JP3140551B2 - Electron beam recording medium - Google Patents

Electron beam recording medium

Info

Publication number
JP3140551B2
JP3140551B2 JP04107924A JP10792492A JP3140551B2 JP 3140551 B2 JP3140551 B2 JP 3140551B2 JP 04107924 A JP04107924 A JP 04107924A JP 10792492 A JP10792492 A JP 10792492A JP 3140551 B2 JP3140551 B2 JP 3140551B2
Authority
JP
Japan
Prior art keywords
electron beam
recording medium
microcrystal
layer
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04107924A
Other languages
Japanese (ja)
Other versions
JPH05303164A (en
Inventor
和典 免田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optic Co Ltd filed Critical Olympus Optic Co Ltd
Priority to JP04107924A priority Critical patent/JP3140551B2/en
Publication of JPH05303164A publication Critical patent/JPH05303164A/en
Application granted granted Critical
Publication of JP3140551B2 publication Critical patent/JP3140551B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、電子線記録媒体に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electron beam recording medium.

【0002】[0002]

【従来の技術】周知の如く、電子線記録媒体は、電子線
回折像および電子線を用いた描画パターン(静止映像)
を記録することを必要とする装置、例えば結晶構造評価
装置や半導体プロセス装置などに応用されている。
2. Description of the Related Art As is well known, an electron beam recording medium uses an electron beam diffraction image and a drawing pattern (still image) using an electron beam.
This is applied to a device that needs to record data such as a crystal structure evaluation device and a semiconductor process device.

【0003】図3は、典型的な電子線回折像の記録方法
を示す。まず、表面に蛍光剤1を塗布したガラス板2に
電子線を照射すると、照射した部分が蛍光する。この蛍
光をカメラ3などを用いて撮影し、蛍光パターンをカメ
ラ3に装着してあるフィルムに記録する。
FIG. 3 shows a typical method of recording an electron diffraction image. First, when the glass plate 2 having the surface coated with the fluorescent agent 1 is irradiated with an electron beam, the irradiated portion fluoresces. The fluorescent light is photographed using the camera 3 or the like, and the fluorescent pattern is recorded on a film attached to the camera 3.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、図3の
記録方法には、次の欠点がある。 (1) 蛍光剤1をガラス板2に均一に塗布することが困難
なため、微細な電子線回折像を蛍光させることができな
い(像がぼやける)。 (2) 蛍光面をカメラ3で撮影するため撮影装置(カメ
ラ)の光学系の調整誤差が記録された像に含まれる。
However, the recording method of FIG. 3 has the following disadvantages. (1) Since it is difficult to uniformly apply the fluorescent agent 1 to the glass plate 2, a fine electron beam diffraction image cannot be fluorescent (image is blurred). (2) Since the phosphor screen is photographed by the camera 3, the adjustment error of the optical system of the photographing device (camera) is included in the recorded image.

【0005】従って、こうした欠点を有する記録方法
を、結晶評価装置(反射高速電子線回折:RHEED、
低速電子線回折:LEED)に用いると、上記(1) ,
(2) による誤差が記録回折像に含まれるために、格子定
数や回転結晶の回転角の測定に誤差が生じる。
[0005] Therefore, a recording method having such a drawback is used in a crystal evaluation apparatus (reflection high-speed electron beam diffraction: RHEED,
When used for low-energy electron beam diffraction (LEED), the above (1),
Since the error due to (2) is included in the recorded diffraction image, an error occurs in the measurement of the lattice constant and the rotation angle of the rotating crystal.

【0006】本発明は上記事情に鑑みてなされたもの
で、格子定数や回転結晶の回転角の測定に誤差を生じる
ことなく、微細な電子線回折像を正確に記録しえる電子
線記録媒体を提供することを目的とする。
The present invention has been made in view of the above circumstances, and provides an electron beam recording medium capable of accurately recording a fine electron beam diffraction image without causing an error in measurement of a lattice constant and a rotation angle of a rotating crystal. The purpose is to provide.

【0007】[0007]

【課題を解決するための手段】本発明は、少なくとも上
面が導電性を有する基体と、この基体上に形成された微
結晶層とを具備することを特徴とする電子線記録媒体で
ある。
According to the present invention, there is provided an electron beam recording medium comprising a substrate having at least an upper surface having conductivity, and a microcrystalline layer formed on the substrate.

【0008】本発明において、微結晶層は約2nm〜5
0nmの微小な単結晶(微結晶)とこれを支持する微結
晶支持体から構成される場合、あるいは微結晶のみから
構成される場合とがある。前記微結晶の形状としては、
粒子状の場合(図6参照)と柱状の場合(図7参照)と
がある。前記微結晶層において、通常、微結晶表面の未
結合手には水素,酸素,弗素等の原子が吸着した状態に
なっている。前記微結晶の光物性は、例えば応用物理学
会、1992年春期講演会予稿集、30p−ZR−5「ナノサ
イズ物質の光物性」に開示されている。また、前記微結
晶層の形成は、多結晶Si層の場合であるが、例えば
「固体物理」、多孔質シリコンの可視光ルミネセンス、
2.1 PSの形成条件(p152) に開示されている。
In the present invention, the microcrystalline layer has a thickness of about 2 nm to 5 nm.
There is a case where it is composed of a fine single crystal of 0 nm (microcrystal) and a microcrystal support supporting the crystal, or a case where it is composed of only a microcrystal. As the shape of the microcrystal,
There are a case of granular (see FIG. 6) and a case of column (see FIG. 7). In the microcrystal layer, atoms such as hydrogen, oxygen, and fluorine are usually adsorbed to dangling bonds on the surface of the microcrystal. The optical properties of the microcrystals are disclosed in, for example, the Japan Society of Applied Physics, Proceedings of the Spring Meeting of 1992, 30p-ZR-5, “Optical Properties of Nanosize Materials”. Further, the formation of the microcrystalline layer is a case of a polycrystalline Si layer, for example, “solid state physics”, visible light luminescence of porous silicon,
2.1 PS formation conditions (p152).

【0009】次に、本発明に係る電子線記録媒体の原理
について図1(A),(B)及び図2(A),(B)を
参照して説明する。ここで、図1(B)は図1(A)の
平面図、図2(B)は図2(A)の裏面図である。図1
において、11は透明基板、12は透明基板11上に形成され
た透明電極、13はこの透明電極12上に形成された微結晶
層を示す。
Next, the principle of the electron beam recording medium according to the present invention will be described with reference to FIGS. 1 (A) and 1 (B) and FIGS. 2 (A) and 2 (B). Here, FIG. 1B is a plan view of FIG. 1A, and FIG. 2B is a back view of FIG. 2A. FIG.
1, reference numeral 11 denotes a transparent substrate, 12 denotes a transparent electrode formed on the transparent substrate 11, and 13 denotes a microcrystalline layer formed on the transparent electrode 12.

【0010】即ち、前記微結晶層13に電圧を印加(電流
を注入)すると、微結晶の量子サイズ効果及び表面効果
のために形成される準位間で発光する。次に、図1
(A)に示すように微結晶層13側に電子線を照射する
と、照射された微結晶層13部分に吸着している弗素や水
素(H)等が脱離するため、微結晶における表面効果が
抑制、即ち発光準位密度の減少が生じる。その結果、電
子線を用いて例えば「A」という文字や図形等のパター
ンを微結晶層13上に描くと、描いたパターン部分の弗素
や水素等が脱離する(図1(B)参照)。なお、図1
(B)において、14は電子線照射領域、15は電子線非照
射領域を示す。
That is, when a voltage is applied to the microcrystalline layer 13 (current is injected), light is emitted between the levels formed due to the quantum size effect and the surface effect of the microcrystal. Next, FIG.
As shown in FIG. 3A, when the microcrystal layer 13 is irradiated with an electron beam, fluorine, hydrogen (H), and the like adsorbed on the irradiated microcrystal layer 13 are desorbed, so that the surface effect of the microcrystal is reduced. Is suppressed, that is, the emission level density is reduced. As a result, when a pattern such as the letter "A" or a figure such as "A" is drawn on the microcrystalline layer 13 using an electron beam, fluorine, hydrogen, and the like in the drawn pattern portion are eliminated (see FIG. 1B). . FIG.
In (B), 14 denotes an electron beam irradiation area, and 15 denotes an electron beam non-irradiation area.

【0011】また、記録されたパターンを再生する場
合、微結晶層13上に図2(A)に示すように電極16を形
成し、その電極16と透明電極12間に電圧を印加すると、
微結晶層13の弗素や水素等が脱離した領域はほとんど発
光せず、脱離していない領域のみが発光する。従って、
電子線を照射して描いたパターン部分はほとんど発光し
ないので、透明基板側から見ると記録したパターンを読
み取ることができる(図2(B)参照)。なお、図2
(B)において、17は非発光領域、18は発光領域を示
す。
When a recorded pattern is reproduced, an electrode 16 is formed on the microcrystalline layer 13 as shown in FIG. 2A, and a voltage is applied between the electrode 16 and the transparent electrode 12.
A region of the microcrystalline layer 13 from which fluorine, hydrogen, or the like has been desorbed hardly emits light, and only a region from which fluorine or hydrogen has not been desorbed emits light. Therefore,
Since the pattern portion drawn by irradiating the electron beam hardly emits light, the recorded pattern can be read when viewed from the transparent substrate side (see FIG. 2B). Note that FIG.
In (B), reference numeral 17 denotes a non-light emitting region, and reference numeral 18 denotes a light emitting region.

【0012】なお、基板と微結晶層とに挟まれた電極が
不透明である場合は、再生時に微小結晶上に形成する電
極を透明とし、記録されたパターンを基板と反対側から
読み取る。この場合、基板は不透明でもよい。更に、両
電極を透明にすると、基板の両側からパターンを読み取
ることができる(但し、基板は透明)。
If the electrode sandwiched between the substrate and the microcrystal layer is opaque, the electrode formed on the microcrystal during reproduction is made transparent, and the recorded pattern is read from the side opposite to the substrate. In this case, the substrate may be opaque. Further, when both electrodes are transparent, the pattern can be read from both sides of the substrate (however, the substrate is transparent).

【0013】[0013]

【作用】透明基板上に透明電極を介して微結晶層を形成
した場合について説明する。
The case where a microcrystalline layer is formed on a transparent substrate via a transparent electrode will be described.

【0014】前記微結晶層に電圧を印加(電流を注入)
すると、微結晶の量子サイズ効果及び表面効果のために
形成される準位間で発光する。次に、微結晶層側に電子
線を照射すると、照射された微結晶層部分に吸着してい
る弗素や水素等が脱離するため、微結晶における表面効
果が抑制、即ち発光準位密度の減少が生じる。その結
果、電子線を用いて文字や図形等のパターンを微結晶層
上に描くと、描いたパターン部分の弗素や水素等が脱離
する。
Applying voltage (injecting current) to the microcrystalline layer
Then, light is emitted between levels formed due to the quantum size effect and the surface effect of the microcrystal. Next, when the microcrystal layer side is irradiated with an electron beam, fluorine, hydrogen, and the like adsorbed to the irradiated microcrystal layer portion are desorbed, so that the surface effect in the microcrystal is suppressed, that is, the emission level density is reduced. Reduction occurs. As a result, when a pattern such as a character or a figure is drawn on the microcrystalline layer using an electron beam, fluorine, hydrogen, and the like in the drawn pattern portion are eliminated.

【0015】また、記録されたパターンを再生する場
合、微結晶層上に電極を形成し、その電極と前記透明電
極間に電圧を印加すると、微結晶層の弗素や水素等が脱
離した領域はほとんど発光せず、脱離していない領域の
みが発光する。従って、電子線を照射して描いたパター
ン部分はほとんど発光しないので、透明基板側から見る
と記録したパターンを読み取ることができる。
When reproducing a recorded pattern, an electrode is formed on the microcrystalline layer, and when a voltage is applied between the electrode and the transparent electrode, a region of the microcrystalline layer from which fluorine, hydrogen or the like has been desorbed. Emits little light, and emits light only in a region that has not been desorbed. Therefore, since the pattern portion drawn by irradiating the electron beam hardly emits light, the recorded pattern can be read when viewed from the transparent substrate side.

【0016】[0016]

【実施例】以下、本発明の実施例について説明する。 (実施例1)Embodiments of the present invention will be described below. (Example 1)

【0017】図6は、実施例1に係る電子線記録媒体の
説明図を示す。図中の31は、ガラス基板である。このガ
ラス基板31上には、例えばSnO2 又はZnOからなる
透明電極32が形成されている。なお、前記ガラス基板31
と透明電極32を総称して透明基体と呼ぶ。前記透明電極
32上には、Si微結晶層33が形成されている。ここで、
Si微結晶層33は、SiO2 微結晶支持体33aと粒径2
〜50nmのSi微結晶33bとから構成されている。
FIG. 6 is an explanatory view of the electron beam recording medium according to the first embodiment. 31 in the figure is a glass substrate. On this glass substrate 31, a transparent electrode 32 made of, for example, SnO 2 or ZnO is formed. The glass substrate 31
And the transparent electrode 32 are collectively referred to as a transparent substrate. The transparent electrode
On the 32, a Si microcrystalline layer 33 is formed. here,
The Si microcrystal layer 33 is composed of the SiO 2 microcrystal support 33a and
And a 50 nm Si microcrystal 33b.

【0018】こうした構成の電子線記録媒体は、次のよ
うにして製作する。まず、ガラス基板31上に、例えば蒸
着又はスパッタ法により透明電極32を形成する。次に、
所定の反応容器内の上部に前記ガラス基板31を透明電極
32を下側にして配置するとともに、反応容器内の底部に
上面にSiの粉末(かたまり)を分散させSiO2 ター
ゲットを配置した状態でスパッタを行うことにより、前
記透明電極32の主面にSi微結晶層33を形成し、電子線
記録媒体34を製作する。なお、前記Siの代わりに、G
e,CdSなどでもよい。
The electron beam recording medium having such a configuration is manufactured as follows. First, a transparent electrode 32 is formed on a glass substrate 31 by, for example, an evaporation or sputtering method. next,
The glass substrate 31 is placed on the transparent electrode
32 is placed on the lower side, and at the bottom of the reaction vessel, Si powder (lump) is dispersed on the upper surface, and sputtering is performed in a state in which a SiO 2 target is disposed. The microcrystalline layer 33 is formed, and an electron beam recording medium 34 is manufactured. In addition, instead of the Si, G
e, CdS, etc.

【0019】上記構成の電子線記録媒体34は、例えば図
4に示すように電子線回折装置に装着される。なお、図
4において、41は評価室、42はこの評価室41に設けられ
た観察窓、43は評価用試料を示す。上記装置の観察窓付
近に電子線記録媒体34を装着した状態で、電子線回折象
がSi微結晶層表面に映る様にすると、回折像が弗素や
水素等がSi微結晶層33から脱離する。即ち、回折像が
微結晶層に記録される。記録された回折像を再生するに
は、Si微結晶層33上に導電性ペーストなどを塗布(通
常の写真では現像に相当する)し、透明電極との間に電
圧を印加すれば良い。
The electron beam recording medium 34 having the above structure is mounted on an electron beam diffractometer, for example, as shown in FIG. In FIG. 4, reference numeral 41 denotes an evaluation room, 42 denotes an observation window provided in the evaluation room 41, and 43 denotes a sample for evaluation. If the electron beam diffraction image is reflected on the surface of the Si microcrystal layer while the electron beam recording medium 34 is mounted near the observation window of the above apparatus, the diffraction image shows that fluorine, hydrogen, etc. are desorbed from the Si microcrystal layer 33. I do. That is, a diffraction image is recorded on the microcrystalline layer. In order to reproduce the recorded diffraction image, a conductive paste or the like may be applied on the Si microcrystalline layer 33 (corresponding to development in a normal photograph), and a voltage may be applied to the transparent electrode.

【0020】次に、上記実施例1に係る電子線記録媒体
34のSi微結晶層33上に、電子回路等のパターンを転写
する場合は図5のように行なう。まず、前記Si微結晶
層33上に電子描画装置等を用いて電子回路等のパターン
を描き、その上に電極51を形成する。つづいて、パター
ンを転写したい基板(例えば半導体ウェハ)51に予め感
光剤(レジストなど)52を塗布しておき、その上に本発
明の電子線記録媒体34を設置し、透明電極32,電極53間
に電圧を印加して発光させることにより、パターンを転
写する。しかして、上記実施例1に係る電子線記録媒体
34を用いてパターン転写すれば、1枚毎に電子線描画す
る必要がないので、全く同じパターンを大量に転写する
ことができる。 (実施例2)
Next, the electron beam recording medium according to the first embodiment
When transferring a pattern of an electronic circuit or the like onto the Si microcrystalline layer 33 of FIG. First, a pattern of an electronic circuit or the like is drawn on the Si microcrystalline layer 33 using an electronic drawing apparatus or the like, and an electrode 51 is formed thereon. Subsequently, a photosensitive agent (resist or the like) 52 is applied in advance to a substrate (for example, a semiconductor wafer) 51 on which a pattern is to be transferred, and the electron beam recording medium 34 of the present invention is placed thereon, and the transparent electrode 32 and the electrode 53 The pattern is transferred by applying a voltage between them to emit light. Thus, the electron beam recording medium according to the first embodiment.
If the pattern is transferred using the S.34, it is not necessary to draw an electron beam for each sheet, so that a large number of exactly the same patterns can be transferred. (Example 2)

【0021】図7は、本発明の実施例2に係る電子線記
録媒体の説明図を示す。実施例2は、実施例1と比べ、
Si微結晶層41がSiO2 微結晶支持体33aと柱状の
Si微結晶42とから構成されている点が異なる。ここ
で、柱状のSi微結晶42は、HF水溶液中にPt電極,
Si微結晶層を透明電極を形成したガラス基板を対向配
置させてSi微結晶層をエッチングさせることにより形
成できる(「固体物理」、多孔質シリコンの可視光ルミ
ネセンス、2.1 PSの形成条件(p152) 参照)。
FIG. 7 is an explanatory view of an electron beam recording medium according to Embodiment 2 of the present invention. Example 2 is different from Example 1 in that
The difference is that the Si microcrystal layer 41 is composed of a SiO 2 microcrystal support 33a and columnar Si microcrystals. Here, the columnar Si microcrystals 42 are placed in a HF aqueous solution using a Pt electrode,
The Si microcrystal layer can be formed by etching the Si microcrystal layer with the glass substrate on which the transparent electrodes are formed facing each other (“solid state physics”, visible light luminescence of porous silicon, 2.1 PS formation conditions (p. 152)). )).

【0022】なお、上記実施例では、Si微結晶層がS
iO2 微結晶支持体と所定の粒径を有するSi微結晶
(又は柱状のSi微結晶)とから構成されている場合に
ついて述べたが、これに限らず、例えばSiO2 微結晶
支持体が存在せず、Si微結晶層が所定の粒径を有する
Si微結晶のみから構成されている場合でもよい。
In the above embodiment, the Si microcrystal layer is made of S
iO 2 has dealt with the case of being constituted from a microcrystalline support and Si microcrystals having a predetermined particle size (or columnar Si microcrystals), not limited to this, for example, there are SiO 2 microcrystals support Instead, the Si microcrystal layer may be composed of only Si microcrystals having a predetermined grain size.

【0023】上記実施例では、基体が透明基板とこの上
に形成された透明電極からなる場合について述べたが、
これに限定されない。例えば、基体が少なくとも表面が
導電性を有する材料から構成された透明基板である場合
でもよい。また、前記電極が不透明あるいは基板が非透
明である場合でもよい。但し、この場合、再生時に微小
結晶上に形成する電極を透明とし、記録されたパターン
を基板と反対側から読み取る。
In the above embodiment, the case has been described in which the substrate is composed of a transparent substrate and a transparent electrode formed thereon.
It is not limited to this. For example, the base may be a transparent substrate in which at least the surface is made of a material having conductivity. Further, the electrode may be opaque or the substrate may be non-transparent. However, in this case, the electrode formed on the microcrystal during reproduction is made transparent, and the recorded pattern is read from the side opposite to the substrate.

【0024】[0024]

【発明の効果】以上詳述した如く本発明によれば、格子
定数や回転結晶の回転角の測定に誤差を生じることな
く、微細な電子線回折像を正確に記録しえる電子線記録
媒体を提供できる。
As described above in detail, according to the present invention, an electron beam recording medium capable of accurately recording a fine electron beam diffraction image without causing an error in the measurement of the lattice constant and the rotation angle of the rotating crystal. Can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る電子線記録媒体の原理を説明する
ための図であり、図1(A)は前記電子線記録媒体の概
略断面図、図1(B)は図1(A)の平面図。
FIG. 1 is a view for explaining the principle of an electron beam recording medium according to the present invention. FIG. 1 (A) is a schematic sectional view of the electron beam recording medium, and FIG. 1 (B) is FIG. FIG.

【図2】図1の電子線記録媒体に記録されたパターンの
再生を説明するための図であり、図2(A)は前記媒体
の断面図、図2(B)は図2(A)の裏面図。
FIGS. 2A and 2B are diagrams for explaining reproduction of a pattern recorded on the electron beam recording medium of FIG. 1, wherein FIG. 2A is a cross-sectional view of the medium, and FIG. 2B is FIG. FIG.

【図3】典型的な電子線回折像の記録方法を示す説明
図。
FIG. 3 is an explanatory view showing a typical electron beam diffraction image recording method.

【図4】電子線記録媒体を電子線回折装置に組み込んだ
場合の説明図。
FIG. 4 is an explanatory diagram when the electron beam recording medium is incorporated in an electron beam diffraction device.

【図5】本発明に係る電子線記録媒体を用いてパターン
転写する場合の説明図。
FIG. 5 is an explanatory diagram in the case of pattern transfer using the electron beam recording medium according to the present invention.

【図6】本発明の実施例1に係る電子線記録媒体の説明
図。
FIG. 6 is an explanatory diagram of the electron beam recording medium according to the first embodiment of the present invention.

【図7】本発明の実施例2に係る電子線記録媒体の説明
図。
FIG. 7 is an explanatory diagram of an electron beam recording medium according to a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

31…ガラス基板、32…透明電極、33,41…微結晶層、33
a…SiO2 微結晶支持体、33b…Si微結晶、42…柱
状の微結晶。
31: glass substrate, 32: transparent electrode, 33, 41: microcrystalline layer, 33
a: SiO 2 microcrystal support, 33b: Si microcrystal, 42: columnar microcrystal.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 少なくとも上面が導電性を有する基体
と、この基体上に形成された微結晶層とを具備すること
を特徴とする電子線記録媒体。
1. An electron beam recording medium comprising: a base having at least an upper surface having conductivity; and a microcrystalline layer formed on the base.
JP04107924A 1992-04-27 1992-04-27 Electron beam recording medium Expired - Fee Related JP3140551B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04107924A JP3140551B2 (en) 1992-04-27 1992-04-27 Electron beam recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04107924A JP3140551B2 (en) 1992-04-27 1992-04-27 Electron beam recording medium

Publications (2)

Publication Number Publication Date
JPH05303164A JPH05303164A (en) 1993-11-16
JP3140551B2 true JP3140551B2 (en) 2001-03-05

Family

ID=14471505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04107924A Expired - Fee Related JP3140551B2 (en) 1992-04-27 1992-04-27 Electron beam recording medium

Country Status (1)

Country Link
JP (1) JP3140551B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4988327B2 (en) * 2006-02-23 2012-08-01 ルネサスエレクトロニクス株式会社 Ion implanter

Also Published As

Publication number Publication date
JPH05303164A (en) 1993-11-16

Similar Documents

Publication Publication Date Title
JPS62296513A (en) Apparatus for inspecting mask for lithography apparatus
JPH0460343B2 (en)
JP3140551B2 (en) Electron beam recording medium
JP2001028334A (en) Structure of pellicle of x-ray mask and manufacture thereof
US5629782A (en) Holographic display apparatus
JPS5846195B2 (en) Manufacturing method of contact type image sensor
JPH065755B2 (en) Thin film transistor
US6873401B2 (en) Reflective liquid crystal display lithography system
JPH0452934B2 (en)
JPS6226008B2 (en)
JP2962049B2 (en) X-ray mask
JP2001118772A (en) Electron beam transfer aligner
JP3114286B2 (en) X-ray exposure mask and method of manufacturing the same
EP0638180B1 (en) Production of 2d-arrays
JPS5862845A (en) Electronic beam recording method
JPS59226592A (en) Solid display device
JPH0556470B2 (en)
JPH0555825B2 (en)
JP2588775B2 (en) Via hole formation method
RU1780105C (en) Carrier for electron-beam recording and optical reproduction of information and method for making information structure on said carrier
JP4098545B2 (en) Recording medium, information recording method, and information reading method
JPS62193898A (en) Manufacture of electronic blackboard
JPH08293458A (en) Resist pattern formation
JPS6063746A (en) Storage
CN1260885A (en) Substrate having unidirectional conductivity perpendicular to its surface, devices comprising such substrate and methods for manufacturing such substrate

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20001128

LAPS Cancellation because of no payment of annual fees