurement was performed.

【0004】この様な電極を用いて脳波測定時の臨床脳
波検査では過呼吸賦活(HyperVentilati
on、以下HVと記す)が最も一般的に行なわれてい
る。この賦活法は安静時の呼吸の早さより1秒間に20
〜30回呼気を強く、大きな呼吸を3〜4秒続けさせて
欠神発作(petit mal)の異常波を誘発させる
ものである。
In a clinical electroencephalography at the time of electroencephalogram measurement using such an electrode, hyperventilation activation (HyperVentilati) is performed.
on, hereafter referred to as HV). This activation method is 20 times per second more than the speed of breathing at rest.
Intense expiration 3030 times, sustaining large breathing for 3 to 4 seconds, to induce an abnormal wave of petit mal.

【0005】この様なHVによる賦活法では脳波振幅の
増大と徐波化を生ずるビルドアップ(build u
p)では過呼吸中に両側前頭部に6Hz以下の高振幅徐
波を誘発し、過呼吸後30秒過ぎても消失しない場合
や、より増強される場合は脳血管障害や、てんかん性の
異常が疑われる。
[0005] In such an activation method using HV, a build-up causing an increase in the amplitude of the electroencephalogram and a slow wave occurs.
In p), a high-amplitude slow wave of 6 Hz or less is induced in the bilateral forehead during hyperventilation, and if it does not disappear 30 seconds after hyperventilation, or if it is further enhanced, cerebrovascular disorder or epileptic Abnormality is suspected.

【0006】この様なビルドアップ現象は血中の炭酸ガ
ス濃度が低下すると血液のpHがアルカリ性に傾くAl
kalosisが起こり、その結果末梢血管を収縮させ
ることによるとされている。
[0006] Such a build-up phenomenon occurs when the concentration of carbon dioxide in the blood decreases and the pH of the blood tends to become alkaline.
It has been attributed to karosis, which results in contraction of peripheral blood vessels.

【0007】又、3Hzの棘徐波複合(3Hz spi
ke and slow wavecomplex)は
欠神発作に特異的に誘発され、この3Hz棘徐波複合は
広汎に20〜60秒出現すること等が検査されている。
Also, a spike-slow wave complex of 3 Hz (3 Hz spi
ke and slow wavecomplex) are specifically induced in absence seizures, and it has been examined that this 3 Hz spike and slow wave complex appears widely for 20 to 60 seconds.

【0008】図7は図6に示した10−20法で頭部の
各部位に電極を配置し、HVによるビルドアップの脳波
の計測結果の1例を示している。図7(a)はHV前、
図7(b)はHV中、図7(C)はHV終了時の脳波波
形を示している。
FIG. 7 shows an example of a measurement result of a build-up electroencephalogram by HV, in which electrodes are arranged at respective parts of the head by the 10-20 method shown in FIG. FIG. 7A shows the state before HV,
FIG. 7B shows an electroencephalogram waveform during HV, and FIG. 7C shows an electroencephalogram waveform at the end of HV.

【0009】[0009]

【発明が解決しようとする課題】上記した様に臨床脳波
検査での突発性異常あるいは非突発性徐波を誘発させる
HVでは図7に示す様な表示装置上あるいは記録装置で
記録紙に記録した脳波波形を直接観察して、医者が主観
的に判断していた。
As described above, an HV which induces sudden abnormalities or non-sudden slow waves in clinical electroencephalography is recorded on a recording paper on a display device or a recording device as shown in FIG. Doctors made subjective judgments by directly observing the EEG waveform.

【0010】然し、賦活中及び賦活前後の脳波波形の比
較は多くの電極からのチャンネルからの脳波波形があ
り、比較が煩雑となるだけでなく、客観性にかけ、更に
他の被検者との比較も難しくなる。そのため、HVでの
ビルドアップの判定を客観的に評価できて、他の被検者
との比較が行なえるモニタリング方法が求められてい
た。
However, the comparison of the electroencephalogram waveforms during activation and before and after activation involves the electroencephalogram waveforms from channels from many electrodes, which not only complicates the comparison but also imposes objectivity on the subject, and further complicates the comparison with other subjects. Comparison is also difficult. Therefore, there has been a demand for a monitoring method that can objectively evaluate the determination of build-up in an HV and can compare the determination with other subjects.

【0011】本発明が解決しようとする課題は、HV前
の安静時の脳波波形を基準として、HV中、HV後の変
化をパワースペクトルで定量的に且つ経時的にモニタリ
ングできる賦活脳波モニタ方法及びこれに用いる装置を
提供しようとするものである。
An object of the present invention is to provide an activated electroencephalogram monitoring method capable of quantitatively and temporally monitoring changes during and after HV with a power spectrum based on an electroencephalogram waveform at rest before HV. It is intended to provide a device used for this.

【0012】[0012]

【課題を解決するための手段】本発明の賦活脳波モニタ
方法は賦活前の安静時脳波の所定周波数帯域成分を抽出
し、パワーを演算して基準賦活帯域成分のパワーを演算
する基準パワー値演算ステップST2 と、少なくとも賦
活時の脳波の所定周波数帯域成分を抽出し、パワーを演
算して現賦活帯域成分のパワーを演算する現パワー値演
算ステップST6 と、現賦活帯域成分の現パワー値と基
準賦活帯域成分の基準パワー値の相対値を演算する相対
値演算ステップST7 と、相対値から基準値に対するア
ップ率を演算した賦活指標を演算するステップとを有
し、賦活指標の変化量を少なくとも賦活時及び賦活後に
亘って、経時的に表示或は記録して成るものである。
An activation electroencephalogram monitoring method according to the present invention extracts a predetermined frequency band component of a resting electroencephalogram before activation and calculates a power to calculate a power of a reference activation band component. a step ST 2, and extracting a predetermined frequency band component of the EEG at least activated during a current power value calculation step ST 6 which calculates the power calculating a power of the current activation band component, the current power value of the current activation band components a relative value calculating step ST 7 for calculating the relative value of the reference power value of the reference activation band component, and a step of calculating the activation index computed up rate with respect to the reference value from the relative value, the activation index variation At least during the activation and after the activation.

【0013】本発明の賦活脳波モニタ装置は賦活前の安
静時の脳波の所定周波数帯域成分を抽出し、パワーを演
算して基準賦活帯域成分のパワーを演算する基準パワー
値演算手段と、少なくとも賦活時の脳波の所定周波数帯
域成分を抽出して、パワーを演算して現賦活帯域成分の
パワーを演算する現パワー値演算手段と、現賦活帯域成
分の現パワー値と基準賦活帯域成分の基準パワー値の相
対値を演算する相対値演算手段と、相対値から基準値に
対するアップ率を演算した賦活指標を演算するステップ
とを有し、賦活指標の変化量を少なくとも賦活時及び賦
活後に亘って経時的に表示或は記録して成るものであ
る。
An activation electroencephalogram monitoring apparatus according to the present invention extracts a predetermined frequency band component of an electroencephalogram at rest before activation and calculates a power to calculate a power of a reference activation band component. Current power value calculating means for extracting a predetermined frequency band component of the brain wave at the time and calculating the power to calculate the power of the current activation band component, and the current power value of the current activation band component and the reference power of the reference activation band component A relative value calculating means for calculating a relative value of the value, and a step of calculating an activation index obtained by calculating an up rate with respect to a reference value from the relative value, wherein a change amount of the activation index is changed at least during activation and after activation. It is formed by displaying or recording in a typical manner.

【0014】[0014]

【発明の実施の形態】本発明の賦活脳波モニタ方法及び
その装置を図1乃至図5によって説明する。図1は本発
明の実施の形態例を示す賦活脳波モニタ装置のフローチ
ャート、図2は本発明の実施の形態例を示す賦活脳波モ
ニタ装置の系統図、図3はFFT分析結果図、図4は本
発明の一実施の形態例を示す賦活脳波モニタ方法によっ
て表示されたHV時のパワースペクトルで定量化して表
示した波形図、図5は表示画面例を示す図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An activated electroencephalogram monitoring method and apparatus according to the present invention will be described with reference to FIGS. FIG. 1 is a flowchart of an activated electroencephalogram monitor device showing an embodiment of the present invention, FIG. 2 is a system diagram of the activated electroencephalogram monitor device showing an embodiment of the present invention, FIG. 3 is an FFT analysis result diagram, and FIG. FIG. 5 is a waveform diagram quantified and displayed by the power spectrum at the time of HV displayed by the activated brain wave monitoring method according to the embodiment of the present invention, and FIG. 5 is a diagram illustrating an example of a display screen.

【0015】図1のフローチャートの動作を説明するに
先だち、図2によって本発明の賦活脳波モニタ装置を説
明する。
Before explaining the operation of the flowchart of FIG. 1, the activated electroencephalogram monitor of the present invention will be described with reference to FIG.

【0016】図2に於いて、1は人間の頭部を示し、図
6で説明した例えば10−20法で複数電極群を頭上に
配設する。
In FIG. 2, reference numeral 1 denotes a human head, and a plurality of electrode groups are arranged above the head by, for example, the 10-20 method described with reference to FIG.

【0017】複数の電極群2からの脳波測定電位は増幅
器3及びマルチプレクサ4を介してアナログ−デジタル
変換器(ADC)5に供給され、デジタル化された測定
電位は入力ボート6を介してコンピュータ(以下CPU
と記す)9に供給する。
The electroencephalogram measurement potentials from the plurality of electrode groups 2 are supplied to an analog-to-digital converter (ADC) 5 via an amplifier 3 and a multiplexer 4, and the digitized measurement potentials are supplied to a computer via an input port 6. Below CPU
9).

【0018】CPU9内には制御部や演算部を有し、ア
ドレスバス及びデータバス12はワーク用のRAM10
及びROM11、入力ポート6、出力ポート13に接続
される。
The CPU 9 has a control section and an operation section. An address bus and a data bus 12 are connected to a work RAM 10.
And the ROM 11, the input port 6, and the output port 13.

【0019】入力ポート6にはキーボードやマウス等の
操作部7と測定した脳波形データ等を格納した外部記憶
装置8を接続する。
The input port 6 is connected to an operation unit 7 such as a keyboard and a mouse, and an external storage device 8 storing measured brain waveform data and the like.

【0020】出力ポート13にはCPU9の演算結果を
記録又は表示するプリンタやCRT等の表示装置14と
記録装置15が接続される。
The output port 13 is connected to a display device 14 such as a printer or a CRT for recording or displaying the calculation result of the CPU 9 and a recording device 15.

【0021】上述の構成に於ける動作を図1のフローチ
ャート及び図3乃至図5の表示波形を用いて説明する。
The operation of the above configuration will be described with reference to the flowchart of FIG. 1 and the display waveforms of FIGS.

【0022】被検者の頭部1に電極群2を配設して、第
1ステップST1 の様に安静時の各部位の脳波計測を1
0秒程度おこなう。
The head 1 of the subject by arranging the electrode group 2, the electroencephalogram measurement of each part at rest as in the first step ST 1 1
Perform for about 0 seconds.

【0023】次に、安静時の計測脳波波形を高速フーリ
エ変換(FFT)等の手法で周波数要素に分解して、パ
ワー値(パワースペクトル)を第2ステップST2 の様
に演算する。
Next, the measurement electroencephalogram waveform at rest is decomposed into frequency components by a technique such as Fast Fourier Transform (FFT), and calculates the power value (power spectrum) as in the second step ST 2.

【0024】第3ステップST3 では第2ステップST
2 で求めたパワー値を基準としてRAM10等の記憶手
段に記憶させる。図4及び図5のCが基準値を示す。
In the third step ST 3 , the second step ST
The power value obtained in 2 is stored in a storage means such as the RAM 10 based on the power value. C in FIGS. 4 and 5 indicates a reference value.

【0025】第4ステップST4 では過呼吸賦活(H
V)を開始する。一般には1分間に20〜30回の深呼
吸(呼気を強めに)を3〜4分間行なわせる。
In the fourth step ST 4 , hyperventilation activation (H
V) is started. In general, 20 to 30 deep breaths (more expiration) per minute are performed for 3 to 4 minutes.

【0026】第5ステップST5 では賦活時の任意の電
極位置、例えばF3 ,F4 ,C3 ,C4 ,P3 ,P4
の誘導を指定し、脳波波形の誘導電位を取り込む。
[0026] The fifth step ST 5 In any electrode position during activation, specify the example F 3, F 4, C 3 , induction of such C 4, P 3, P 4 , captures the induction potential of the electroencephalogram waveform.

【0027】第6ステップST6 ではHVによって例え
ば、ビルドアップの見られる周波数範囲2Hz〜7Hz
近傍の帯域成分を10秒毎に高速フーリエ変換(FF
T)を使用して、周波数分析する。この時、FFTの分
析区間が解析区間に複数必要な場合には、周波数要素を
加算して行けばよい。
[0027] For example the sixth step ST 6 HV, the frequency range is seen a buildup 2Hz~7Hz
Fast Fourier transform (FF) of nearby band components every 10 seconds
Perform frequency analysis using T). At this time, if a plurality of FFT analysis sections are required in the analysis section, the frequency elements may be added.

【0028】図3はFFTの分析結果を示すもので縦軸
はパワー値を示し、横軸は周波数(Hz)を示し、ビル
ドアップの生ずる周波数2Hz乃至7Hz範囲は解り易
くするためにバー16を表示している。波形17(破
線)はHV前の安静時の賦活帯域周波数部分のパワーを
示し、波形18(実線)は現在のパワー値を示してい
る。
FIG. 3 shows the result of FFT analysis, in which the vertical axis indicates the power value, the horizontal axis indicates the frequency (Hz), and the frequency range from 2 Hz to 7 Hz where the build-up occurs is indicated by a bar 16 for easy understanding. it's shown. A waveform 17 (broken line) shows the power of the activation band frequency portion at rest before HV, and a waveform 18 (solid line) shows the current power value.

【0029】次の第7ステップST7 では記憶手段に格
納した基準値のパワーを基に、CPU9は相対値演算を
行なう。
[0029] Based on the power of the reference value stored in the next storage unit in a seventh step ST 7, CPU 9 performs a relative value operation.

【0030】この第7ステップST7 での相対値演算は
次の1式で求める。
The relative value calculation in the seventh step ST 7 is obtained by the following equation.

【0031】さらに、基準値Cに対するアップ率を指標
(賦活指標)としてトレンド表示するために相対値を零
とする計算を2式を用いて演算する。 賦活指標=相対値−100 ‥‥(2)
Further, in order to display a trend using the up ratio with respect to the reference value C as an index (activation index), a calculation for setting the relative value to zero is performed using two equations. Activation index = relative value−100 ‥‥ (2)

【0032】この様に演算を行なって、演算結果は1時
記憶手段10に格納され、第8ステップST8 で演算終
了したか否かをみて、NOであれば第6ステップST6
に戻し、YESであれば第9ステップST9 に進んで相
対値(パワー値)を賦活時と賦活後の所定時間トレンド
表示してエンドに至る。
[0032] by performing calculation in this way, the operation result is stored in the 1 o'clock storage unit 10, a look at whether calculation end in the eighth step ST 8, the sixth step ST 6, if NO
If YES, the process proceeds to the ninth step ST 9 , where the relative value (power value) is trend-displayed at the time of activation and for a predetermined time after activation, and the process ends.

【0033】図4は縦軸にパワーの相対値或は基準値と
の変化量の百分率である賦活指標を表示し、横軸の時間
(秒)はHVで示すバー16位置が過呼吸開始時間を示
し、過呼吸中は1分毎にH1 ,H2 ,H3 ‥‥と表示し
た。またAHVで示すバー位置が過呼吸終了時を示し、
過呼吸終了後も1分ごとにA1 ,A2 ,A3 ‥‥と所定
時間のトレンド表示を行なっている。
FIG. 4 shows the activation index which is the relative value of the power or the percentage of change from the reference value on the vertical axis, and the time (seconds) on the horizontal axis is the bar 16 position indicated by HV and the hyperventilation start time. It is shown, in hyperventilation were labeled H 1, H 2, H 3 ‥‥ every minute. The bar position indicated by AHV indicates the end of hyperventilation,
After completion of hyperventilation in every minute is performed trend display of A 1, A 2, A 3 ‥‥ a predetermined time.

【0034】図4でのトレンドグラフ19は部位P3
置電極の脳波のパワー値を、20は部位C4 位置電極の
脳波のパワー値を表示している。
[0034] The power value of EEG trend graph 19 parts P 3 position electrode in FIG. 4, 20 displaying the power values of EEG sites C 4 position electrode.

【0035】図5は、CRT上の脳波再生画面の一実施
の形態例を示すものであり、図5に於いて、21は図6
で説明した電極群2の各部位電極FP1,FP2‥‥であ
り、画面の上側から頭部1の前方向の電極を示し、22
はこれら電極から誘導された各チャンネルの脳波波形を
示している。
FIG. 5 shows an embodiment of an electroencephalogram reproduction screen on a CRT. In FIG. 5, reference numeral 21 denotes FIG.
In each part electrode F P1 of the electrode group 2 described, F P2 is ‥‥, respectively to the front direction of the electrode of the head 1 from the upper side of the screen, 22
Shows the EEG waveform of each channel induced from these electrodes.

【0036】本発明の図3及び図4で説明したトレンド
表示は図5の様に脳波波形画面上に重ねてウィンドウ表
示されている。
The trend display described with reference to FIGS. 3 and 4 of the present invention is window-displayed on the electroencephalogram waveform screen as shown in FIG.

【0037】23は図3と同様の10秒毎の所定の誘導
指定した電極の脳波波形の周波数分析グラフ(FFT)
を示し、24は図4と同様のパワートレンドを変化率表
示したグラフである。
Reference numeral 23 denotes a frequency analysis graph (FFT) of an electroencephalogram waveform of the electrode designated by a predetermined lead every 10 seconds as in FIG.
24 is a graph showing a power trend similar to that of FIG.

【0038】本発明は上記した様に、周波数解析によ
り、賦活帯域成分を抽出し、賦活前安静時の帯域成分を
基準とした相対値を演算し、時間的な変化をとらえる為
に、横軸を時間としてトレンド表示しているので変化率
が具体的に解明されて、従来では解析によって解明でき
なかった、例えば過呼吸を開始して、どの時点からビル
ドアップが始まって、どの程度変化して、賦活終了後ど
の時点で賦活前の脳波に戻ったかが明確に描写された。
図4は過呼吸モニタパターンを示しているが、この解析
では多くの症例の復帰時間が1分以上掛かっていた。恐
らく視察判定では基線(C線)から30%程度の復帰で
も復帰と判定していると推測された。また、このほかに
も解析中の突発波の発現や入眠なども観察された。ま
た、局在所見を有する症例では局在部位とその対称部位
との比較も臨床的に有用であった。本発明のモニタ方法
では分析したい周波数帯域や誘導を任意に選択できるの
で、アルファ波を指標としたリラクゼーション実験、入
眠潜時反復測定検査や光駆動モニタなどの利用が考えら
れる。又、対象チャンネルを複数にして、例えば左右脳
波の左右差等を比較することもできる。本発明は叙上の
様に構成したので周波数解析によって成分の数値化が成
されたため、過呼吸の賦活状態を客観的に把握できる。
As described above, according to the present invention, the activation band component is extracted by frequency analysis, the relative value based on the band component at rest before activation is calculated, and the horizontal axis is used to capture the temporal change. Since the time is displayed as a trend, the rate of change is concretely elucidated, and it could not be elucidated by analysis in the past, for example, when hyperventilation started, at what point the buildup started, and how much The point at which the brain wave returned to the state before the activation after the activation was clearly described.
FIG. 4 shows the hyperventilation monitor pattern. In this analysis, the recovery time of many cases took 1 minute or more. Probably, it was presumed in the inspection judgment that a return of about 30% from the baseline (line C) was determined to be a return. In addition, the appearance of sudden waves and falling asleep during the analysis were also observed. In cases with localized findings, comparison between the localized site and its symmetrical site was also clinically useful. In the monitoring method of the present invention, the frequency band and the lead to be analyzed can be arbitrarily selected. Therefore, it is conceivable to use a relaxation experiment using an alpha wave as an index, a sleep onset repetition measurement test, an optical drive monitor, or the like. In addition, a plurality of target channels can be used to compare, for example, the left-right difference between left and right brain waves. Since the present invention is configured as described above, the components are quantified by frequency analysis, so that the activation state of hyperventilation can be objectively grasped.

【0039】また、パワー値を時間的な変化としてトレ
ンドグラフとして表示したもので賦活前との比較及び賦
活終了後のビルドアップ等の消失が解り易くなる。
Further, since the power value is displayed as a time change as a trend graph, it becomes easy to understand the comparison with the value before the activation and the disappearance of the build-up after the activation is completed.

【0040】さらに、賦活前の安静時の状態を基準とし
た相対値の変化をトレンドグラフとして表示しているた
め個人差を考慮しないで比較が可能となる。
Furthermore, since the change in the relative value based on the state at rest before activation is displayed as a trend graph, comparison can be made without considering individual differences.

【0041】尚、上述の構成及び方法では脳波波形をリ
アルタイムにトレンドグラフ変換した場合を説明した
が、外部記憶手段8に格納した脳波波形を用いて表示或
は記録する様にしてもよいことは明らかである。
In the above-described configuration and method, the case where the brain wave waveform is converted into a trend graph in real time has been described. However, the display or recording may be performed using the brain wave waveform stored in the external storage means 8. it is obvious.

【0042】[0042]

【発明の効果】本発明の第1の効果は過呼吸の賦活状態
を客観的に把握出来ることである。第2の効果は賦活前
との比較及び賦活終了後の消失が明確化されることであ
る。第3の効果は個人差を考慮しない比較ができること
である。
The first effect of the present invention is that the activated state of hyperventilation can be objectively grasped. The second effect is that the comparison with the state before the activation and the disappearance after the end of the activation are clarified. The third effect is that comparisons can be made without considering individual differences.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の賦活脳波モニタ装置のフローチャート
である。
FIG. 1 is a flowchart of the activation electroencephalogram monitoring device of the present invention.

【図2】本発明の賦活脳波モニタ装置の系統図である。FIG. 2 is a system diagram of an activated electroencephalogram monitor device of the present invention.

【図3】本発明の賦活脳波モニタ装置に用いるFFTの
分析結果を示すグラフである。
FIG. 3 is a graph showing an analysis result of FFT used in the activated electroencephalogram monitoring apparatus of the present invention.

【図4】本発明の賦活脳波モニタ装置の脳波2チャンネ
ル分の過呼吸トレンドグラフである。
FIG. 4 is a hyperventilation trend graph for two channels of an electroencephalogram of the activated electroencephalogram monitor device of the present invention.

【図5】本発明の賦活脳波モニタ装置の過呼吸モニタの
脳波再生画面である。
FIG. 5 is an electroencephalogram reproduction screen of the hyperventilation monitor of the activated electroencephalogram monitor device of the present invention.

【図6】国際電極配置法の手順を示す電極配置図であ
る。
FIG. 6 is an electrode arrangement diagram showing a procedure of the international electrode arrangement method.

【図7】従来のビルドアップ時の脳波波形図である。FIG. 7 is an electroencephalogram waveform chart at the time of conventional build-up.

【符号の説明】[Explanation of symbols]

2‥‥電極群、3‥‥増幅器、8‥‥外部記憶装置、9
‥‥CPU、14‥‥表示装置
2 electrode group, 3 amplifier, 8 external storage device, 9
{CPU, 14} Display device

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大木 昇 東京都文京区本郷3丁目42番6号 エヌ イーシー・メディカルシステムズ株式会 社内 (56)参考文献 特開 平1−218429(JP,A) 特開 平1−218430(JP,A) 特開 昭59−222130(JP,A) 特開 平2−193645(JP,A) 特公 平7−79809(JP,B2) 特公 昭47−48755(JP,B1) 特表 昭63−500435(JP,A) 特表 昭58−500933(JP,A) (58)調査した分野(Int.Cl.7,DB名) A61B 5/0484 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Noboru Oki 3-42-6 Hongo, Bunkyo-ku, Tokyo NTT Medical Systems Corporation In-house (56) References JP-A-1-218429 (JP, A) JP-A-1-218430 (JP, A) JP-A-59-222130 (JP, A) JP-A-2-193645 (JP, A) JP-B 7-79809 (JP, B2) JP-B 47-48755 ( JP, B1) JP-T-63-500435 (JP, A) JP-T-58-500933 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) A61B 5/0484

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 賦活前の安静時脳波の所定周波数帯域成
分を抽出し、パワーを演算して基準賦活帯域成分のパワ
ーを演算する基準パワー値演算ステップと、 少なくとも賦活時の脳波の所定周波数帯域成分を抽出
し、パワーを演算して現賦活帯域成分のパワーを演算す
る現パワー値演算ステップと、 上記現賦活帯域成分の現パワー値と基準賦活帯域成分の
基準パワー値の相対値を演算する相対値演算ステップ
と、上記相対値から上記基準値に対するアップ率を演算した
賦活指標を演算するステップとを有し、 上記賦活指標 の変化量を少なくとも賦活時及び賦活後に
亘って経時的に表示或は記録して成ることを特徴とする
賦活脳波モニタ方法。
1. A reference power value calculation step of extracting a predetermined frequency band component of a resting brain wave before activation and calculating a power to calculate a power of a reference activation band component, at least a predetermined frequency band of the brain wave at the time of activation. Extracting a component, calculating power, and calculating the power of the current activation band component, and calculating a relative value between the current power value of the current activation band component and the reference power value of the reference activation band component. The relative value calculation step, and the up ratio with respect to the reference value was calculated from the relative value.
Calculating an activation index, wherein the amount of change in the activation index is displayed or recorded over time at least during activation and after activation.
【請求項2】 賦活前の安静時の脳波の所定周波数帯域
成分を抽出し、パワーを演算して基準賦活帯域成分のパ
ワーを演算する基準パワー値演算手段と、 少なくとも賦活時の脳波の所定周波数帯域成分を抽出し
て、パワーを演算して現賦活帯域成分のパワーを演算す
る現パワー値演算手段と、 上記現賦活帯域成分の現パワー値と基準賦活帯域成分の
基準パワー値の相対値を演算する相対値演算手段と、上記相対値から上記基準値に対するアップ率を演算した
賦活指標を演算するステップとを有し、 上記賦活指標 の変化量を少なくとも賦活時及び賦活後に
亘って経時的に表示或は記録して成ることを特徴とする
賦活脳波モニタ装置。
2. A reference power value calculating means for extracting a predetermined frequency band component of a brain wave at rest before activation and calculating a power to calculate a power of a reference activation band component, and at least a predetermined frequency of the brain wave at the time of activation. Current power value calculating means for extracting a band component and calculating power to calculate the power of the currently activated band component; and calculating a relative value between the current power value of the current activated band component and the reference power value of the reference activated band component. A relative value calculating means for calculating, and an up ratio with respect to the reference value are calculated from the relative value.
Calculating an activation index, wherein the amount of change in the activation index is displayed or recorded over time at least during and after activation.
【請求項3】 前記基準値に対するアップ率を示す前記
賦活指標を前記相対値から100を差し引いた値として
縦軸に示し、経時的に表示した横軸に賦活開始及び賦活
終了マーカを表示或は記録させて成ることを特徴とする
請求項1記載の賦活脳波モニタ方法。
3. The activation index indicating the rate of increase with respect to the reference value is shown on the vertical axis as a value obtained by subtracting 100 from the relative value, and the activation start and activation end markers are displayed or displayed on the horizontal axis displayed over time. The method according to claim 1, wherein the method is performed by recording.
JP11087978A 1999-03-30 1999-03-30 Activation brain wave monitoring method and activation brain wave monitoring device Expired - Fee Related JP3141013B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11087978A JP3141013B2 (en) 1999-03-30 1999-03-30 Activation brain wave monitoring method and activation brain wave monitoring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11087978A JP3141013B2 (en) 1999-03-30 1999-03-30 Activation brain wave monitoring method and activation brain wave monitoring device

Publications (2)

Publication Number Publication Date
JP2000279388A JP2000279388A (en) 2000-10-10
JP3141013B2 true JP3141013B2 (en) 2001-03-05

Family

ID=13929929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11087978A Expired - Fee Related JP3141013B2 (en) 1999-03-30 1999-03-30 Activation brain wave monitoring method and activation brain wave monitoring device

Country Status (1)

Country Link
JP (1) JP3141013B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2510056B2 (en) * 1992-07-28 1996-06-26 昭和アルミニウム株式会社 Extrusion processing equipment
JP5366083B2 (en) * 2009-03-30 2013-12-11 日本電信電話株式会社 Action option presentation method and apparatus
JP5719520B2 (en) * 2010-03-05 2015-05-20 フクダ電子株式会社 Biological information monitor device, screen display method, and screen display program
JP6188275B2 (en) * 2012-03-30 2017-08-30 フクダ電子株式会社 ECG analyzer and control method thereof

Also Published As

Publication number Publication date
JP2000279388A (en) 2000-10-10

Similar Documents

Publication Publication Date Title
US6731975B1 (en) Method and apparatus for determining the cerebral state of a patient with fast response
Kane et al. A revised glossary of terms most commonly used by clinical electroencephalographers and updated proposal for the report format of the EEG findings. Revision 2017
JP3065660B2 (en) Monitoring depth of anesthesia
JP5108870B2 (en) A system to evaluate the validity of analgesia using bioelectric potential variability
EP1495715B1 (en) A method and apparatus based on combination of three phsysiological parameters for assessment of analgesia during anesthesia or sedation
US6801803B2 (en) Method and apparatus for determining the cerebral state of a patient with fast response
Schneider et al. Monitoring depth of anesthesia utilizing a combination of electroencephalographic and standard measures
EP1757226B1 (en) Measurement of responsiveness of a patient under anaesthesia
US20090062676A1 (en) Phase and state dependent eeg and brain imaging
EP1870032B1 (en) Separation of natural and drug-induced sleep of a subject
Nakagawa et al. Somatosensory-evoked potential to evaluate the trigeminal nerve after sagittal split osteotomy
Pomfrett et al. Respiratory sinus arrhythmia: an index of light anaesthesia
EP1854404A2 (en) Monitoring of the state of the central nervous system of a subjet
US20060135880A1 (en) Identification of a dominant signal component in a biosignal
US20150208926A1 (en) Method and apparatus for estimating depth of anethesia by using ecg signal
LaCount et al. Dynamic cardiovagal response to motion sickness: a point-process heart rate variability study
JP3141013B2 (en) Activation brain wave monitoring method and activation brain wave monitoring device
KR101893596B1 (en) Apparatus and method for monitoring depth of sedation
CN104856673B (en) Utilize the method and apparatus of electrocardiosignal estimating anesthesia depth
US6975901B2 (en) Anesthetic-state determing
DE102007024072B4 (en) Method and device for correlating respiratory and cardiovascular system signals
JP2004350797A (en) Method and device for evaluating brain wave
EP1859733A1 (en) Method and device for correlating breathing signals in the cardiovascular system
Kumar et al. EEG signal processing for monitoring depth of anesthesia
Kortelainen et al. Quantitative EEG Analysis in Intensive Care Patients

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20001113

LAPS Cancellation because of no payment of annual fees