JP3136667B2 - Characteristic calculation method for linear induction motor - Google Patents

Characteristic calculation method for linear induction motor

Info

Publication number
JP3136667B2
JP3136667B2 JP19174491A JP19174491A JP3136667B2 JP 3136667 B2 JP3136667 B2 JP 3136667B2 JP 19174491 A JP19174491 A JP 19174491A JP 19174491 A JP19174491 A JP 19174491A JP 3136667 B2 JP3136667 B2 JP 3136667B2
Authority
JP
Japan
Prior art keywords
induction motor
equivalent circuit
test
primary
equivalent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19174491A
Other languages
Japanese (ja)
Other versions
JPH0534423A (en
Inventor
孝行 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP19174491A priority Critical patent/JP3136667B2/en
Publication of JPH0534423A publication Critical patent/JPH0534423A/en
Application granted granted Critical
Publication of JP3136667B2 publication Critical patent/JP3136667B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、リニア誘導モータの特
性算定方式に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for calculating characteristics of a linear induction motor.

【0002】[0002]

【従来の技術】リニア誘導モータの等価回路は、回転形
の誘導電動機と同様に扱うことができる。誘導電動機の
等価回路は、例えば図9に示すT型等価回路で表され
る。
2. Description of the Related Art An equivalent circuit of a linear induction motor can be handled in the same manner as a rotary induction motor. The equivalent circuit of the induction motor is represented by, for example, a T-type equivalent circuit shown in FIG.

【0003】この等価回路から誘導機の諸特性を算定を
必要とするには、等価回路の定数値を決定することを必
要とし、例えば規格JEC−37では抵抗測定と無負荷
試験及び拘束試験を行うことで各定数値を求める。
In order to calculate various characteristics of an induction machine from this equivalent circuit, it is necessary to determine the constant value of the equivalent circuit. For example, the standard JEC-37 requires resistance measurement, no-load test, and constraint test. By doing so, each constant value is obtained.

【0004】このうち、抵抗測定は一次巻線端子間抵抗
1を測定して基準巻線温度への換算をし、無負荷試験
は定格電圧・定格周波数で無負荷運転したときの一次電
圧V1,一次電流I1,一次入力Wを測定し、拘束試験は
回転子を拘束した状態で定格周波数かつ低い電圧を加
え、全負荷電流での一次電圧V1,一次電流I1,一次入
力Wを測定する。
[0004] Among these, resistance measurement by the conversion to the reference winding temperature by measuring the inter-primary winding terminals resistance r 1, the no-load test is the primary voltage V when the no-load operation at rated voltage and rated frequency 1 , the primary current I 1 , and the primary input W are measured. In the restraint test, a rated voltage and a low voltage are applied while the rotor is restrained, and the primary voltage V 1 , the primary current I 1 , and the primary input W at full load current are applied. Is measured.

【0005】上述のような回転形誘導機の試験方法をリ
ニア誘導モータに利用しようとするとき、リニア誘導モ
ータは回転機と異なり直線運動をするため無負荷試験を
実施できない。そこで、リニア誘導モータの無負荷試験
装置として、図10に示すような試験機が用意される。
巻線とヨークから成る一次側固定子31には無負荷試験
の電圧・周波数が供給され、二次側回転円板32は支持
板33と軸34が軸35によって回転自在に保持され、
回転円板32の軸34に結合される負荷吸収装置36及
び回転計37はモータの動推力測定時や速度特性測定に
利用される。
When the above-described test method for a rotary induction machine is used for a linear induction motor, the linear induction motor performs a linear motion unlike a rotary machine, so that a no-load test cannot be performed. Therefore, a test machine as shown in FIG. 10 is prepared as a no-load test device for a linear induction motor.
A voltage / frequency of a no-load test is supplied to a primary stator 31 composed of a winding and a yoke, and a secondary rotating disk 32 is rotatably held by a support plate 33 and a shaft 34 by a shaft 35.
The load absorbing device 36 and the tachometer 37 connected to the shaft 34 of the rotating disk 32 are used for measuring the dynamic thrust of the motor and for measuring the speed characteristics.

【0006】[0006]

【発明が解決しようとする課題】従来の特性算定方式は
回転形誘導機のそれと同様に無負荷試験や拘束試験によ
って等価回路の諸定数が算定される。このため、無負荷
試験には大掛かりな試験機を必要とする問題があった。
In the conventional characteristic calculation method, various constants of an equivalent circuit are calculated by a no-load test or a constraint test, similarly to the case of a rotary induction machine. Therefore, there is a problem that a large-scale test machine is required for the no-load test.

【0007】また、拘束試験には回転子を拘束すること
で行われるが、リニア誘導モータはエアギャップと二次
導体厚さの和が等価エアギャップとなるため回転形の誘
導機に較べて等価エアギャップが大きくなる。さらに、
低速機では運転周波数も低い。これらのことから、リニ
ア誘導モータは励磁リアクタンスXmが小さく、拘束試
験時の電流に励磁電流が多く含まれ、正確な試験ができ
ない問題があった。
In the restraint test, the rotor is restrained. The linear induction motor is equivalent to a rotary induction machine because the sum of the air gap and the thickness of the secondary conductor becomes an equivalent air gap. The air gap increases. further,
The operating frequency is low for low-speed machines. From these, linear induction motor has a small excitation reactance X m, the exciting current is abundant in current during restraint test, there is a problem that can not be accurately tested.

【0008】本発明の目的は、抵抗測定と拘束試験のみ
による特性算定になり、しかも正確,容易な特性算定に
なる特性算定方式を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a characteristic calculation method in which a characteristic is calculated only by resistance measurement and a constraint test, and which is accurate and easy.

【0009】[0009]

【課題を解決するための手段】本発明は、前記課題の解
決を図るため、リニア誘導モータの一次抵抗を測定する
抵抗測定手段と、前記モータの拘束試験によって異なる
周波数での一次電流と電圧と電力及び推力を夫々測定す
る拘束試験手段とを備え、前記モータの一次漏れリアク
タンスを二次漏れリアクタンスに含めたT型等価回路と
前記両手段による測定結果から励磁リアクタンスを含む
等価二次インピーダンスを求め、前記等価回路の二次側
インピーダンスをすべりSと周波数fの関数として表わ
す近似式を仮定し、前記測定結果から求めた等価二次イ
ンピーダンスと前記近似式の連立方程式から該近似式の
各係数を算出し、前記各係数を与えた前記近似式から前
記等価回路の各定数を求めて前記モータの特性を算定す
ることを特徴とする。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides a resistance measuring means for measuring a primary resistance of a linear induction motor, a primary current and a voltage at different frequencies depending on a constraint test of the motor. A T-type equivalent circuit including primary leakage reactance of the motor as a secondary leakage reactance and an equivalent secondary impedance including an exciting reactance from the measurement results obtained by the two means. Assuming an approximate expression expressing the secondary-side impedance of the equivalent circuit as a function of the slip S and the frequency f, each coefficient of the approximate expression is calculated from the equivalent secondary impedance obtained from the measurement result and the simultaneous equation of the approximate expression. Calculated and calculated from the approximate expression
The characteristic of the motor is calculated by obtaining each constant of the equivalent circuit .

【0010】[0010]

【作用】図1に示す等価回路は、いわゆる誘導機のπ形
等価回路から出発して等価変換によって図9における一
次漏れリアクタンスX1を消去したものである。この等
価回路の導入は、例えば電気学会論文集、Vol.87
−1、NO940、173頁乃至180頁、「誘導機の
特性算定のための定数決定法」に記載されている。
[Action equivalent circuit shown in FIG. 1 is obtained by erasing the primary leakage reactance X 1 in FIG. 9 by the equivalent conversion, starting from π shape equivalent circuit of a so-called induction machine. The introduction of this equivalent circuit is described in, for example, Transactions of the Institute of Electrical Engineers of Japan, Vol. 87
-1, No. 940, pages 173 to 180, "Constant determination method for calculating characteristics of induction motor".

【0011】図1の等価回路は等価変換を行っているた
め電気的にはπ形等価回路と同一のものを表わしてお
り、各定数はπ形等価回路における励磁リアクタンスを
m、一次リアクタンスをX1=x1+Xm(x1:一次漏
れリアクタンス)、二次リアクタンスをX2=x2+Xm
(x2:二次漏れリアクタンス)、二次抵抗R2とした場
合、
Since the equivalent circuit of FIG. 1 performs equivalent conversion, it electrically represents the same circuit as the π-type equivalent circuit, and each constant represents the excitation reactance X m and the primary reactance in the π-type equivalent circuit. X 1 = x 1 + X m (x 1 : primary leakage reactance), and the secondary reactance is X 2 = x 2 + X m
(X 2 : secondary leakage reactance), assuming a secondary resistance R 2 ,

【0012】[0012]

【数1】 (Equation 1)

【0013】となる。即ち、Xm′は図9のX1と同一の
ものである。従って、図1の等価回路では一次及び二次
漏れリアクタンスの分離の必要がなく、定数の算出が容
易となる。
## EQU1 ## That is, X m 'is the same as X 1 in FIG. Therefore, in the equivalent circuit of FIG. 1, it is not necessary to separate the primary and secondary leakage reactances, and the calculation of the constant becomes easy.

【0014】リニア誘導モータの等価回路を図1とする
と、拘束状態(すべりS=1)の等価回路は図2のよう
に表わすことができる。いま、定格周波数fnで拘束試
験を行ない、相電圧VL,電流IL,入力WL及び推力TL
を計測し、終了後直ちに一相巻線抵抗R1を測定したと
すると、以下の手順に従って相電圧を基準ベクトルに取
った場合の拘束状態における各部の定数,電圧及び電流
を決定することができる。
If the equivalent circuit of the linear induction motor is shown in FIG. 1, the equivalent circuit in the restrained state (slip S = 1) can be represented as shown in FIG. Now, subjected to restraint test at the rated frequency f n, the phase voltage V L, the current I L, the input W L and the thrust T L
The measure can be determined assuming that measured immediately after termination one phase winding resistance R 1, the constant of each component in a restraint state when taking the phase voltage reference vector according to the following procedure, the voltage and current .

【0015】[0015]

【数2】 (Equation 2)

【0016】ここで、等価二次電流は励磁電流と二次電
流の和、等価二次インピーダンスはXm′を含む二次側
の全インピーダンスを表すものとする。
Here, the equivalent secondary current is the sum of the exciting current and the secondary current, and the equivalent secondary impedance is the total impedance on the secondary side including X m '.

【0017】一方、任意のすべりSにおける等価二次イ
ンピーダンスを図1の等価回路より求め、抵抗分をR2E
(s)、リアクタンス分をX2E(s)とおくと、両式の
関係から二次定数R2′及びx2′が
Meanwhile, determined from the equivalent circuit of FIG. 1 the equivalent secondary impedance at any slip S, a resistor-R 2E
(S) and the reactance component as X 2E (s), the quadratic constants R 2 ′ and x 2 ′ are obtained from the relationship between the two equations.

【0018】[0018]

【数3】 (Equation 3)

【0019】として求められる。## EQU1 ##

【0020】従って、S=1として上記(12)式及び
(13)式の計算結果を代入すれば、拘束時における二
次定数が計算できることになるが、現段階ではXm′が
不明であるため二次定数の決定はできない。
Therefore, by substituting the calculation results of the above equations (12) and (13) with S = 1, the quadratic constant at the time of constraint can be calculated, but X m 'is unknown at this stage. Therefore, the second order constant cannot be determined.

【0021】無負荷試験を行なうことなくXm′を決定
する方法として、リニア誘導モータの拘束試験に基準周
波数f1と任意周波数f2における一次電流と一次電圧及
び入力を夫々測定し、図1の等価回路から二次抵抗及び
漏れリアクタンスを周波数f1,f2について求め、二次
抵抗と二次リアクタンスの比及び周波数f1,f2の比α
からXm′を求める特性算定方式を本願出願人は既に提
案している(特願平3−48528号)。
As a method of determining X m ′ without performing a no-load test, a primary current, a primary voltage and an input at a reference frequency f 1 and an arbitrary frequency f 2 are measured in a constraint test of a linear induction motor, respectively, as shown in FIG. The secondary resistance and the leakage reactance are obtained for the frequencies f 1 and f 2 from the equivalent circuit of the following formula, and the ratio of the secondary resistance to the secondary reactance and the ratio α of the frequencies f 1 and f 2 are α
The applicant of the present application has already proposed a characteristic calculation method for obtaining X m 'from the formula (Japanese Patent Application No. 3-48528).

【0022】しかし、上記方式では測定点が多くなるこ
と及び作図を必要とする問題がある。本発明では、
m′を含む等価二次インピーダンスの運転周波数及び
すべりに対する近似式を導出してXm′及び二次定数を
算出することで特性算定を得る。
However, the above-mentioned method has problems that the number of measurement points increases and that drawing is required. In the present invention,
Approximate expressions for the operating frequency and slip of the equivalent secondary impedance including X m 'are derived to calculate X m ' and the second order constant, thereby obtaining the characteristic calculation.

【0023】(a)等価二次インピーダンスの近似式 一般に、リニア誘導モータの二次電流はうず電流とな
り、無限の自由度を持って流れる。したがって、この現
象を無限個の二次回路を用いて表わすことにすれば、二
次側の等価回路は夫々固定の定数を用いて図3に示すよ
うに変換できる。但し、r1,r2,r3,…とx1
2,x3,…は各回路の抵抗と漏れリアクタンスを表
す。
(A) Approximate Expression of Equivalent Secondary Impedance Generally, the secondary current of a linear induction motor is an eddy current and flows with an infinite degree of freedom. Therefore, if this phenomenon is expressed using an infinite number of secondary circuits, the equivalent circuits on the secondary side can be converted as shown in FIG. 3 using fixed constants. Where r 1 , r 2 , r 3 ,... And x 1 ,
x 2, x 3, ... represent the resistance and leakage reactance of each circuit.

【0024】この図5より、等価二次インピーダンスを
求め、すべりSと周波数fの関数として表わせば、
From FIG. 5, the equivalent secondary impedance is obtained and expressed as a function of the slip S and the frequency f.

【0025】[0025]

【数4】 (Equation 4)

【0026】となる。但し、係数a1,a2,a3,…、
1,b2,b3,…、c1,c2,c3,…は図3の回路定
数で決まる定数である。
## EQU1 ## Where the coefficients a 1 , a 2 , a 3 ,.
b 1, b 2, b 3 , ..., c 1, c 2, c 3, ... is a constant determined by the circuit constants of Fig.

【0027】ここで、現実の近似式としては実際の定数
を決定でき、ある程度の精度が確保されれば十分である
ため、上記(16),(17)式の分子及び分母の第2
項までをとり、さらに分子,分母をb1で除して下記
(18),(19)式の形で等価二次インピーダンスの
抵抗及びリアクタンスを表わすことができる。
Here, since an actual constant can be determined as an actual approximation expression and it is sufficient if a certain degree of accuracy is ensured, the second expression of the numerator and denominator of the expressions (16) and (17) is sufficient.
Take up section, the following (18) further molecules, by dividing the denominator in b 1, can represent the resistance and reactance of the equivalent secondary impedance in the form of (19).

【0028】[0028]

【数5】 (Equation 5)

【0029】この近似式を採用するも後述のように実用
上十分な特性算定が可能となり、本発明では該近似式の
係数を拘束試験結果から決定する。
Even if this approximation formula is adopted, practically sufficient characteristics can be calculated as will be described later. In the present invention, the coefficient of the approximation formula is determined from the result of the constraint test.

【0030】(b)等価二次インピーダンスの決定 前述の(18),(19)式の係数を決定するのに、係
数は全部で5個あるため、単一の周波数での拘束試験で
は決定できない。そこで、定格周波数fnの他、その1
/2周波数及び1/4周波数における拘束試験を実施
し、夫々の周波数での等価二次インピーダンスを求め
る。
(B) Determination of Equivalent Secondary Impedance In determining the coefficients of the above equations (18) and (19), since there are five coefficients in total, they cannot be determined by a constraint test at a single frequency. . Therefore, in addition to the rated frequency f n ,
A constraint test is performed at the 2 frequency and the 4 frequency, and the equivalent secondary impedance at each frequency is determined.

【0031】このときの試験結果Z2E,Z2E′,Z2E
At this time, the test results Z 2E , Z 2E ′, Z 2E
To

【0032】[0032]

【数6】 (Equation 6)

【0033】と表わすと、拘束試験での周波数fn,fn
/2,fn/4及びすべりS=1から(18)及び(1
9)式の各係数を
Denoting the [0033], the frequency f n, f n in the restraint test
/ 2, f n / 4 and slip S = 1 to (18) and (1)
9)

【0034】[0034]

【数7】 (Equation 7)

【0035】のように求めることができる。但し、Can be obtained as follows. However,

【0036】[0036]

【数8】 (Equation 8)

【0037】以上により、各係数が求まり、これを(1
8)式及び(19)式に代入することで任意の周波数、
すべりにおける等価二次インピーダンスを求めることが
できる。
From the above, each coefficient is obtained, and this is calculated as (1
By substituting into equations 8) and (19), any frequency,
The equivalent secondary impedance in the slip can be determined.

【0038】また、Xm′はX2E(S)のすべりS=0のと
きの値であるため、
Further, since X m 'is a value when the slip S = 0 of X 2E (S) ,

【0039】[0039]

【数9】 (Equation 9)

【0040】として求めることができる。Can be obtained as

【0041】なお、定格周波数運転時を考えれば、fn
として、(26)〜(28)式のように表わすことがで
きる。
In consideration of the rated frequency operation, f n
Can be expressed as in equations (26) to (28).

【0042】ただし、(18)式および(19)式は
(16)式および(17)式の分子分母の第2項までと
った近似式であり、第3項以上を考慮した近似式も可能
である。この場合、近似式の係数の数が増加するので、
係数を決定するとき異なった周波数での拘束試験の回数
が増加する。
However, equations (18) and (19) are approximations up to the second term of the numerator denominator in equations (16) and (17), and approximations taking into account the third term and above are also possible. It is. In this case, the number of coefficients in the approximate expression increases,
The number of constraint tests at different frequencies increases when determining the coefficients.

【0043】また、(20)式〜(22)式では拘束試
験の周波数をfn(定格周波数)fn/2,fn/4とし
ているが、これは便宜上であって、3点の任意の異なっ
た周波数の拘束試験が行われれば各係数が、これらから
算出した二次インピーダンスに関する連立方程式より与
えられることになる。
In equations (20) to (22), the frequency of the constraint test is f n (rated frequency) f n / 2, f n / 4. If the constraint tests of different frequencies are performed, each coefficient is given by a simultaneous equation relating to the secondary impedance calculated from these.

【0044】[0044]

【実施例】図4は本発明の一実施例を示す装置構成図で
ある。リニア誘導モータは一次側固定子1と二次側回転
ロール2で構成され、回転ロール2にはカップリング3
によって減速機4付きの誘導機5に直結される。誘導機
5は速度制御系を持つインバータ6によって速度制御さ
れ、任意の速度及び負荷をリニア誘導モータに与えるこ
とができる。この速度制御には速度設定器7の設定値に
対する速度検出器7Aの検出信号との突合せがなされ
る。
FIG. 4 is a block diagram of an apparatus showing an embodiment of the present invention. The linear induction motor is composed of a primary stator 1 and a secondary rotating roll 2, and the rotating roll 2 has a coupling 3.
As a result, it is directly connected to the induction machine 5 with the speed reducer 4. The speed of the induction machine 5 is controlled by an inverter 6 having a speed control system, and an arbitrary speed and load can be applied to the linear induction motor. In this speed control, a setting value of the speed setting device 7 is compared with a detection signal of the speed detector 7A.

【0045】一次側固定子1はロードセル8によって推
力が検出され、この検出信号は増幅器9によって増幅し
て検出信号として取出される。また、駆動用電源にはイ
ンバータ10が設けられ、電圧及び周波数の設定器1
1,12の設定値に応じた交流が一次側固定子1に供給
される。このときの電圧及び電流及び電力が特性算定の
ためにディジタルパワーメータ13で検出される。
The thrust of the primary stator 1 is detected by a load cell 8, and this detection signal is amplified by an amplifier 9 and taken out as a detection signal. The drive power supply is provided with an inverter 10 and a voltage and frequency setting device 1.
An alternating current according to the set values of 1 and 12 is supplied to the primary stator 1. The voltage, current and power at this time are detected by the digital power meter 13 for calculating the characteristics.

【0046】リニア誘導モータは図5に示すように片側
式に構成される。二次側回転ロール2は二次導体となる
アルミ板がロール表面に張り付けられ、ロールシャフト
20の両側で支柱21の軸受22によって回転可能にさ
れる。一次側固定子1はロールシャフト20上の軸受2
3に結合されるアーム24先端の揺動板25によって振
子状に吊下げられ、ロール2の周面に一定の間隙を有し
て円弧状に形成される。揺動板25の一端はロードセル
8を介して基台26に結合される。このような試験装置
の仕様を表1に示す。
The linear induction motor is configured as a one-sided type as shown in FIG. The secondary-side rotating roll 2 has an aluminum plate serving as a secondary conductor adhered to the roll surface, and is rotatable on both sides of the roll shaft 20 by bearings 22 of columns 21. The primary stator 1 includes a bearing 2 on a roll shaft 20.
The roll 2 is suspended in the form of a pendulum by a rocking plate 25 at the tip of an arm 24 connected to the arm 3, and is formed in an arc shape with a certain gap on the peripheral surface of the roll 2. One end of the swing plate 25 is connected to the base 26 via the load cell 8. Table 1 shows the specifications of such a test apparatus.

【0047】[0047]

【表1】 [Table 1]

【0048】本実施例の試験装置は、リニア誘導モータ
の拘束試験のほか、無負荷試験あるいは負荷試験も可能
とし、一次側固定子1の受ける推力をロードセル8で検
出する。このときの周波数及び電圧は設定器11,12
によってインバータ10の出力で調節され、また負荷は
インバータ6の速度設定で調節される。また、駆動用イ
ンバータ10は高調波電流の影響を軽減するため、スイ
ッチ素子にIGBTを採用し、搬送周波数を10KHZ
とするとPWM方式とし、電流波形を極めて正弦波に近
いものとしている。さらに、ディジタルパワーメータ1
3は2HZ程度まで安定して測定できるよう低周波特性
が改善され、電圧についてはほぼ基本波成分を指示する
直流平均実効値表示を得、電流及び電力については全実
効値表示で測定する。
The test apparatus of the present embodiment enables a no-load test or a load test in addition to the constraint test of the linear induction motor, and detects the thrust applied to the primary stator 1 by the load cell 8. The frequency and voltage at this time are set by setting units 11 and 12.
And the load is adjusted by the speed setting of the inverter 6. The driving inverter 10 to reduce the influence of harmonic currents, the IGBT is adopted to the switching element, the carrier frequency 10KH Z
Then, the PWM method is used, and the current waveform is extremely close to a sine wave. In addition, digital power meter 1
3 has an improved low-frequency characteristics that can be measured stably up to about 2H Z, to obtain a DC average effective value display to indicate the substantially fundamental component for a voltage, the current and power are measured at all effective value display.

【0049】本実施例になる試験装置を使った拘束試験
として、前述のように、3つの周波数におけるR
2E(S=1)、X2E(S=1)の各値及び前述の係数算出方法によ
って各係数を求める。この結果を表2に示す。
As a constraint test using the test apparatus according to the present embodiment, as described above, R
Each coefficient is obtained by the respective values of 2E (S = 1) and X2E (S = 1) and the above-described coefficient calculation method. Table 2 shows the results.

【0050】[0050]

【表2】 [Table 2]

【0051】また表2の係数を用いて前述の(18)式
及び(19)式により計算した拘束時(S=1)におけ
る等価二次インピーダンスの周波数に対する近似曲線
と、各周波数における拘束試験によって求めた実測値と
の比較を図6に示す。同図から、実測値と近似式の誤差
は低周波領域にて若干存在するが、全般的に前述の近似
式によって等価二次インピーダンスの抵抗分R2E及びリ
アクタンス分X2Eが良好に近似できる。
An approximate curve for the frequency of the equivalent secondary impedance at the time of constraint (S = 1) calculated by the above-described equations (18) and (19) using the coefficients shown in Table 2 and a constraint test at each frequency. FIG. 6 shows a comparison with the obtained measured values. From the figure, although the error between the measured value and the approximate expression slightly exists in the low-frequency region, the resistance R 2E and the reactance X 2E of the equivalent secondary impedance can be generally approximated well by the above-described approximate expression.

【0052】また、表2には前述の(28)式及び
(8)式により計算したXm′及びRmの値も示している
が、
Table 2 also shows the values of X m ′ and R m calculated by the above equations (28) and (8).

【0053】[0053]

【表3】 [Table 3]

【0054】の無負荷試験の結果と比較するとXm
(X1と等価)については良好な一致を示している。Rm
については小さめの値となった。
Compared with the result of the no-load test of X m ′,
Shows a good agreement for (X 1 equivalent). R m
Was a small value.

【0055】即ち、拘束試験と無負荷試験における等価
鉄損の差が若干現れているが、等価鉄損の推力及び電流
に与える影響は少ない。
That is, although there is a slight difference in the equivalent iron loss between the restraint test and the no-load test, the effect of the equivalent iron loss on the thrust and the current is small.

【0056】上述までの試験結果から表3の係数を前述
の(26)式及び(27)式に代入することで定格周波
数運転時の等価二次インピーダンスを計算することがで
きる。また、これらの値を(14)式及び(15)式に
代入することで任意のすべりに対するR2′及びx2′を
決定することができる。図7は定格周波数での滑りに対
するR2′及びx2′の変化の様子を求めたもので、リニ
ア誘導モータの二次定数はすべりによって変化する。一
般に、表皮効果の影響は、周波数が高くなると抵抗分は
大きく、漏れリアクタンス分は小さくなる傾向にあり、
この傾向に一致した結果を得ている。
By substituting the coefficients shown in Table 3 into the above-mentioned equations (26) and (27) from the test results described above, the equivalent secondary impedance during the rated frequency operation can be calculated. Further, by substituting these values into the equations (14) and (15), R 2 ′ and x 2 ′ for an arbitrary slip can be determined. FIG. 7 shows the change of R 2 ′ and x 2 ′ with respect to the slip at the rated frequency. The quadratic constant of the linear induction motor changes due to slip. In general, the effect of the skin effect is such that as the frequency increases, the resistance increases and the leakage reactance tends to decrease.
The results are consistent with this trend.

【0057】次に、リニア誘導モータの特性は、前述ま
での試験に基づく定数算定結果及び入力条件(1次電流
1,電圧V1)から以下のように求められる。
Next, the characteristics of the linear induction motor are obtained from the constant calculation results based on the above-described tests and the input conditions (primary current I 1 , voltage V 1 ) as follows.

【0058】 一次力率Pf=(有効電流I1)/I1×100% 一次入力P1=(3)1/211f 二次入力P2=3(I222/S 出力Pout=(1−S)P2 鉄損Wm=3(Ife2m 推力T=P2/V0 効率η=(Pout/P1)×100% 図8は本実施例に基づいた定数算定とこれによる特性算
定例を実測値(○,△印)と併せて示し、実用的な特性
算定法として十分な結果を得ることができた。
Primary power factor P f = (effective current I 1 ) / I 1 × 100% Primary input P 1 = (3) 1/2 V 1 I 1 Pf Secondary input P 2 = 3 (I 2 ) 2 r 2 / S output P out = (1−S) P 2 iron loss W m = 3 (I fe ) 2 R m thrust T = P 2 / V 0 efficiency η = (P out / P 1 ) × 100% FIG. 8 shows a constant calculation based on the present embodiment and an example of the characteristic calculation based on the constant together with the actually measured values (○, Δ), and a sufficient result was obtained as a practical characteristic calculation method.

【0059】[0059]

【発明の効果】以上のとおり、本発明によれば、リニア
誘導モータの等価回路として誘導機のT型等価回路のう
ちの一次漏れリアクタンスを二次側に含めた等価回路と
し、拘束試験によって等価回路の漏れリアクタンスと二
次抵抗及び励磁リアクタンスを求め、さらに特性算定を
行うようにしたため、従来の特性算定に必要とする無負
荷試験を不要にしてその試験装置を不要にする。
As described above, according to the present invention, as an equivalent circuit of a linear induction motor, an equivalent circuit including the primary leakage reactance of the T-type equivalent circuit of the induction machine on the secondary side is obtained, and the equivalent circuit is obtained by a constraint test. Since the leakage reactance, the secondary resistance, and the excitation reactance of the circuit are obtained, and the characteristic is calculated, the no-load test required for the conventional characteristic calculation is not required, and the test apparatus is not required.

【0060】これに加えて、拘束試験から得られた等価
二次インピーダンスを適当な近似式で近似するので、定
数算出に作図が不要となる。また、最低限、3つの異な
った周波数の拘束試験を行えば十分な特性算定が可能と
なり、拘束試験回数が減る。
In addition, since the equivalent secondary impedance obtained from the constraint test is approximated by an appropriate approximation formula, drawing is unnecessary for calculating the constant. Further, at least, if the constraint tests at three different frequencies are performed, sufficient characteristic calculation can be performed, and the number of constraint tests can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】特性算定のための等価回路図。FIG. 1 is an equivalent circuit diagram for calculating characteristics.

【図2】拘束状態の等価回路図。FIG. 2 is an equivalent circuit diagram in a restrained state.

【図3】二次回路の等価回路図。FIG. 3 is an equivalent circuit diagram of a secondary circuit.

【図4】実施例の装置構成図。FIG. 4 is a configuration diagram of an apparatus according to an embodiment.

【図5】リニア誘導モータの試験装置。FIG. 5 is a test apparatus for a linear induction motor.

【図6】実測値と計算値の特性図。FIG. 6 is a characteristic diagram of measured values and calculated values.

【図7】二次定数−すべり特性図。FIG. 7 is a graph showing second-order constant-slip characteristics.

【図8】特性算定例の図。FIG. 8 is a diagram of a characteristic calculation example.

【図9】誘導電動機の等価回路図。FIG. 9 is an equivalent circuit diagram of the induction motor.

【図10】無負荷試験機の構成図。FIG. 10 is a configuration diagram of a no-load test machine.

【符号の説明】[Explanation of symbols]

1…一次側固定子、2…二次側回転ロール、4…減速
機、5…誘導機、8…ロードセル、13…ディジタルパ
ワーメータ。
DESCRIPTION OF SYMBOLS 1 ... Primary side stator, 2 ... Secondary side rotating roll, 4 ... Reduction gear, 5 ... Induction machine, 8 ... Load cell, 13 ... Digital power meter.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G01R 31/34 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 7 , DB name) G01R 31/34

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 リニア誘導モータの一次抵抗を測定する
抵抗測定手段と、前記モータの拘束試験によって異なる
周波数での一次電流と電圧と電力及び推力を夫々測定す
る拘束試験手段とを備え、 前記モータの一次漏れリアクタンスを二次漏れリアクタ
ンスに含めたT型等価回路と前記両手段による測定結果
から励磁リアクタンスを含む等価二次インピーダンスを
求め、前記等価回路の二次側インピーダンスをすべりS
と周波数fの関数として表わす近似式を仮定し、前記測
定結果から求めた等価二次インピーダンスと前記近似式
の連立方程式から該近似式の各係数を算出し、前記各係
数を与えた前記近似式から前記等価回路の各定数を求め
前記モータの特性を算定することを特徴とするリニア
誘導モータの特性算定方式。
1. A motor comprising: a resistance measuring means for measuring a primary resistance of a linear induction motor; and a constraint test means for measuring primary current, voltage, power and thrust at different frequencies by a constraint test of the motor, respectively. From the T-type equivalent circuit including the primary leakage reactance in the secondary leakage reactance and the measurement results obtained by the two means, the secondary impedance of the equivalent circuit including the excitation reactance is determined.
And assuming an approximate expression expressed as a function of the frequency f, and calculate the coefficients of the approximate expression from simultaneous equations of the approximate expression <br/> equivalent secondary impedance determined from the measurement results, given the coefficients Calculating the constants of the equivalent circuit from the approximate expression
A characteristic of the linear induction motor, wherein the characteristic of the motor is calculated by the following method.
JP19174491A 1991-07-31 1991-07-31 Characteristic calculation method for linear induction motor Expired - Fee Related JP3136667B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19174491A JP3136667B2 (en) 1991-07-31 1991-07-31 Characteristic calculation method for linear induction motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19174491A JP3136667B2 (en) 1991-07-31 1991-07-31 Characteristic calculation method for linear induction motor

Publications (2)

Publication Number Publication Date
JPH0534423A JPH0534423A (en) 1993-02-09
JP3136667B2 true JP3136667B2 (en) 2001-02-19

Family

ID=16279782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19174491A Expired - Fee Related JP3136667B2 (en) 1991-07-31 1991-07-31 Characteristic calculation method for linear induction motor

Country Status (1)

Country Link
JP (1) JP3136667B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102707233A (en) * 2012-07-03 2012-10-03 山西省电力公司吕梁供电公司 Method for determining rated power of three-phase asynchronous motor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5644666B2 (en) * 2011-05-17 2014-12-24 東芝三菱電機産業システム株式会社 Electric motor preventive maintenance equipment
CN109725223A (en) * 2019-02-19 2019-05-07 上海达野智能科技有限公司 Speed reducer assembling detection device
CN110333475B (en) * 2019-07-04 2022-12-23 中国电力科学研究院有限公司 Method and system for determining voltage drop error of secondary circuit of voltage transformer under any secondary load

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102707233A (en) * 2012-07-03 2012-10-03 山西省电力公司吕梁供电公司 Method for determining rated power of three-phase asynchronous motor

Also Published As

Publication number Publication date
JPH0534423A (en) 1993-02-09

Similar Documents

Publication Publication Date Title
Chalmers et al. Parameters and performance of a high-field permanent-magnet synchronous motor for variable-frequency operation
US5402080A (en) Method of measuring unsaturated inductances of an equivalent circuit of a synchronous machine
JP3136667B2 (en) Characteristic calculation method for linear induction motor
CN113533859A (en) Method for testing iron loss of permanent magnet synchronous reluctance motor
Nagornyy et al. Stray load loss efficiency connections
US9680402B2 (en) Driver circuit and method for single-phase and three-phase induction motors
JP3052315B2 (en) Induction motor constant measurement method
JP3092839B2 (en) Inverter device with constant measurement setting function
JP2850096B2 (en) Inverter control method with constant measurement setting function
CN113589165A (en) Offline measurement method for parameters of linear induction motor
Klingshirn DC Standstill Torque Used to Measire Lq of Reluctance and Synchronous Machines
JP3638030B2 (en) Control method of inverter with constant measurement setting function
JPH0627789B2 (en) Induction motor constant measurement method
JP2730017B2 (en) Inverter device
JP2849645B2 (en) Inverter with constant measurement setting function
JP2759932B2 (en) Inverter device with constant measurement setting function
JPH06153568A (en) Method for measuring constant of induction motor
JP3329672B2 (en) Induction motor constant measuring device
JP2743337B2 (en) Inverter device with constant measurement setting function
JPH04285878A (en) Apparatus for calculating characteristics of linear induction motor
Boldea et al. Load testing of induction machines without torque measurements
JPH0141945B2 (en)
JP4006630B2 (en) Control method of induction motor driven by inverter
JP3302799B2 (en) Inverter device
JPH1155993A (en) Measuring method for constants of induction motor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees