JP3136745B2 - Particle size distribution analyzer - Google Patents

Particle size distribution analyzer

Info

Publication number
JP3136745B2
JP3136745B2 JP04070912A JP7091292A JP3136745B2 JP 3136745 B2 JP3136745 B2 JP 3136745B2 JP 04070912 A JP04070912 A JP 04070912A JP 7091292 A JP7091292 A JP 7091292A JP 3136745 B2 JP3136745 B2 JP 3136745B2
Authority
JP
Japan
Prior art keywords
cell
suspension
medium
discharge port
nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04070912A
Other languages
Japanese (ja)
Other versions
JPH05273109A (en
Inventor
和弘 林田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP04070912A priority Critical patent/JP3136745B2/en
Publication of JPH05273109A publication Critical patent/JPH05273109A/en
Application granted granted Critical
Publication of JP3136745B2 publication Critical patent/JP3136745B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Measuring Cells (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はレーザ回折/散乱式の粒
度分布測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laser diffraction / scattering type particle size distribution measuring apparatus.

【0002】[0002]

【従来の技術】レーザ回折/散乱式の粒度分布測定装置
においては、一般に、分散飛翔状態の被測定粒子群にレ
ーザ光を照射し、被測定粒子群による回折/散乱光の強
度の空間分布を測定して、フラウンホーファ回折理論な
いしはミーの散乱理論等に基づく演算によって被測定粒
子群の粒度分布を求める。
2. Description of the Related Art In a laser diffraction / scattering type particle size distribution measuring apparatus, generally, a laser beam is irradiated to a group of particles to be measured in a dispersed and flying state, and the spatial distribution of the intensity of diffraction / scattered light by the group of particles to be measured is measured. The particle size distribution of the group of particles to be measured is measured by calculation based on the Fraunhofer diffraction theory or the Mie scattering theory.

【0003】このようなレーザ回折/散乱式の粒度分布
測定装置を用いた湿式測定では、通常、被測定粒子群を
媒液中に分散させてなる懸濁液もくしは乳濁液を透光性
材料からなるフローセル内に流しつつ、そのセルの外部
からレーザ光を照射する。
In the wet measurement using such a laser diffraction / scattering type particle size distribution measuring apparatus, usually, a suspension formed by dispersing a group of particles to be measured in a medium or an emulsion is transmitted. While flowing into a flow cell made of a conductive material, laser light is irradiated from outside the cell.

【0004】[0004]

【発明が解決しようとする課題】ところで、従来の粒度
分布測定装置における湿式測定では、試料懸濁液もしく
は乳濁液がフローセル内を流れるため、セルの内面への
被測定粒子の付着が生じやすい。セルの内面に粒子が付
着すると回折/散乱光に測定誤差が含まれる原因ともな
る。
By the way, in the wet measurement in the conventional particle size distribution measuring device, the sample suspension or the emulsion flows in the flow cell, so that the particles to be measured easily adhere to the inner surface of the cell. . If particles adhere to the inner surface of the cell, it may cause diffraction / scattered light to include measurement errors.

【0005】また、試料懸濁液もしくは乳濁液の濃度
は、レーザ光が多重回折(散乱)を起こさない程度の濃
度にまで低くする必要があるが、多重回折(散乱)生じ
る濃度の上限は懸濁液もしくは乳濁液内におけるレーザ
光の光路長に影響され、光路長を短くすることによって
より高濃度の試料の測定が可能となる。光路長を短くす
るためには、フローセルの内幅(照射レーザ光の光軸方
向へのセル内面間距離)を小さくする必要があるが、こ
れを小さくすると内面に付着した粒子等による汚れの洗
浄作業が困難となってしまうという問題もある。
[0005] The concentration of the sample suspension or emulsion must be reduced to such a level that the laser beam does not cause multiple diffraction (scattering). The upper limit of the concentration at which multiple diffraction (scattering) occurs is limited. It is affected by the optical path length of the laser beam in the suspension or the emulsion, and the measurement of a sample with a higher concentration can be performed by shortening the optical path length. In order to shorten the optical path length, it is necessary to reduce the inner width of the flow cell (the distance between the inner surfaces of the cell in the optical axis direction of the irradiation laser beam). There is also a problem that the work becomes difficult.

【0006】本発明はこのような点に鑑みてなされたも
ので、湿式測定時におけるフローセルの内面に被測定粒
子が付着しにくく、かつ、光路長を短くしてもセルの内
面の洗浄が容易で、実質的により高濃度の試料の測定を
可能とすることのできる粒度分布測定装置の提供を目的
としている。
The present invention has been made in view of the above points, and it is difficult for particles to be measured to adhere to the inner surface of a flow cell during wet measurement, and the inner surface of the cell is easily cleaned even if the optical path length is shortened. Accordingly, it is an object of the present invention to provide a particle size distribution measuring apparatus capable of measuring a sample having a substantially higher concentration.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
め、本発明の粒度分布測定装置は、被測定粒子群を媒液
中に分散させた懸濁液もしくは乳濁液をセル内に流し、
そのセルの外方から上記懸濁液もしくは乳濁液にレーザ
光を照射することにより得られる回折/散乱光の強度分
布を測定し、その測定結果から被測定粒子群の粒度分布
を算出する粒度分布測定装置において、上記セルは、そ
の内部にスリット状の吐出口を持つノズルが当該吐出口
の長手方向が照射レーザ光の光路と直交する方向に沿う
よう配設されているとともに、このノズルとは別に導入
口を有し、この導入口を介して媒液がセル内に流される
とともに、上記ノズルの吐出口から上記懸濁液もしくは
乳濁液が上記吐出口の幅を保った状態で上記媒液の流れ
に沿ってその略中央部に流されるよう構成されているこ
とによって特徴づけられる。
In order to achieve the above object, a particle size distribution measuring apparatus according to the present invention is characterized in that a suspension or emulsion in which particles to be measured are dispersed in a medium is flowed into a cell. ,
A particle size for measuring the intensity distribution of diffraction / scattered light obtained by irradiating the suspension or emulsion with laser light from outside the cell, and calculating the particle size distribution of the particle group to be measured from the measurement result In the distribution measuring device, the cell is provided such that a nozzle having a slit-shaped discharge port therein is disposed so that the longitudinal direction of the discharge port is along a direction orthogonal to the optical path of the irradiation laser light, and Separately, it has an inlet, the medium is flowed into the cell through this inlet, and the suspension or the emulsion keeps the width of the outlet from the outlet of the nozzle. It is characterized by being configured to be flowed to a substantially central portion along the flow of the medium.

【0008】[0008]

【作用】ノズルの吐出口から出た試料懸濁液もしくは乳
濁液は、媒液に囲まれた状態でセル内を流れることにな
り、被測定粒子はセルの内面に接触しない。
The sample suspension or emulsion coming out of the outlet of the nozzle flows in the cell while being surrounded by the medium, and the particles to be measured do not contact the inner surface of the cell.

【0009】また、レーザ光の光路長はセルのレーザ光
軸方向の内幅に係わりなくノズルの吐出口の同方向幅に
よって決まるため、セルの内幅を広くしてその内面の洗
浄を容易としても、短い光路長での測定が可能となり、
従来に比して実質的により高濃度の試料の測定が可能と
なる。
Further, since the optical path length of the laser beam is determined by the same width of the discharge port of the nozzle irrespective of the inner width of the cell in the laser optical axis direction, the inner width of the cell is increased to facilitate the cleaning of the inner surface. Can be measured with a short optical path length,
It becomes possible to measure a sample having a substantially higher concentration than before.

【0010】[0010]

【実施例】図1は本発明実施例の構成図で、図2はその
セル3の構造を示す斜視図、図3はそのセル3をレーザ
光軸Lを含む平面で切断した縦断面図である。
1 is a structural view of an embodiment of the present invention, FIG. 2 is a perspective view showing the structure of a cell 3, and FIG. 3 is a longitudinal sectional view of the cell 3 cut along a plane including a laser optical axis L. is there.

【0011】被測定粒子群を媒液中に分散させた試料懸
濁液もしくは乳濁液(以下、単に懸濁液と称する)S
は、攪拌装置1aを備えた懸濁液溜1内に収容され、後
述するようにストップバルブ2を開放することによって
セル3内に導入される。
A sample suspension or emulsion (hereinafter, simply referred to as a suspension) S in which particles to be measured are dispersed in a medium.
Is stored in a suspension reservoir 1 provided with a stirring device 1a, and introduced into a cell 3 by opening a stop valve 2 as described later.

【0012】セル3は互いに平行なガラス板31および
32を備えた矩形状のもので、その側壁の下方部分に媒
液導入口33が、また、上方部分に排出口34が形成さ
れているともに、これらとは別に、その底面部からその
内部にノズル35が水密に挿入されている。このノズル
35は先端にスリット状の吐出口35aが形成され、こ
の吐出口35aの長手方向は後述するレーザ光の光軸L
と直交するような姿勢で、つまり、ガラス板31,32
と平行となる状態で、ガラス板31と32との中央部分
においてセル3に対して固定されている。
The cell 3 has a rectangular shape having glass plates 31 and 32 parallel to each other, and has a medium liquid inlet 33 formed in a lower portion of a side wall thereof and a discharge port 34 formed in an upper portion thereof. Apart from these, a nozzle 35 is inserted in a watertight manner from the bottom portion into the inside. The nozzle 35 has a slit-shaped discharge port 35a formed at the tip thereof, and the longitudinal direction of the discharge port 35a is the optical axis L of the laser light described later.
, That is, the glass plates 31 and 32
Are fixed to the cell 3 at the central portion between the glass plates 31 and 32 in a state of being parallel to.

【0013】前記したストップバルブ2は配管4を介し
てノズル35に連通しており、ストップバルブ2を開放
することにより懸濁液Sはノズル35の吐出口35aか
らセル3内に導入される。
The stop valve 2 communicates with the nozzle 35 via the pipe 4. When the stop valve 2 is opened, the suspension S is introduced into the cell 3 from the discharge port 35a of the nozzle 35.

【0014】一方、セル3の導入口33は、調圧バルブ
5を介して、懸濁液Sに使用されている媒液と同種の媒
液Mを収容した媒液溜7に連通している。また、セル3
の排出口34はポンプ6の吸引口に連通しており、従っ
て、ポンプ6を駆動することにより、媒液Mがセル3内
にその導入口33を介して調圧バルブ5で設定された一
定圧力(流速)のもとに流入するようになっている。
On the other hand, the inlet 33 of the cell 3 communicates with the medium reservoir 7 containing the same type of medium M as the medium used for the suspension S via the pressure regulating valve 5. . Cell 3
Is connected to the suction port of the pump 6. Therefore, by driving the pump 6, the medium M is supplied into the cell 3 through the inlet 33 by the constant pressure set by the pressure regulating valve 5. It flows under pressure (flow velocity).

【0015】セル3の外方の一方側にはレーザ光源8が
配設されているとともに、セル3を挟んでこれと反対側
のレーザ光の光軸L上には、集光レンズ9およびその焦
点面上のデテクタ10が配設されており、セル3内の被
測定粒子群による回折/散乱光は集光レンズ9によって
デテクタ10の受光面上に回折/散乱光を結ぶ。デテク
タ10は、例えば互いに異なる半径を有する半リング状
の受光面を持つ複数個のフォトセンサがレーザ光軸Lを
中心として同心円状に並べられたもので、各センサの出
力から回折/散乱光強度の空間分布(回折/散乱角ごと
の光強度)が得られるようになっている。このデテクタ
10の出力は増幅器およびA−D変換器11を介してコ
ンピュータ12に採り込まれ、ブランク測定値(媒液の
みを流した状態でのデテクタ10の出力)に基づくベー
スライン測定結果等を合わせて、公知の演算により被測
定粒子群の粒度分布に換算される。
A laser light source 8 is disposed on one outer side of the cell 3, and a condenser lens 9 and a condensing lens 9 are disposed on the optical axis L of the laser light on the opposite side of the cell 3. A detector 10 on the focal plane is provided, and the diffracted / scattered light by the group of particles to be measured in the cell 3 is combined by the condenser lens 9 on the light receiving surface of the detector 10. The detector 10 is, for example, a plurality of photosensors having semi-ring-shaped light receiving surfaces having different radii and arranged concentrically around the laser optical axis L. The intensity of the diffracted / scattered light is determined from the output of each sensor. (Light intensity for each diffraction / scattering angle) can be obtained. The output of the detector 10 is taken into a computer 12 via an amplifier and an A / D converter 11, and a baseline measurement result or the like based on a blank measurement value (output of the detector 10 in a state where only the medium is flown) is obtained. In addition, it is converted into the particle size distribution of the particle group to be measured by a known calculation.

【0016】次に、以上の本発明実施例の作用をその使
用方法とともに述べる。まず、ストップバルブ2を閉じ
た状態でポンプ6を駆動して、セル3内に媒液Mを一定
の圧力(流速)下で流し、ブランク測定を行う。その状
態でストップバルブ2を開放すると、ノズル35側は負
圧状態であるから、懸濁液Sが吸引されてその吐出口3
5aから媒液Mの流れの中に流れ出し、これらは排出口
34からセル3外に流出する。図4はこの状態を示すセ
ル3の断面図である。レーザ光の光路空間においては、
懸濁液Sは媒液M内で吐出口35aの光軸L方向の幅w
をほぼ保った状態で流れ、従って実質的な光路長はこの
吐出口35aの幅wと等しくなるとともに、セル3のガ
ラス板31,32の内面には少なくともレーザ光照射部
分近傍において懸濁液Sは接触せず、ここに被測定粒子
が付着することがなく、また、セル3のガラス板31,
32の内面間距離を大きくして洗浄を容易化しても、短
い光路長のもとでの測定が可能となる。
Next, the operation of the above embodiment of the present invention will be described together with the method of using the same. First, the pump 6 is driven with the stop valve 2 closed, and the medium liquid M is caused to flow into the cell 3 under a constant pressure (flow rate) to perform a blank measurement. When the stop valve 2 is opened in that state, the suspension S is sucked and the discharge port 3
5a flows into the flow of the medium M, and these flow out of the cell 3 from the outlet 34. FIG. 4 is a sectional view of the cell 3 showing this state. In the optical path space of the laser light,
The suspension S has a width w in the direction of the optical axis L of the discharge port 35a in the medium M.
Therefore, the optical path length is substantially equal to the width w of the discharge port 35a, and the inner surface of the glass plates 31 and 32 of the cell 3 has the suspension S at least in the vicinity of the laser beam irradiation portion. Are not in contact with each other, the particles to be measured do not adhere thereto, and the glass plate 31,
Even if the distance between the inner surfaces of the 32 is increased to facilitate the cleaning, the measurement can be performed under a short optical path length.

【0017】図5は本発明の他の実施例のセル30の要
部断面図である。この例におけるセル30が先の例にお
けるセル3と相違する点は、セル30にレーザ光が照射
されるガラス板301とこれに対向するガラス板302
が、レーザ光の照射部よりも懸濁液Sおよび媒液Mの流
れの上流側においてそれぞれ内側に向かって絞られ、こ
の絞り部300の存在によってレーザ光の光軸L上では
両者の対向面間距離が上流側に比して狭くなっている点
であり、その他の構成は先の例と同等である。
FIG. 5 is a sectional view of a main part of a cell 30 according to another embodiment of the present invention. The difference between the cell 30 in this example and the cell 3 in the previous example is that a glass plate 301 for irradiating the cell 30 with a laser beam and a glass plate 302 opposed thereto are provided.
Are squeezed inward on the upstream side of the flow of the suspension S and the medium M from the laser beam irradiation part, and the opposing surfaces of the two on the optical axis L of the laser light due to the presence of the throttle part 300 The difference is that the distance between them is smaller than that on the upstream side, and the other configurations are the same as those in the previous example.

【0018】この例においては、媒液Mを流した状態で
先の例のようにストップバルブ2を開放すると、同様に
して懸濁液Sがノズル35の吐出口35aから媒液M内
に流れ出すが、絞り部300において流れの全体がレー
ザ光の光軸Lに沿う方向に絞られるので、懸濁液Sの流
れの光軸L方向の厚さは、ノズル35の吐出口35aの
光軸L方向の幅wよりも狭くなり、先の実施例に比して
光路長をより小さくすることが可能となる。
In this example, when the stop valve 2 is opened as in the previous example with the medium M flowing, the suspension S similarly flows out of the discharge port 35a of the nozzle 35 into the medium M. However, since the entire flow is throttled in the direction along the optical axis L of the laser beam in the throttle unit 300, the thickness of the flow of the suspension S in the direction of the optical axis L is equal to the optical axis L of the discharge port 35a of the nozzle 35. The width becomes smaller than the width w in the direction, and the optical path length can be made smaller than in the previous embodiment.

【0019】従ってこの実施例においては、ノズル35
の吐出口35aの光軸L方向への幅寸法wを、予想され
る最大の粒子が通過できる程度としておくことで、光路
長は更に短くなることになり、測定可能な懸濁液濃度の
上限を従来に比して大幅に上昇させることが可能とな
る。
Therefore, in this embodiment, the nozzle 35
By setting the width dimension w of the discharge port 35a in the direction of the optical axis L to such an extent that the largest expected particle can pass through, the optical path length is further shortened, and the upper limit of the measurable suspension concentration Can be greatly increased as compared with the related art.

【0020】すなわち、レーザ回折/散乱法では、試料
懸濁液もしくは乳濁液の濃度は、通常0.1%以下にし
なければならない。その理由は、濃度が高いと1つの粒
子で回折/散乱された光が他の粒子に当たって再び回折
/散乱される、という多重回折(散乱)が起こるからで
ある。この現象を少なくするには、濃度を薄くする以外
に、光路長を短くする方法がある。従来装置において
は、セルの光軸方向への厚みを薄くすることにより光路
長の短縮を図っていたが、この対策では大きな粒子がセ
ル内につまるばかりでなく、洗浄が極めて困難となる。
図5に示す実施例のセル30を用いて、そのノズル35
の吐出口35aの幅wを上記したように最大粒子の径寸
法よりも僅かに大きくしておくことにより、懸濁液Sの
流れの光軸L上におけるL方向の厚み、従って光路長
は、その最大粒子径よりも更に短くなり得ることにな
り、多重回折(散乱)を生じない濃度の上限は大幅に緩
和され、高濃度の試料の測定が可能となる。
That is, in the laser diffraction / scattering method, the concentration of the sample suspension or emulsion must be usually 0.1% or less. The reason for this is that when the concentration is high, multiple diffraction (scattering) occurs in which light diffracted / scattered by one particle hits another particle and is diffracted / scattered again. In order to reduce this phenomenon, there is a method of shortening the optical path length other than reducing the concentration. In the conventional apparatus, the optical path length was shortened by reducing the thickness of the cell in the optical axis direction. However, this measure not only causes large particles to be caught in the cell but also makes cleaning extremely difficult.
Using the cell 30 of the embodiment shown in FIG.
By making the width w of the discharge port 35a slightly larger than the diameter of the largest particle as described above, the thickness of the flow of the suspension S in the L direction on the optical axis L, that is, the optical path length becomes Since the particle diameter can be shorter than the maximum particle diameter, the upper limit of the concentration at which multiple diffraction (scattering) does not occur is greatly relaxed, and a high-concentration sample can be measured.

【0021】[0021]

【発明の効果】以上説明したように、本発明によれば、
試料懸濁液もしくは乳濁液を流すためのセル内に、スリ
ット状の吐出口を持つノズルを、その吐出口の長手方向
が照射レーザ光の光軸と直交するように配置し、このノ
ズルとは別に導入する導入口を設けて媒液をセル内に流
すとともに、ノズルの吐出口から、その媒液の流れに沿
って試料懸濁液もしくは乳濁液を媒液に囲まれた状態で
流すように構成しているので、試料懸濁液もしくは乳濁
液の流れのレーザ光軸方向への厚みはノズルの吐出口の
同方向への幅とほぼ同じ寸法となり、被測定粒子がセル
の内面に付着して回折/散乱光の測定誤差を生じること
がないとともに、内面の洗浄作業を容易化すべくセルの
レーザ光軸方向の内面幅を広くしても短い光路長での測
定が可能となり、実質的により高濃度の試料の測定が可
能となる。
As described above, according to the present invention,
In a cell for flowing a sample suspension or an emulsion, a nozzle having a slit-shaped outlet is arranged so that the longitudinal direction of the outlet is orthogonal to the optical axis of the irradiation laser light, and A separate introduction port is provided to allow the medium to flow into the cell, and the sample suspension or emulsion flows from the nozzle outlet along the flow of the medium in a state surrounded by the medium. Therefore, the thickness of the flow of the sample suspension or emulsion in the direction of the laser optical axis is almost the same as the width of the discharge port of the nozzle in the same direction. Measurement error of diffraction / scattered light does not occur by adhering to the surface, and even if the inner surface width of the cell in the laser optical axis direction is widened to facilitate the inner surface cleaning work, measurement with a short optical path length becomes possible. Substantially higher concentrations of the sample can be measured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明実施例の全体構成図FIG. 1 is an overall configuration diagram of an embodiment of the present invention.

【図2】そのセル3の構造を示す斜視図FIG. 2 is a perspective view showing the structure of the cell 3;

【図3】同じくセル3の構造を示す縦断面図FIG. 3 is a longitudinal sectional view showing the structure of the cell 3;

【図4】セル3の要部断面図で示す本発明実施例の作用
説明図
FIG. 4 is an operation explanatory view of an embodiment of the present invention shown in a sectional view of a main part of a cell 3.

【図5】本発明の他の実施例のセルの要部縦断面図FIG. 5 is a longitudinal sectional view of a main part of a cell according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 懸濁液溜 2 ストップバルブ 3 セル 31,32 ガラス板 33 導入口 34 排出口 35 ノズル 35a 吐出口 6 ポンプ 7 媒液溜 8 レーザ光源 9 集光レンズ 10 デテクタ 12 コンピュータ S 懸濁液 M 媒液 L レーザ光軸 DESCRIPTION OF SYMBOLS 1 Suspension reservoir 2 Stop valve 3 Cell 31, 32 Glass plate 33 Inlet 34 Outlet 35 Nozzle 35a Discharge port 6 Pump 7 Medium reservoir 8 Laser light source 9 Condensing lens 10 Detector 12 Computer S Suspension M Medium L laser beam axis

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 被測定粒子群を媒液中に分散させた懸濁
液もしくは乳濁液をセル内に流し、そのセルの外方から
上記懸濁液もしくは乳濁液にレーザ光を照射することに
より得られる回折/散乱光の強度分布を測定し、その測
定結果から被測定粒子群の粒度分布を算出する装置にお
いて、上記セルは、その内部にスリット状の吐出口を持
つノズルが当該吐出口の長手方向が照射レーザ光の光路
と直交する方向に沿うよう配設されているとともに、こ
のノズルとは別に導入口を有し、この導入口を介して媒
液がセル内に流されるとともに、上記ノズルの吐出口か
ら上記懸濁液もしくは乳濁液が上記吐出口の幅を保った
状態で上記媒液の流れに沿ってその略中央部に流される
よう構成されていることを特徴とする粒度分布測定装
置。
1. A suspension or emulsion in which particles to be measured are dispersed in a medium is flowed into a cell, and the suspension or emulsion is irradiated with laser light from outside the cell. In the apparatus for measuring the intensity distribution of the diffracted / scattered light obtained as described above and calculating the particle size distribution of the particle group to be measured from the measurement result, the cell has a nozzle having a slit-shaped discharge port inside. While the longitudinal direction of the outlet is arranged along the direction orthogonal to the optical path of the irradiation laser light, the outlet has an inlet separately from the nozzle, and the medium flows through the inlet into the cell. Characterized in that the suspension or the emulsion is configured to flow from a discharge port of the nozzle to a substantially central portion thereof along the flow of the medium while maintaining the width of the discharge port. Particle size distribution measuring device.
JP04070912A 1992-03-27 1992-03-27 Particle size distribution analyzer Expired - Fee Related JP3136745B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04070912A JP3136745B2 (en) 1992-03-27 1992-03-27 Particle size distribution analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04070912A JP3136745B2 (en) 1992-03-27 1992-03-27 Particle size distribution analyzer

Publications (2)

Publication Number Publication Date
JPH05273109A JPH05273109A (en) 1993-10-22
JP3136745B2 true JP3136745B2 (en) 2001-02-19

Family

ID=13445204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04070912A Expired - Fee Related JP3136745B2 (en) 1992-03-27 1992-03-27 Particle size distribution analyzer

Country Status (1)

Country Link
JP (1) JP3136745B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6257109B1 (en) 1997-08-29 2001-07-10 Citizen Watch Co., Ltd. Automatic lathe and method of controlling same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4701891B2 (en) * 2005-07-20 2011-06-15 株式会社島津製作所 Particle size distribution measuring device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6257109B1 (en) 1997-08-29 2001-07-10 Citizen Watch Co., Ltd. Automatic lathe and method of controlling same
USRE38571E1 (en) 1997-08-29 2004-08-31 Citizen Watch Co., Ltd. Automatic lathe and method of controlling same

Also Published As

Publication number Publication date
JPH05273109A (en) 1993-10-22

Similar Documents

Publication Publication Date Title
US4818103A (en) Flow cytometry
US6710874B2 (en) Method and apparatus for detecting individual particles in a flowable sample
US4673288A (en) Flow cytometry
US4783599A (en) Particle detector for flowing liquids with the ability to distinguish bubbles via photodiodes disposed 180° apart
EP0068404B1 (en) Analyzer for simultaneously determining volume and light emission characteristics of particles
EP0286088A2 (en) A sheath flow type flow-cell device
EP2972209B1 (en) Compound optical flow cells and method of manufacture and use
JP2823136B2 (en) Measuring head
JP2001507122A (en) Apparatus and method for determining the shape of individual red blood cells
JPH0431353B2 (en)
JPH0225133B2 (en)
JPH07119686B2 (en) Flow cell device
JP2000214070A (en) Sheath flow cell and hemanalyzer using the same
US5030843A (en) Apparatus for measuring particles in liquid having a laminar flow condition
DE69319184D1 (en) Liquid contamination sensor
JPH09145591A (en) Measuring apparatus for particle-size-distribution
Soini et al. A new design of the flow cuvette and optical set‐up for the scanning flow cytometer
US6104491A (en) System for determining small particle size distribution in high particle concentrations
US20220136955A1 (en) Laser particle size analyzer with liquid sheath flow measuring cell
JP3136745B2 (en) Particle size distribution analyzer
EP3152546B1 (en) Biased sample injection flow cell
KR100219420B1 (en) Particle measuring device having cycloneshaped collector for semiconductor cleanroom applications
JPH04283648A (en) Measuring device for characteristic of fiber-shaped particle in gas
US4343551A (en) Apparatus for counting and classifying particles
US6104490A (en) Multiple pathlength sensor for determining small particle size distribution in high particle concentrations

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071208

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081208

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091208

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091208

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101208

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111208

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees