JP3139114B2 - Method for hydrorefining naphthalene - Google Patents

Method for hydrorefining naphthalene

Info

Publication number
JP3139114B2
JP3139114B2 JP04072859A JP7285992A JP3139114B2 JP 3139114 B2 JP3139114 B2 JP 3139114B2 JP 04072859 A JP04072859 A JP 04072859A JP 7285992 A JP7285992 A JP 7285992A JP 3139114 B2 JP3139114 B2 JP 3139114B2
Authority
JP
Japan
Prior art keywords
naphthalene
tetralin
catalyst
crude
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04072859A
Other languages
Japanese (ja)
Other versions
JPH05229970A (en
Inventor
泰行 瀧川
博昭 谷口
友則 加藤
卓郎 岩間
秀俊 諸富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP04072859A priority Critical patent/JP3139114B2/en
Publication of JPH05229970A publication Critical patent/JPH05229970A/en
Application granted granted Critical
Publication of JP3139114B2 publication Critical patent/JP3139114B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/148Purification; Separation; Use of additives by treatment giving rise to a chemical modification of at least one compound
    • C07C7/163Purification; Separation; Use of additives by treatment giving rise to a chemical modification of at least one compound by hydrogenation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、粗ナフタリン中に含ま
れる硫黄及び窒素化合物を、水素化処理により除去して
精製ナフタリンを製造するナフタリンの水素化精製方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for hydrorefining naphthalene for producing purified naphthalene by removing sulfur and nitrogen compounds contained in crude naphthalene by hydrogenation.

【0002】[0002]

【従来技術及びその問題点】粗ナフタリン、特にコール
タールの分留により得られる95%ナフタリンは、通常
数千ppmの硫黄化合物と数百ppmの窒素化合物を不
純物とし含有している。これらを除去して精製ナフタリ
ンを得る方法としては、(1)酸により洗浄する方法
(文献:タール工業ハンドブック)、(2)晶析による
方法(特公昭47−47023、タール工業ハンドブッ
ク他)、(3)白土処理(特公昭47−47022)な
どが知られており、工業的にも実施されている。しか
し、これらの方法はユーティリティその他精製費用が大
きかったり、大量の排水が発生したり、窒素、硫黄の除
去率が不充分だったりするなど問題が多く、そのため製
品純度の向上を目的に前記処理の組合せ法などが発表さ
れているが、その様な複雑なプロセスは益々精製費用を
高くしている。このような状況下で、より単純・安価・無
公害で窒素及び硫黄の存在量10ppm以下まで除去可
能なナフタリン精製方法の出現が望まれている。
BACKGROUND OF THE INVENTION Crude naphthalene, especially 95% naphthalene obtained by fractionation of coal tar, usually contains several thousand ppm of sulfur compounds and several hundred ppm of nitrogen compounds as impurities. As methods for obtaining purified naphthalene by removing these, (1) a method of washing with an acid (literature: Tar Kogyo Handbook), (2) a method of crystallization (Japanese Patent Publication No. 47-47023, Tar Kogyo Handbook, etc.), ( 3) White clay treatment (Japanese Patent Publication No. 47-47022) and the like are known and are industrially practiced. However, these methods have many problems, such as high utility and other refining costs, large amounts of wastewater generated, and insufficient nitrogen and sulfur removal rates. Combination methods and the like have been published, but such complicated processes are increasing the cost of purification. Under such circumstances, there is a demand for a naphthalene purification method that is simpler, less expensive, less polluting and can remove nitrogen and sulfur up to 10 ppm or less.

【0003】一方、ベンゼン類や石油製品の水素化精製
と同様に、ナフタリンの水素化精製についても古くから
数多くの研究がなされている。しかしながら、ナフタリ
ン環がベンゼン環よりはるかに活性なため、ナフタリン
の水素化精製時は脱硫や脱窒反応と並行して、又はむし
ろこれらの目的反応に優先して核水素化反応が起こり、
テトラリン、デカリンが副生し、さらに、それらの分解
によるアルキルベンゼン類が副生するため、精製ナフタ
リンの収率が著しく低下する。すなわち、石油製品の水
素化脱硫・脱窒反応を実質的に有効な反応速度で進行さ
せるためには、使用する触媒で定まる特定温度以上の反
応温度が必要であり、その温度を越えて反応温度が上昇
するに従って反応速度も、反応到達率(脱硫・脱窒率)
もそれぞれ大きくなるのが通常であるが、一方、粗ナフ
タリンの水素化精製においては、ナフタリン環の核水添
が併発的に進行し、この反応も水素化脱硫・脱窒反応と
同じく反応温度、圧力依存性があることから、核水添を
完全に抑えて脱硫・脱窒のみを完全に進行させることは
極めて困難であり、必然的に精製ナフタリンの収率が著
しく低下するという問題がある。従って、粗ナフタリン
の精製に水素化処理を採用する場合は、軽度の水素化処
理と酸及び/又はアルカリ洗浄などの薬洗処理を組合せ
る方法(特開昭61−57527)、水素化処理後に圧
搾処理や白土処理を行なう方法(特開昭54−1442
49、特公昭60−58733、62−2567)など
が提案されている。一方、ナフタリンの核水添でテトラ
リンを製造する技術(特公昭50−38100、56−
1293)も公知であるが、この場合は原料ナフタリン
の90%以上が核水添されテトラリンとして取り出され
る。
[0003] On the other hand, as with hydrorefining of benzenes and petroleum products, many studies have been made on the hydrorefining of naphthalene since ancient times. However, since the naphthalene ring is much more active than the benzene ring, a nuclear hydrogenation reaction takes place in parallel with desulfurization or denitrification during naphthalene hydrorefining, or rather in preference to these objective reactions.
Since tetralin and decalin are by-produced, and further, alkylbenzenes are produced as a by-product of their decomposition, the yield of purified naphthalene is significantly reduced. That is, in order for the hydrodesulfurization / denitrification reaction of petroleum products to proceed at a substantially effective reaction rate, a reaction temperature higher than a specific temperature determined by the catalyst to be used is necessary. As the reaction rate rises, the reaction rate also reaches the reaction arrival rate (desulfurization / denitrification rate)
In general, in the hydrorefining of crude naphthalene, the nuclear hydrogenation of the naphthalene ring proceeds concurrently, and this reaction also has the same reaction temperature and temperature as the hydrodesulfurization and denitrification reactions. Because of the pressure dependence, it is extremely difficult to completely suppress nuclear hydrogenation and completely advance only desulfurization and denitrification, and there is a problem that the yield of purified naphthalene is inevitably significantly reduced. Therefore, when a hydrogenation treatment is used for the purification of crude naphthalene, a method in which a mild hydrogenation treatment is combined with a chemical washing treatment such as acid and / or alkali washing (JP-A-61-57527), A method of performing a pressing treatment or a clay treatment (Japanese Patent Application Laid-Open No. 54-14442)
49, JP-B-60-58733, 62-2567) and the like. On the other hand, a technology for producing tetralin by nuclear hydrogenation of naphthalene (Japanese Patent Publication Nos. 50-38100, 56-
1293) is also known, but in this case, 90% or more of the raw material naphthalene is nuclei hydrogenated and taken out as tetralin.

【0004】我が国で現在工業的に大規模に製造されて
いる精製ナフタリンは、晶析法を中心とするプロセスで
製造されることから、そのナフタリン純度は99%以上
であるが、残存硫黄を数百〜千ppm程度も含有する。
従って防虫剤用、無水フタル酸用、β−ナフトール製造
用などの用途には使用可能であるものの、イソプロピル
ナフタリン製造用などアルキル化反応原料用として使用
する場合は、アルキル化触媒を劣化させることから、未
だ問題があり、アルキル化触媒の劣化を抑えるために
は、通常、窒素及び硫黄の存在量を10ppm以下にす
ることが必要となる。従って、この規準を満足するよう
な高度精製ナフタリンを得るためには、上記のように種
々の処理法を組合せざるを得ないというのが現状であ
る。
[0004] In Japan, purified naphthalene, which is currently industrially produced on a large scale, is produced by a process centered on crystallization, so that the purity of naphthalene is 99% or more, but the residual sulfur is less than 99%. It also contains about 100 to 1000 ppm.
Therefore, although it can be used for applications such as insect repellents, phthalic anhydride, and β-naphthol production, when used as an alkylation reaction raw material such as isopropyl naphthalene production, it deteriorates the alkylation catalyst. However, there is still a problem. In order to suppress the deterioration of the alkylation catalyst, it is usually necessary to reduce the amount of nitrogen and sulfur to 10 ppm or less. Therefore, in order to obtain highly purified naphthalene satisfying this criterion, at present, it is necessary to combine various treatment methods as described above.

【0005】[0005]

【発明が解決しようとする課題】本発明は粗ナフタリ
ン、特に硫黄化合物や窒素化合物の共存量が多いタール
系粗ナフタリンの水素化精製において、窒素化合物や硫
黄化合物の残存量が10ppm以下となり、かつ高めら
た精製ナフタリン収率を与える方法を提供することをそ
の課題とする。
DISCLOSURE OF THE INVENTION The present invention relates to a hydrorefining of crude naphthalene, particularly tar-based crude naphthalene having a large coexistence amount of a sulfur compound and a nitrogen compound, wherein the residual amount of the nitrogen compound and the sulfur compound is 10 ppm or less, and An object of the present invention is to provide a method for giving an improved yield of purified naphthalene.

【0006】[0006]

【課題を解決するための手段】本発明者らは前記課題を
解決するため、使用触媒及び水素化反応条件について種
々検討を加えた結果、本発明を完成するに至った。すな
わち、本発明によれば、粗ナフタリンにテトラリンを該
粗ナフタリンに含まれているナフタリン1重量部に対し
0.1〜0.8重量部の割合で混合した原料油を、水素
化脱硫触媒の存在下、温度350℃〜420℃、水素分
圧5〜40kg/cm2の反応条件下で水素と反応させ
ることを特徴とするナフタリンの水素化精製方法が提供
される。
Means for Solving the Problems In order to solve the above problems, the present inventors have made various studies on the catalyst used and the hydrogenation reaction conditions, and as a result, have completed the present invention. That is, according to the present invention, a crude oil obtained by mixing crude naphthalene with tetralin in a ratio of 0.1 to 0.8 part by weight with respect to 1 part by weight of naphthalene contained in the crude naphthalene is used as a hydrodesulfurization catalyst. A method for hydropurifying naphthalene, characterized by reacting with hydrogen under the reaction conditions of 350 ° C. to 420 ° C. and a hydrogen partial pressure of 5 to 40 kg / cm 2 in the presence.

【0007】本発明で用いる水素化脱硫触媒は、脱硫・
脱窒素活性を有するものであればよく、従来公知の各種
のものが用いられる。一般には、コバルト、モリブデン
及びニッケルの中から選ばれる少なくとも1種の金属を
含有するものが好ましく用いられる。これらの金属を担
持される担体としては、従来公知のもの、例えば、アル
ミナ、シリカ、ジルコニア、マグネシア等が用いられ
る。好ましい担体はアルミナである。本発明において特
に好ましく使用される触媒は、コバルト及びモリブデン
を酸化物として11〜30重量%、好ましくは17〜2
0重量%含有するものである。触媒組成がこの範囲を逸
脱すると、ナフタリンの核水添を抑制しつつ脱窒素・脱
硫反応を行うことが困難になる。また、コバルトとモリ
ブデン使用割合は、CoO/MoO3の重量比で0.0
5〜0.7、好ましくは0.25〜0.28にするのが
よい。
The hydrodesulfurization catalyst used in the present invention is a desulfurization catalyst.
What is necessary is just to have a denitrification activity, and conventionally well-known various things are used. Generally, those containing at least one metal selected from cobalt, molybdenum and nickel are preferably used. As the carrier for supporting these metals, conventionally known carriers such as alumina, silica, zirconia, and magnesia are used. The preferred support is alumina. The catalyst which is particularly preferably used in the present invention comprises 11 to 30% by weight, preferably 17 to 2% by weight of cobalt and molybdenum as oxides.
It contains 0% by weight. If the catalyst composition deviates from this range, it becomes difficult to carry out denitrification and desulfurization reactions while suppressing nuclear hydrogenation of naphthalene. Further, the use ratio of cobalt and molybdenum is 0.0% by weight of CoO / MoO 3.
It is good to be 5 to 0.7, preferably 0.25 to 0.28.

【0008】本発明で用いる触媒は、その触媒物性とし
て、比表面積200〜400m2/g、好ましくは23
0〜300m2/g、細孔容積0.37〜0.57ml
/g、好ましくは0.45〜0.50ml/g、平均細
孔径55〜90Å、好ましくは65〜75Åを有すると
ともに、全細孔の50%以上、好ましくは60%以上が
細孔径55〜90Åの範囲に分布し、さらに、細孔径9
0Åを節える細孔が全細孔の15%以下、好ましくは1
0%以下であるシャープな細孔分布を有するものであ
る。比表面積が200m2/gより小さいと活性が低
く、一方、400m2/gを超えるとコーキングが起こ
りやすい。また、細孔容積が、0.57ml/gを超え
ると、脱窒素脱硫活性が悪化する。平均細孔径は、大き
すぎればナフタリン核の水添やテトラリン核の水素化分
解が活発となるほか、コーキング生成が著しくなる。一
方、平均細孔径が小さすぎる場合は硫黄や窒素を含む分
子の浸入が困難となるから、脱硫反応や脱窒反応の生起
率が低下し、効果的な水素化精製を行うことができなく
なる。このような触媒は、粗ナフタリンとテトラリンの
混合油はもちろん、粗ナフタリン自体の水素化精製触媒
として有利に用いることができる。
The catalyst used in the present invention has a specific surface area of 200 to 400 m 2 / g, preferably 23
0-300 m 2 / g, pore volume 0.37-0.57 ml
/ G, preferably 0.45 to 0.50 ml / g, an average pore diameter of 55 to 90 °, preferably 65 to 75 °, and 50% or more, preferably 60% or more of all the pores have a pore diameter of 55 to 90 °. And a pore size of 9
0% or less of the pores are less than 15% of the total pores, preferably 1%.
It has a sharp pore distribution of 0% or less. If the specific surface area is less than 200 m 2 / g, the activity is low, while if it exceeds 400 m 2 / g, coking tends to occur. When the pore volume exceeds 0.57 ml / g, the denitrification / desulfurization activity deteriorates. If the average pore diameter is too large, hydrogenation of the naphthalene nucleus and hydrogenolysis of the tetralin nucleus become active, and coking formation becomes remarkable. On the other hand, if the average pore diameter is too small, it becomes difficult to infiltrate molecules containing sulfur and nitrogen, so that the rate of occurrence of desulfurization reaction and denitrification reaction decreases, and effective hydrorefining cannot be performed. Such a catalyst can be advantageously used as a hydrorefining catalyst for crude naphthalene as well as crude naphthalene and tetralin.

【0009】本明細書に示した触媒物性において、表面
積は窒素沸点での窒素吸着量から求められるBET表面
積を示したものであり、細孔容積は窒素吸着法で求めた
ものである。また、細孔分布は水銀圧入法で測定したも
のであり、カルボエルバー社製ポロシメーター2000
を用いた。
In the physical properties of the catalyst described in the present specification, the surface area indicates the BET surface area determined from the amount of nitrogen adsorbed at the nitrogen boiling point, and the pore volume is determined by the nitrogen adsorption method. The pore distribution was measured by the mercury intrusion method, and was measured by Carboelver Porosimeter 2000.
Was used.

【0010】本発明の方法は、粗ナフタリンに、その粗
ナフタリン中のナフタリン1重量部に対して0.1〜
0.8重量部、好ましくは0.2〜0.4重量部のテト
ラリンを混合した原料油を、前記水素化脱硫触媒の存在
下、温度:350〜420℃、好ましくは370〜40
0℃、水素分圧:5〜40kg/cm2、好ましく10
〜30kg/cm2の反応条件下で水素と反応させる方
法である。テトラリンを混入した粗ナフタリンを前記反
応条件下で水素化精製する場合、その反応温度及び水素
分圧を、水素−ナフタリン−テトラリンの熱平衡条件に
対応するように選ぶことにより、ナフタリンの核水素化
を抑制し、ナフタリン及び水素の各損失を防止すること
ができる。即ち、粗ナフタリンをテトラリンの存在下で
水素化精製する際には、反応系に存在するナフタリンと
テトラリンと水素との間に熱平衡が成立する条件があ
る。この熱平衡条件において、ナフタリンとテトラリン
の重量比をある一定範囲に保持したい場合には、その重
量比に対応して水素分圧と反応温度を調節することによ
り熱平衡を成立させることができる。従って、原料粗ナ
フタリンに一定量のテトラリンを添加すると、水素分圧
と温度を調節することにより、そのナフタリンとテトラ
リン重量比に対応した熱平衡を成立させることができ
る。そして、この熱平衡条件下で粗ナフタリンを水素化
精製すると、粗ナフタリン中のナフタリンの核水添率を
実質的にゼロ%に保持して粗ナフタリンを水素化精製す
ることができる。一方、粗ナフタリン中の窒素分及びイ
オウ分は、上記反応条件下では、逐次的に分解し、ガス
分として除去される。従って、本発明では、結果的にナ
フタレンを損失することなく、窒素分及びイオウ分を数
ppmまで除去することができる。また、熱平衡条件を
迅速に成立させるためには、反応温度が大きな因子とな
り、反応温度が低いと熱平衡条件に達する時間が長くな
り、反応温度が高いとその時間は短かくなる。そして図
1からわかるように、反応温度が高い点、平衡組成中の
ナフタリンの濃度が高いため、ナフタリンの損失を防ぐ
ことができる。この点からは、反応温度は330℃以
上、特に350℃以上の反応温度の使用が有利である。
[0010] The method of the present invention is characterized in that the crude naphthalene is added in an amount of 0.1 to 1 part by weight of naphthalene in the crude naphthalene.
A feedstock obtained by mixing 0.8 parts by weight, preferably 0.2 to 0.4 parts by weight of tetralin, is heated in the presence of the hydrodesulfurization catalyst at a temperature of 350 to 420 ° C., preferably 370 to 40 ° C.
0 ° C., hydrogen partial pressure: 5 to 40 kg / cm 2 , preferably 10
This is a method of reacting with hydrogen under a reaction condition of 3030 kg / cm 2 . When the crude naphthalene mixed with tetralin is hydrorefined under the above-mentioned reaction conditions, the reaction temperature and hydrogen partial pressure are selected so as to correspond to the thermal equilibrium conditions of hydrogen-naphthalene-tetralin, whereby the nuclear hydrogenation of naphthalene can be performed. Can be suppressed, and each loss of naphthalene and hydrogen can be prevented. That is, when the crude naphthalene is hydrorefined in the presence of tetralin, there is a condition that a thermal equilibrium is established between naphthalene, tetralin and hydrogen present in the reaction system. Under these thermal equilibrium conditions, when it is desired to maintain the weight ratio of naphthalene and tetralin within a certain range, thermal equilibrium can be established by adjusting the hydrogen partial pressure and the reaction temperature in accordance with the weight ratio. Therefore, when a certain amount of tetralin is added to the raw crude naphthalene, the thermal equilibrium corresponding to the weight ratio of naphthalene and tetralin can be established by adjusting the hydrogen partial pressure and the temperature. When the crude naphthalene is hydrorefined under these thermal equilibrium conditions, the crude naphthalene can be hydrorefined while the nuclear hydrogenation ratio of naphthalene in the crude naphthalene is kept at substantially zero%. On the other hand, the nitrogen content and the sulfur content in the crude naphthalene are sequentially decomposed under the above reaction conditions, and are removed as gas components. Therefore, in the present invention, nitrogen and sulfur can be removed to several ppm without consequent loss of naphthalene. In order to quickly establish the thermal equilibrium condition, the reaction temperature is a major factor. When the reaction temperature is low, the time to reach the thermal equilibrium condition becomes longer, and when the reaction temperature is high, the time becomes shorter. And, as can be seen from FIG. 1, since the reaction temperature is high and the concentration of naphthalene in the equilibrium composition is high, loss of naphthalene can be prevented. From this point, it is advantageous to use a reaction temperature of 330 ° C. or higher, especially 350 ° C. or higher.

【0011】図1に、表1の触媒(NKK−1)の存在
下にナフタリン:テトラリン=7:3(重量比)の組成
を持つ液を、LHSV:0.4hr-1の速度で水素化精
製した場合の水添油中の残存ナフタリン濃度と反応温度
との関係を示す。水素化及び脱水素速度の速い330℃
以上では平衡が得られるが、330℃より低温では反応
は非平衡の状態で起きる。また、図1から圧力の違いで
平衡組成が変動することが良く分かる。前記のように平
衡組成は温度と圧力で定まり、ナフタリン7:テトラリ
ン3の平衡組成は図1に示された全圧15kg/c
2、温度390℃の条件に限定されず、他の反応条
件、例えば、全圧20kg/cm2、温度401℃の条
件でも得られる。そして、このような平衡条件下では、
原料液中に含まれる。ナフタリンの核水添を招くことも
なく、それ故、ナフタリンや水素の損失を生じることな
く、水素化精製が円滑に進行する。反応温度は420℃
以下に規定するのが良く、420℃を超えるようになる
と、テトラリンの熱分解や、コーク生成が著しくなるの
で好ましくない。水素分圧は、一般に、40kg/cm
2以下であり、これより高くなると、ナフタリン含有量
の高い水添油を得るためには、反応温度を著しく高くす
る必要が生じるので好ましくない。水素化精製に際して
のガス/液比(Nm3/kl)は、100〜2000、
好ましくは300〜1000の範囲である。本発明にお
ける反応条件は、得られる水添油の組成がその温度にお
ける平衡組成の±10%の範囲になるようにコントロー
ルするのが実用的である。粗ナフタリンの水素化精製を
前記のようにしてテトラリンを粗ナフタリンに添加して
行う場合、得られる水添油からそれに含まれるテトラリ
ンを蒸留処理等の分離法で分離し、これを再び粗ナフタ
リンに対する添加用テトラリンとして循環使用するのが
好ましい。
In FIG. 1, a solution having a composition of naphthalene: tetralin = 7: 3 (weight ratio) in the presence of the catalyst (NKK-1) shown in Table 1 is hydrogenated at a rate of LHSV: 0.4 hr -1 . 4 shows the relationship between the concentration of residual naphthalene in hydrogenated oil and the reaction temperature when refined. 330 ° C with fast hydrogenation and dehydrogenation rates
Above, an equilibrium is obtained, but at a temperature lower than 330 ° C., the reaction occurs in a non-equilibrium state. FIG. 1 also clearly shows that the equilibrium composition fluctuates due to the difference in pressure. As described above, the equilibrium composition is determined by temperature and pressure, and the equilibrium composition of naphthalene 7: tetralin 3 is 15 kg / c in total pressure shown in FIG.
The reaction conditions are not limited to m 2 and a temperature of 390 ° C., but can be obtained under other reaction conditions, for example, a condition of a total pressure of 20 kg / cm 2 and a temperature of 401 ° C. And under such equilibrium conditions,
It is contained in the raw material liquid. Hydrorefining proceeds smoothly without causing nuclear hydrogenation of naphthalene and, therefore, without causing loss of naphthalene or hydrogen. Reaction temperature is 420 ° C
The temperature is preferably defined as follows. If the temperature exceeds 420 ° C., thermal decomposition of tetralin and formation of coke become remarkable, which is not preferable. The hydrogen partial pressure is generally 40 kg / cm
If it is higher than 2 , the reaction temperature needs to be significantly increased in order to obtain a hydrogenated oil having a high naphthalene content, which is not preferable. The gas / liquid ratio (Nm 3 / kl) for hydrorefining is 100 to 2000,
Preferably it is in the range of 300 to 1,000. It is practical to control the reaction conditions in the present invention so that the composition of the hydrogenated oil obtained is within ± 10% of the equilibrium composition at that temperature. When the hydropurification of the crude naphthalene is performed by adding tetralin to the crude naphthalene as described above, the tetralin contained therein is separated from the obtained hydrogenated oil by a separation method such as a distillation treatment, and this is again subjected to crude naphthalene. It is preferable to use the tetralin as an addition tetraline in circulation.

【0012】本発明で用いる粗ナフタリンは、石油系又
は石炭系(コールタール系)のものであることができ、
その粗ナフタリン中のナフタリン濃度は、90重量%以
上、通常、95〜97重量%の範囲である。本発明によ
り得られる製精ナフタリンは、硫黄及び窒素の含有率が
10ppm以下の高純度のものであるが、さらにその純
度を向上させたい場合は、その水添精製後、晶析処理や
白土処理あるいは蒸留処理等の精製処理を施せばよい。
The crude naphthalene used in the present invention can be petroleum or coal (coal tar).
The naphthalene concentration in the crude naphthalene is at least 90% by weight, usually in the range of 95 to 97% by weight. The refined naphthalene produced according to the present invention has a high purity of 10 ppm or less in the content of sulfur and nitrogen. If it is desired to further improve the purity, the crystallization treatment or the clay treatment is performed after the hydrogenation purification. Alternatively, a purification treatment such as a distillation treatment may be performed.

【0013】[0013]

【発明の効果】本発明によれば、硫黄及び窒素がそれぞ
れ10ppm以下にまで除去された純白の精製ナフタリ
ンを、ナフタリン及び水素の各損失を抑えて、収率よく
得ることができる。
According to the present invention, pure white purified naphthalene from which sulfur and nitrogen have been removed to 10 ppm or less, respectively, can be obtained in good yield while suppressing each loss of naphthalene and hydrogen.

【0014】[0014]

【実施例】以下、本発明を代表的な実施例と比較例によ
って具体的に説明するが、本発明はこれらの実施例によ
って制限されるものではない。なお、本発明の実施例と
比較例は、内径19.4mm、長さ3205mmのステ
ンレス製外部電気加熱式反応器、2塔の気液分離器及び
プランジャーポンプ、水素ボンベ、及び調圧弁からなる
連続水添装置を使って行った。また、反応器内には各実
験に応じた水添用触媒200mlを、電気炉の中心に分
布するように充填し、さらに触媒層の上下に1/16イ
ンチ径のセラミックボールを充填した。触媒充填部位の
反応温度は、反応器中心部に通した外径8mmのパイプ
内に設置した5本の熱電対で測定し、5分割した外部ヒ
ーターで温度を調節した。水素はボンベ詰めのものを窒
素で希釈し、濃度90%の水素ガスとして使用した。原
料油と水素の供給は下向流方式で行った。触媒の活性向
上法として公知の予備硫化は、触媒層を濃度3%の硫化
水素(残りは窒素)で15Kg/cm2に加圧し、33
0℃の温度に3時間保持する方式によって行った。ま
た、予備硫化後一旦200℃まで下げ、ウェッティング
(wetting)を行った。使用した触媒の特性を表
1に示す。原料粗製ナフタリンと水添油の組成分析はガ
スクロマトグラフ(島津製作所製GC16A、DB−W
AXカラム60m、ヘリウムキャリアガス圧3Kg/c
2、100℃から2℃/minで220℃まで昇温さ
せる昇温法)で行い、窒素及び硫黄の分析はドーマン製
微量N・S分析計を用いた。また、実施例及び比較例に
記載したG/Lは、供給するガスと液体の比を示したも
のであり、ガスはNm3を、液体は供給温度における容
量(kl)を使用して算出した。実施例に記載したXP
SはESCAとも言われるX線光電子分光法のことであ
り、表面の微細構造や表面組成を測定するものである。
EPMAはX線マイクロ分析の略であり、XPSと同
様、表面の微量分析や微細構造の解析に用いられるもの
である。
EXAMPLES Hereinafter, the present invention will be described specifically with reference to typical examples and comparative examples, but the present invention is not limited to these examples. The examples and comparative examples of the present invention are composed of a stainless steel external electric heating type reactor having an inner diameter of 19.4 mm and a length of 3205 mm, a two-column gas-liquid separator, a plunger pump, a hydrogen cylinder, and a pressure regulating valve. This was performed using a continuous hydrogenation apparatus. Further, the reactor was filled with 200 ml of hydrogenation catalyst corresponding to each experiment so as to be distributed at the center of the electric furnace, and further, ceramic balls having a diameter of 1/16 inch were filled above and below the catalyst layer. The reaction temperature at the catalyst charging site was measured with five thermocouples installed in a pipe having an outer diameter of 8 mm passed through the center of the reactor, and the temperature was adjusted with an external heater divided into five. Hydrogen was prepared by diluting a cylinder packed with nitrogen and using it as a 90% concentration hydrogen gas. Feed oil and hydrogen were supplied in a downward flow system. Preliminary sulfurization known as a method for increasing the activity of the catalyst is performed by pressurizing the catalyst layer with 3% hydrogen sulfide (the remainder is nitrogen) to 15 kg / cm 2 ,
The test was performed by maintaining the temperature at 0 ° C. for 3 hours. After the preliminary sulfurization, the temperature was once lowered to 200 ° C. and wetting was performed. Table 1 shows the characteristics of the catalyst used. The raw material crude naphthalene and hydrogenated oil were analyzed for composition by gas chromatography (GC16A, DB-W manufactured by Shimadzu Corporation).
AX column 60m, helium carrier gas pressure 3Kg / c
m 2 , the temperature was raised from 100 ° C. to 220 ° C. at a rate of 2 ° C./min), and the analysis of nitrogen and sulfur was performed using a Doman trace NS analyzer. G / L described in Examples and Comparative Examples indicates the ratio between the supplied gas and the liquid. The gas was calculated using Nm 3 , and the liquid was calculated using the capacity (kl) at the supply temperature. . XP described in Examples
S is an X-ray photoelectron spectroscopy, also called ESCA, for measuring the fine structure and surface composition of the surface.
EPMA is an abbreviation of X-ray microanalysis, and is used for microanalysis of surface and analysis of microstructure, like XPS.

【0015】[0015]

【表1】 [Table 1]

【0016】実施例1 粗ナフタリンとして、ナフタリン96.4wt%、エチ
ルベンゼン0.6wt%、硫黄分(S)5700pp
m、窒素分(N)655ppmの成分組成を有するコー
ルタール由来のものを用いた。前記粗製ナフタリン供給
油(A)として用い、これを触媒(NKK−1)を用
い、表2に示すように水素分圧13.5Kg/cm2、L
HSV=0.4、G/L=1000、温度389℃の条
件で水素化した(実験No1)。反応後の水添油の組成
はおよそナフタリン7に対しテトラリン3であった。残
存N,Sは非常に低く、1ppmであった。この水添油
を蒸留(理論段数100段、充填物マクマホンのバッチ
蒸留塔、塔頂圧50torr、還流比10で運転)にか
けて、テトラリンを回収し、そのテトラリンを粗製ナフ
タリンと混合してナフタリン7に対しテトラリン3とな
るように調製した〔供給油(B)〕。この供給油(B)
を実験No1と同じ条件で水素化すると(実験No
2)、反応後の水添油の組成はやはりナフタリン7に対
しテトラリン3となり、しかも残存N,Sは1ppmで
あった。
Example 1 As crude naphthalene, 96.4 wt% of naphthalene, 0.6 wt% of ethylbenzene, and sulfur content (S) of 5700 pp
m, a coal tar-derived material having a component composition of 655 ppm of nitrogen (N) was used. The crude naphthalene supply oil (A) was used as a crude oil, and this was used as a catalyst (NKK-1). As shown in Table 2, a hydrogen partial pressure of 13.5 kg / cm 2 , L
Hydrogenation was performed under the conditions of HSV = 0.4, G / L = 1000, and temperature of 389 ° C. (Experiment No. 1). The composition of the hydrogenated oil after the reaction was approximately naphthalene 7 to tetralin 3. The residual N and S were very low, 1 ppm. The hydrogenated oil is subjected to distillation (100 theoretical plates, packed MacMahon batch distillation tower, operating at a top pressure of 50 torr and a reflux ratio of 10) to recover tetralin. The tetralin is mixed with crude naphthalene to form naphthalene 7. On the other hand, it was prepared to be tetralin 3 [supply oil (B)]. This supply oil (B)
Is hydrogenated under the same conditions as Experiment No. 1 (Experiment No. 1).
2) After the reaction, the composition of the hydrogenated oil was also tetralin 3 with respect to naphthalene 7, and the residual N and S were 1 ppm.

【0017】実施例2 前記粗ナフタリン1重量部に対して、約0.5wt%の
デカリンを含むテトラリン0.39重量部を混合して、
表2に示す成分組成の供給油(C)を作り、これを触媒
(NKK−1)を用い、水素分圧18Kg/cm2、L
HSV=0.2、G/L=1000、温度401℃の条
件で水素化した(実験No3)。反応後の組成はおよそ
ナフタリン7に対しテトラリン3であった。残存N,S
は非常に低く、1〜2ppmであった。
Example 2 0.39 parts by weight of tetralin containing about 0.5 wt% of decalin was mixed with 1 part by weight of the crude naphthalene,
A supply oil (C) having a component composition shown in Table 2 was prepared, and this was used as a catalyst (NKK-1) using a hydrogen partial pressure of 18 kg / cm 2 , L
Hydrogenation was performed under the conditions of HSV = 0.2, G / L = 1000, and temperature of 401 ° C. (Experiment No. 3). The composition after the reaction was approximately naphthalene 7 to tetralin 3. Remaining N, S
Was very low, 1-2 ppm.

【0018】実施例3 実施例2と同じ供給油(C)を用い、これを触媒(NK
K−1)を用い、水素分圧13.5Kg/cm2、LH
SV=0.4、G/L=1000、温度410℃の条件
で水素化した(実験No4)。反応後の水添油の組成は
高温のため平衡がナフタレンリッチ側に移動し、結果と
して、テトラリンからナフタリンへの逆反応が起り、原
料油中のナフタリン量よりも増えた。
Example 3 The same feed oil (C) as in Example 2 was used, and this was used as a catalyst (NK).
K-1), hydrogen partial pressure 13.5 Kg / cm 2 , LH
Hydrogenation was performed under the conditions of SV = 0.4, G / L = 1000, and temperature of 410 ° C. (Experiment No. 4). The equilibrium of the hydrogenated oil after the reaction was shifted to the naphthalene-rich side due to the high temperature, and as a result, a reverse reaction from tetralin to naphthalene occurred, and the amount increased more than the amount of naphthalene in the feed oil.

【0019】実施例4 あらかじめナフタリン3:テトラリン7に調製した供給
油(D)を用い、これを触媒(NKK−1)を用い、水
素分圧13.5Kg/cm2、LHSV=0.4、G/
L=1000、温度389℃の条件で水素化した(実験
No5)。反応後の水添油の組成はおよそナフタリン7
に対しテトラリン3と平衡組成を示した。残存N,Sは
非常に低く、0〜1ppmであった。
Example 4 A feed oil (D) prepared in advance to naphthalene 3: tetralin 7 was used, and this was used as a catalyst (NKK-1) at a partial pressure of hydrogen of 13.5 kg / cm 2 , LHSV = 0.4, G /
Hydrogenation was performed under the conditions of L = 1000 and a temperature of 389 ° C. (Experiment No. 5). The composition of the hydrogenated oil after the reaction is approximately naphthalene 7
Showed an equilibrium composition with tetralin 3. The residual N and S were very low, 0 to 1 ppm.

【0020】比較例1 実施例2と同じ供給油(C)を用い、これを触媒(NK
K−1)を用い、水素分圧90Kg/cm2、LHSV
=0.4、G/L=1000、温度390℃の条件で水
素化したところ(実験No6)、デカリンが87%も生
成した。
Comparative Example 1 The same feed oil (C) as in Example 2 was used, and this was used as a catalyst (NK).
K-1), hydrogen partial pressure 90 kg / cm 2 , LHSV
= 0.4, G / L = 1000, temperature 390 ° C (hydrogenation No. 6), 87% of decalin was produced.

【0021】比較例2 実施例3において、供給油(A)(粗製ナフタリン)を
用いた以外は同様に実験を行った(実験No7)。この
場合には、運転開始から5日目で反応器入口でコーキン
グを起こしたので、シャットダウンした。
Comparative Example 2 An experiment was conducted in the same manner as in Example 3 except that the supply oil (A) (crude naphthalene) was used (Experiment No. 7). In this case, coking occurred at the inlet of the reactor on the fifth day from the start of operation, and thus the reactor was shut down.

【0022】実施例5 水素分圧13.5Kg/cm2、LHSV=0.4、G
/L=380、温度390℃の条件で触媒(NKK−
1)の高温でのライフテストを実施した(実験No
8)。その結果を表4に示す。1000hrを越えても
水添油組成に変化なく、また、触媒の劣化やコーキング
も実験後の触媒のXPS測定やEPMA試験では認めら
れなかった。
Example 5 Hydrogen partial pressure 13.5 kg / cm 2 , LHSV = 0.4, G
/ L = 380, temperature 390 ° C., the catalyst (NKK-
1) Life test at high temperature was conducted (Experiment No.
8). Table 4 shows the results. No change in hydrogenated oil composition was observed even after exceeding 1000 hours, and no deterioration or coking of the catalyst was observed in the XPS measurement or EPMA test of the catalyst after the experiment.

【0023】[0023]

【表2】 [Table 2]

【0024】[0024]

【表3】 [Table 3]

【0025】[0025]

【表4】 [Table 4]

【0026】実施例6 実施例1において、触媒として表1に示したNKK−2
を用いた以外は同様にして実験を行った。この場合に
も、得られる水添油の組成はナフタリン7に対しテトラ
リン3の割合であり、残存N,Sは非常に低く、1pp
m以下であった。
Example 6 In Example 1, NKK-2 shown in Table 1 was used as a catalyst.
The experiment was performed in the same manner except that was used. Also in this case, the composition of the hydrogenated oil obtained is the ratio of tetralin 3 to naphthalene 7 and the residual N and S are very low and 1 pp
m or less.

【図面の簡単な説明】[Brief description of the drawings]

【図1】粗ナフタリンをテトラリンの存在下で水素化精
製した場合の水添油中の残存ナフタリン濃度と反応温度
との関係を示す。
FIG. 1 shows the relationship between the concentration of residual naphthalene in hydrogenated oil and the reaction temperature when crude naphthalene is hydrorefined in the presence of tetralin.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岩間 卓郎 東京都千代田区丸の内一丁目1番2号 日本鋼管株式会社内 (72)発明者 諸富 秀俊 東京都千代田区丸の内一丁目1番2号 日本鋼管株式会社内 (56)参考文献 特開 平3−74336(JP,A) (58)調査した分野(Int.Cl.7,DB名) C07C 7/163 C07C 15/24 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Takuro Iwama 1-1-2 Marunouchi, Chiyoda-ku, Tokyo Nippon Kokan Co., Ltd. (72) Inventor Hidetoshi Morotomi 1-1-2 Marunouchi, Chiyoda-ku, Tokyo Nippon Kokan (56) References JP-A-3-74336 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C07C 7/163 C07C 15/24

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 粗ナフタリンにテトラリンを該粗ナフタ
リンに含まれているナフタリン1重量部に対し0.1〜
0.8重量部の割合で混合した原料油を、水素化脱硫触
媒の存在下、温度350℃〜420℃、水素分圧5〜4
0kg/cm2の反応条件下で水素と反応させることを特
徴とするナフタリンの水素化精製方法。
1. Crude naphthalene and tetralin are added in an amount of 0.1 to 1 part by weight of naphthalene contained in said crude naphthalene.
A feed oil mixed at a ratio of 0.8 parts by weight was heated at 350 ° C. to 420 ° C. and a hydrogen partial pressure of 5 to 4 in the presence of a hydrodesulfurization catalyst.
A method for hydropurifying naphthalene, comprising reacting with hydrogen under a reaction condition of 0 kg / cm 2 .
【請求項2】 該反応条件が、水素−ナフタリン−テト
ラリンの熱平衡条件下にある請求項1の方法。
2. The method according to claim 1, wherein the reaction conditions are hydrogen-naphthalene-tetralin thermal equilibrium conditions.
【請求項3】 請求項1又は2の方法で得られた水素化
精製油を蒸留処理してテトラリンを分離し、このテトラ
リンを粗ナフタレンに混合させることを特徴とする請求
項1又は2の方法。
3. The method according to claim 1, wherein the hydrorefined oil obtained by the method according to claim 1 or 2 is subjected to a distillation treatment to separate tetralin, and the tetralin is mixed with crude naphthalene. .
【請求項4】 水素化脱硫触媒が、コバルト、モリブデ
ン及びニッケルの中から選ばれる少なくとも1種の金属
を含有する請求項1〜3のいずれかの方法。
4. The method according to claim 1, wherein the hydrodesulfurization catalyst contains at least one metal selected from cobalt, molybdenum and nickel.
【請求項5】 水素化脱硫触媒が、比表面積200〜4
00m2/g、細孔容積0.37〜0.57ml/g、
平均細孔径55〜90Åを有し、全細孔の50%以上が
細孔径55〜90Åの範囲に分布すると共に、細孔径9
0Åを超える細孔が全細孔の15%以下であるシャープ
な細孔分布を持ち、かつコバルト及びモリブデンを酸化
物として合計で11〜30重量%含有するコバルト−モ
リブデン−アルミナ触媒である請求項1〜4のいずれか
の方法。
5. The hydrodesulfurization catalyst has a specific surface area of 200-4.
00 m 2 / g, pore volume 0.37-0.57 ml / g,
It has an average pore diameter of 55 to 90 °, 50% or more of all the pores are distributed in the range of 55 to 90 °, and
A cobalt-molybdenum-alumina catalyst having a sharp pore distribution in which pores exceeding 0 ° are 15% or less of all pores and containing a total of 11 to 30% by weight of cobalt and molybdenum as oxides. Any one of the methods 1 to 4.
JP04072859A 1992-02-24 1992-02-24 Method for hydrorefining naphthalene Expired - Fee Related JP3139114B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04072859A JP3139114B2 (en) 1992-02-24 1992-02-24 Method for hydrorefining naphthalene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04072859A JP3139114B2 (en) 1992-02-24 1992-02-24 Method for hydrorefining naphthalene

Publications (2)

Publication Number Publication Date
JPH05229970A JPH05229970A (en) 1993-09-07
JP3139114B2 true JP3139114B2 (en) 2001-02-26

Family

ID=13501500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04072859A Expired - Fee Related JP3139114B2 (en) 1992-02-24 1992-02-24 Method for hydrorefining naphthalene

Country Status (1)

Country Link
JP (1) JP3139114B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101679610B1 (en) * 2015-07-13 2016-11-25 덴스타주식회사 Mixing bladeof structure of vacuum mixer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2130071B1 (en) * 1997-05-06 2000-03-01 Nalon Quimica Sa PROCEDURE FOR THE OBTAINING OF REFINED NAFTALINE.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101679610B1 (en) * 2015-07-13 2016-11-25 덴스타주식회사 Mixing bladeof structure of vacuum mixer

Also Published As

Publication number Publication date
JPH05229970A (en) 1993-09-07

Similar Documents

Publication Publication Date Title
EP0273900B1 (en) Improved process for the selective hydrogenation of acetylenes
US3966833A (en) Process for hydrodealkylating alkylaromatic hydrocarbons
EP0434485B1 (en) Method of production of phenol
JP2000153154A (en) Catalyst and process for selective hydrogenation of unsaturated compounds in hydrocarbon streams
KR20080108140A (en) Hydrogenation of aromatic compounds
KR100796823B1 (en) Method for the hydrogenation of aromatics by means of reactive distillation
JP4304353B2 (en) Purification of naphthalene by separation following selective hydrotreating.
JP3139114B2 (en) Method for hydrorefining naphthalene
JPH11139998A (en) Production of dialkylnaphthalene
KR20230002026A (en) Direct oxidation of hydrogen sulphide in a hydrotreating recycle gas stream with hydrogen purification
JP3139115B2 (en) Method for hydrorefining naphthalene
SU490295A3 (en) Method for hydrotreating asphalt-containing petroleum feedstock
CS206644B1 (en) Selective hydrogenation method of unsaturated c2-fractions
CN112125993B (en) Method for liquid-phase hydrofining of polyvinyl ether
JP2022040373A (en) Preparation method of bis(aminomethyl)cyclohexane
JP3941666B2 (en) Method for producing alkylcyclohexane solvent
US6750374B2 (en) Manufacture of cyclohexane from benzene and a hydrogen source containing impurities
JP2003160515A (en) Method for producing decalin from naphthalene by two stage hydrogeneration reaction
JP4523791B2 (en) 2-Butene production method
JP2011506431A (en) Method for producing aromatic iodinated compound
JP2000265177A (en) Hydrogenation treatment of heavy oil
JPH05310611A (en) Production of 2-methylnaphthalene
WO2018080333A1 (en) Process for production of acrylic acid, process for the selective oxidation of carbon monoxide, catalyst for the selective oxidation of carbon monoxide, process for producing the same
KR100419858B1 (en) Modified Nickel-Alumina catalyst for selective hydrogenation of diolefins and preparation method thereof
RU2219999C1 (en) Hydrocarbon fraction hydrofining process and hydrocarbon fraction hydrofining catalyst

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees