JP3133481B2 - Superconducting magnetic shield - Google Patents

Superconducting magnetic shield

Info

Publication number
JP3133481B2
JP3133481B2 JP04124224A JP12422492A JP3133481B2 JP 3133481 B2 JP3133481 B2 JP 3133481B2 JP 04124224 A JP04124224 A JP 04124224A JP 12422492 A JP12422492 A JP 12422492A JP 3133481 B2 JP3133481 B2 JP 3133481B2
Authority
JP
Japan
Prior art keywords
layer
magnetic shield
superconducting
normal
superconducting magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04124224A
Other languages
Japanese (ja)
Other versions
JPH05299883A (en
Inventor
孝雄 杉岡
博章 戸田
吉郎 佐治
鉄雄 高木
勝 井上
光平 大谷
学 佐藤
Original Assignee
高圧ガス工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 高圧ガス工業株式会社 filed Critical 高圧ガス工業株式会社
Priority to JP04124224A priority Critical patent/JP3133481B2/en
Publication of JPH05299883A publication Critical patent/JPH05299883A/en
Application granted granted Critical
Publication of JP3133481B2 publication Critical patent/JP3133481B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、超低温域で、超電導マ
グネットの近傍等の強磁場中に磁気遮蔽空間を形成して
利用するための超電導体を利用した磁気遮蔽体に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic shield using a superconductor for forming and using a magnetic shield space in a strong magnetic field such as near a superconducting magnet in an ultra-low temperature range.

【0002】[0002]

【従来の技術】超電導体は、臨界温度以下に冷却され
て、超電導状態にあるときは、マイスナー効果により外
部磁界を打消すような超電導電流が流れ、外部磁界の浸
透を遮断する性質が知られ、磁気遮蔽体として利用され
ている。
2. Description of the Related Art When a superconductor is cooled to a temperature below a critical temperature and is in a superconducting state, a superconducting current which cancels an external magnetic field flows due to the Meissner effect, and the property of blocking the penetration of an external magnetic field is known. Used as a magnetic shield.

【0003】超電導体の外部磁界を遮蔽する能力、即ち
磁気遮蔽量は、超電導体の種類とともに、一般に板状の
超電導体の厚みに依存し、板厚が大きいほど磁気遮蔽量
が大きくなるので、強磁界を遮蔽することができるが、
磁気遮蔽量を超える外部磁界は、その一部が超電導体を
透過する。
[0003] The ability of a superconductor to shield an external magnetic field, that is, the amount of magnetic shielding, generally depends on the type of superconductor and the thickness of the plate-like superconductor. The larger the plate thickness, the greater the amount of magnetic shielding. Can shield strong magnetic fields,
Part of the external magnetic field exceeding the magnetic shielding amount is transmitted through the superconductor.

【0004】しかしながら、強い磁界を遮蔽するため
に、超電導体を肉厚の大きな板状にして利用する場合
に、フラックスジャンプと称される急激な現象により、
発熱を伴って超電導体から常電導体に相移転し、外部磁
界の大部分が浸透してしまうと言う不安定現象が発生し
易くなる。
However, when a superconductor is used in the form of a thick plate in order to shield a strong magnetic field, an abrupt phenomenon called a flux jump occurs.
The phase transition from the superconductor to the normal conductor is accompanied by heat generation, and the unstable phenomenon that most of the external magnetic field permeates easily occurs.

【0005】これに対応するため、本発明者らは、超電
導体を薄層として不安定現象を回避し、同時に、薄層を
単層としたのでは磁気遮蔽量が低減するので超電導体層
を多層とし、さらに、各超電導体層相互間に常電導金属
層を介在させて成る積層体構造の遮蔽体を提案した(特
開昭61−183979号)。
In order to cope with this, the present inventors have avoided the instability phenomenon by using a superconductor as a thin layer, and at the same time, using a single thin layer reduces the amount of magnetic shielding. Japanese Patent Laid-Open No. 61-183979 has proposed a shield having a multilayer structure having a multilayer structure in which a normal-conducting metal layer is interposed between superconducting layers.

【0006】上記積層体は、超電導体層の薄層多層とす
ることにより、同一厚みの単一超電導体よりすぐれた磁
気遮蔽能を有し、また常電導金属層が相接する超電導体
の超電導電流を遮断し且つ超電導体層の発熱を積層体外
へ伝導逃散させ、さらに超電導体内に局部的に発生した
誘導電流の枝路を常電導体に形成して、電流密度を低減
して、強磁界遮蔽の際に発生する不安定現象を除去した
ものである。また、超電導体層に多数の貫通小孔を設け
て、磁束流動を抑制して、フラックスジャンプの発生を
防止することが有効であることも開示した(特開昭63
− 233577号)。
[0006] By forming a thin multilayer of superconductor layers, the laminate has a better magnetic shielding ability than a single superconductor of the same thickness, and the superconductivity of the superconductor with which the normal metal layer is in contact. It cuts off current and conducts heat from the superconductor layer to the outside of the laminate, and further forms a branch of the induced current locally generated in the superconductor in the normal conductor to reduce the current density and reduce the strong magnetic field. This is to eliminate the unstable phenomenon that occurs when shielding. It has also been disclosed that it is effective to provide a large number of small through holes in the superconductor layer to suppress the flow of magnetic flux and to prevent the occurrence of a flux jump (Japanese Patent Application Laid-Open No. Sho 63/1988).
-233577).

【0007】超電導体層を含む積層体を利用した磁気遮
蔽体には、平板状又は曲板状の遮蔽体の他に、円環状の
超電導体層と常電導金属層とを交互に積層して形成され
た筒体(特開平2−97098号)や、超電導体層と金
属層とにより形成した積層シートを筒状に巻回し又は貼
設して同心状に重積して成る筒体(特開平1−3027
99号)が知られ、いずれも筒体の両端又は一端に開口
した中空部を磁気遮蔽空間に利用するものである。
[0007] A magnetic shield using a laminate including a superconductor layer includes, in addition to a flat or curved shield, an annular superconductor layer and a normal metal layer which are alternately laminated. A cylindrical body (Japanese Patent Application Laid-Open No. 2-97098) or a cylindrical body formed by winding or attaching a laminated sheet formed of a superconductor layer and a metal layer and concentrically stacking them. Kaihei 1-3027
No. 99) is known, and all use a hollow portion opened at both ends or one end of a cylindrical body as a magnetically shielded space.

【0008】[0008]

【発明が解決しようとする課題】上記の超電導体層と常
電導金属層とから成る積層体の磁気遮蔽体は、強磁場を
遮蔽するために極めて有効ではあるが、磁気遮蔽体を軽
量化・小型化するために常電導金属層例えばCu層を薄
くすると、上記不安定現象が発生しやすく、軽量化には
限度がある。他方、安定化のためにCu層を極端に厚く
すると磁界が透過して磁気遮蔽量自体が低下する。
Although the above-mentioned magnetic shield of a laminate comprising a superconductor layer and a normal-conducting metal layer is extremely effective for shielding a strong magnetic field, it is possible to reduce the weight of the magnetic shield. If the normal conductive metal layer, for example, a Cu layer is made thinner for downsizing, the above-mentioned instability phenomenon is likely to occur, and there is a limit to weight reduction. On the other hand, if the Cu layer is made extremely thick for stabilization, the magnetic field penetrates and the magnetic shielding amount itself decreases.

【0009】磁気遮蔽体の使用中に、外部磁界を変動さ
せて、磁界強度を調整する場合に、その励磁速度が比較
的大きいと、不安定現象が発生しやすい。また、外部磁
界の位置的時間的揺らぎや、磁気遮蔽体自体の移動など
が、フラックスジャンプの発生原因となり、このような
場合に不安定現象が発生しやすい。このような不安定現
象は、磁気遮蔽体の最大遮蔽磁界より低いような強磁界
中で使用する場合に発生し易く、不安定現象に伴い安全
に利用し得る磁気遮蔽体の磁気遮蔽能が著しく低下して
しまう。
When the magnetic field strength is adjusted by changing the external magnetic field during use of the magnetic shield, an unstable phenomenon is likely to occur if the excitation speed is relatively high. In addition, fluctuations in the position and time of the external magnetic field and movement of the magnetic shield itself cause a flux jump, and in such a case, an unstable phenomenon is likely to occur. Such an unstable phenomenon is likely to occur when used in a strong magnetic field lower than the maximum shielding magnetic field of the magnetic shield, and the magnetic shielding ability of the magnetic shield that can be safely used due to the unstable phenomenon is remarkable. Will drop.

【0010】従って、現実には磁気遮蔽体は、超電導体
層を含む積層体の有する最大磁気遮蔽量より、はるかに
低いような外部磁界の遮蔽に利用しており、従って、遮
蔽すべき外部磁界に対して、磁気遮蔽体は、超電導体を
必要以上に多層として、その全厚を大きくせざるを得な
かった。
Therefore, in practice, the magnetic shield is used for shielding an external magnetic field that is much lower than the maximum magnetic shield amount of the laminate including the superconductor layer. On the other hand, the magnetic shield had to be formed with an unnecessarily large number of superconductors, and the total thickness had to be increased.

【0011】本発明は、これらの問題に対処するため、
超電導磁気遮蔽体によって、変動磁界を安定に遮蔽し、
その磁気遮蔽量を低下させることなく、軽量化を図り、
磁気遮蔽体としての信頼性を高めることを目的としてい
る。
The present invention addresses these problems,
The superconducting magnetic shield stably shields the fluctuating magnetic field,
Without reducing the amount of magnetic shielding, weight reduction,
The purpose is to increase the reliability as a magnetic shield.

【0012】[0012]

【課題を解決するための手段】本発明の超電導磁気遮蔽
体は、超電導体層と電導度及び熱伝導度の高い常電導金
属層と当該常電導金属層よりも電導度の小さな抵抗体層
とを積層して成ることを特徴としているものである。
SUMMARY OF THE INVENTION A superconducting magnetic shield according to the present invention comprises a superconducting layer, a normal conductive metal layer having high electrical and thermal conductivity, and a resistor layer having a lower electrical conductivity than the normal conductive metal layer. Are laminated.

【0013】また、本発明の超電導磁気遮蔽体は、超電
導体層と常電導金属層と抵抗体層とを順次重積して積層
されるが、好ましくは超電導体層の両面に常電導金属層
を挟接した三層構造体又は超電導体と常電導金属層とを
積層して成る多層積層体を単位積層体として、当該単位
積層体をさらに積層し、相隣接する単位積層体間に上記
抵抗体層を少なくとも一層介在させて成る超電導磁気遮
蔽体が含まれる。
The superconducting magnetic shield of the present invention is formed by laminating a superconducting layer, a normal conducting metal layer and a resistor layer in this order. Preferably, the superconducting magnetic layer is provided on both sides of the superconducting layer. The unit laminate is further laminated as a unit laminate having a three-layer structure or a superconductor and a normal-conducting metal layer laminated on each other, and the above-described resistance is placed between adjacent unit laminates. A superconducting magnetic shield having at least one body layer interposed therebetween is included.

【0014】上記超電導体層は、第2種超電導体の薄層
が利用され、例えば、NbTi、Nb3 Sn、Nb3
l、Nb3 (Al,Ge)およびV3 Ga等の金属系超
電導体、NbN、NbCやNbN・TiN等の化合物超
電導体、およびY−Ba−Cu−O系、Bi−Sr−C
a−Cu−O系、Bi−Pb−Sr−Ca−Cu−O系
およびSr−X−Cu−O系(X=Ba,Caおよびラ
ンタニド金属)等の酸化物超電導体の薄板又はフィルム
状薄膜が使用される。他方、電導度及び熱伝導度の良好
な常電導金属層には、金属Cu若しくは金属Al、又は
黄銅やジュラルミン等の合金が使用される。
As the superconductor layer, a thin layer of a second type superconductor is used, for example, NbTi, Nb 3 Sn, Nb 3 A.
1, metal-based superconductors such as Nb 3 (Al, Ge) and V 3 Ga, compound superconductors such as NbN, NbC and NbN / TiN, and Y—Ba—Cu—O, Bi—Sr—C
Thin or film-like oxide superconductors such as a-Cu-O, Bi-Pb-Sr-Ca-Cu-O and Sr-X-Cu-O (X = Ba, Ca and lanthanide metals) Is used. On the other hand, metal Cu or metal Al, or an alloy such as brass or duralumin is used for the normal conductive metal layer having good electrical conductivity and thermal conductivity.

【0015】本発明の特徴である抵抗体層は、使用温度
下で上記の常電導金属層よりも電導度が小さい材料の薄
層が使用され、抵抗体層の抵抗体の電気抵抗率が上記の
常電導金属層の金属の電気抵抗率よりも、101 倍以
上、好ましくは103 倍以上大きいものが選ばれる。こ
のような抵抗体層は、液体ヘリウム温度乃至液体窒素温
度の範囲で例えば金属Cu又はAlなどを常電導金属層
に使用する場合に、電気抵抗率1×10-7Ωm以上の合
金、例えば、Cu−Al合金(コンスタンタンやモネル
メタルの組成合金)、Fe−Ni系合金(インバーその
他のFCC組成合金)或いはNi−Cr系オーステナイ
ト鋼などが利用でき、また抵抗率は低いが七三黄銅など
のCu−Zn合金も利用される。
The resistor layer, which is a feature of the present invention, is a thin layer of a material having a lower electrical conductivity than the above-mentioned normal conductive metal layer at a use temperature, and the electrical resistivity of the resistor of the resistor layer is as described above. than the electrical resistivity of the metal of normal conduction metal layer, 10 1 times or more, preferably selected is greater 10 3 times or more. Such a resistor layer is formed of an alloy having an electric resistivity of 1 × 10 −7 Ωm or more, for example, when a metal Cu or Al or the like is used for the normal conductive metal layer in a range of liquid helium temperature to liquid nitrogen temperature. Cu-Al alloys (composition alloys of constantan and monel metal), Fe-Ni alloys (invar and other FCC alloys) or Ni-Cr austenitic steels can be used. -Zn alloy is also used.

【0016】更に抵抗体層の概念には、上記合金より電
気抵抗率の大きい高抵抗体層や絶縁体層が当然に含まれ
る。このような高抵抗体層・絶縁体層は、例えば、窒化
アルミニウム、銅酸化物、アルミナ等の無機材料、アピ
エゾングリースおよびシリコングリースなどの低温用真
空グリース、エポキシ系、ポリイミド系、フェノール系
およびポリウレタン系の接着剤硬化体、マイラ(ポリエ
チレンテレフタレート)、ナイロン(ポリアミド系プラ
スチック)、テフロン(ポリテトラフルオルエチレ
ン)、カプトン(ポリイミド)、シリコン樹脂等やこれ
ら樹脂の繊維強化材(FRP)等のフィルム状あるいは
板状樹脂、マイカ紙およびクラフト紙といった絶縁紙等
が含まれる。
Further, the concept of the resistor layer naturally includes a high-resistance layer and an insulator layer having an electric resistivity higher than that of the above alloy. Such a high-resistance layer / insulator layer is, for example, aluminum nitride, copper oxide, inorganic materials such as alumina, low-temperature vacuum grease such as Apiezon grease and silicon grease, epoxy-based, polyimide-based, phenol-based and Polyurethane-based adhesive cured product, Mylar (polyethylene terephthalate), Nylon (polyamide-based plastic), Teflon (polytetrafluoroethylene), Kapton (polyimide), silicon resin, etc., and fiber reinforced material (FRP) of these resins Examples include film-like or plate-like resin, insulating paper such as mica paper and kraft paper.

【0017】これらの抵抗体は、熱伝導率の高いものが
良く、この観点から、窒化アルミニウム(AlN)や、
ダイヤモンド構造又は黒鉛構造の炭素の薄膜が優れてい
る。また、抵抗体層は流体層であってもよい。磁気遮蔽
体自体を冷却する流体例えば液体ヘリウムや液体水素が
貫流する空間層も利用される。
These resistors preferably have high thermal conductivity. From this viewpoint, aluminum nitride (AlN),
A thin film of carbon having a diamond structure or a graphite structure is excellent. Further, the resistor layer may be a fluid layer. A space layer through which a fluid for cooling the magnetic shield itself, such as liquid helium or liquid hydrogen, flows is also used.

【0018】本発明の超電導磁気遮蔽体は、積層体の形
成において、超電導体層と常電導金属層とを密着一体と
され、抵抗体層が、相接する常電導金属層と密着一体と
されているのが好ましい。これら各層を密着一体とした
積層体には、薄板・箔を重積してプレス又はローラで圧
着した積層体、基板上に超電導体材料と常電導体金属と
を交互に真空蒸着して積層されてなる積層体などが利用
される。
In the superconducting magnetic shield of the present invention, in forming a laminate, the superconducting layer and the normal-conducting metal layer are adhered and integrated, and the resistor layer is adhered and integral with the adjoining normal-conducting metal layer. Is preferred. A laminated body in which these layers are closely adhered and integrated is a laminated body in which thin plates and foils are stacked and pressed with a press or a roller, and a superconductor material and a normal conductor metal are alternately vacuum-deposited and laminated on a substrate. And the like.

【0019】本発明の磁気遮蔽体を構成する上記三層構
造体は、既に開示した通り(特開平3−283475
号)、超電導体箔例えば、Nb−Ti合金箔の両面に、
高電導度の常電導金属、例えば金属Al箔を圧延により
接合して形成した三層箔材が使用できる。多数の三層箔
材をさらに重積する際に、上記合成樹脂接着剤によって
接着すると、当該接着剤の硬化層が抵抗体層を兼ねるこ
とができる。
The three-layer structure constituting the magnetic shield of the present invention is disclosed in Japanese Patent Application Laid-Open No. 3-283475.
No.), superconductor foil, for example, on both sides of Nb-Ti alloy foil,
A three-layer foil material formed by joining a high-conductivity normal conducting metal, for example, a metal Al foil by rolling, can be used. When a large number of three-layer foil materials are further stacked, if they are bonded with the synthetic resin adhesive, a cured layer of the adhesive can also serve as a resistor layer.

【0020】[0020]

【作用】抵抗体層は、積層体の厚み方向への電気抵抗を
高めてフラックスジャンプの発生を防止する。上述のよ
うに、最大の遮蔽磁界を高めるには超電導層を薄層とし
て、かつ超電導体の分布密度を大きくするのが効果があ
り、このためには常電導金属薄は薄くするのがよいが安
定性は低下する。他方、安定化のためには、常電導金属
層を厚くするのが有効であるが、超電導体の分布密度が
低下して積層体の臨界電流密度も低下するので、最大遮
蔽磁界は低下する。抵抗体層を介在することにより、常
電導金属層を薄層として、かつ超電導体層の厚さ方向の
分布密度を高めることができ、安定性の良好な最大遮蔽
磁界の大きい磁気遮蔽体となる。
The resistor layer increases the electrical resistance in the thickness direction of the laminate to prevent the occurrence of a flux jump. As described above, in order to increase the maximum shielding magnetic field, it is effective to make the superconducting layer a thin layer and increase the distribution density of the superconductor. For this purpose, it is better to make the normal conducting metal thinner. Stability decreases. On the other hand, for stabilization, it is effective to increase the thickness of the normal conducting metal layer. However, since the distribution density of the superconductor is reduced and the critical current density of the laminate is also reduced, the maximum shielding magnetic field is reduced. By interposing the resistor layer, the normal conductive metal layer can be made thin, and the distribution density in the thickness direction of the superconductor layer can be increased, resulting in a magnetic shield with good stability and a large maximum shielding magnetic field. .

【0021】超電導体層と常電導金属層との積層体は、
外部磁界により励磁されると、各超電導体層に遮蔽電流
のループが形成されるので、強磁場中で積層数が多いほ
ど遮蔽電流の磁気は相互作用が大きくなると共に、常電
導金属層の両表面に流れる渦電流の相互作用も大きくな
り、外部磁界の僅かな変動により一部の超電導体層の遮
蔽電流が変動し、磁気的作用によって、順次他の近接す
る超電導体の遮蔽電流に影響を与えて、急速に磁流動を
招来して、フラックスジャンプに至る。抵抗体層は、こ
のような遮蔽電流の相互作用を遮断して局限し、安定化
に寄与する。
The laminate of the superconductor layer and the normal metal layer is
When excited by an external magnetic field, a loop of the shielding current is formed in each superconductor layer, so that the larger the number of layers in a strong magnetic field, the greater the interaction between the shielding current magnetism and the normal metal layer. The interaction of eddy currents flowing on the surface also increases, and the shielding current of some superconductor layers fluctuates due to slight fluctuations in the external magnetic field, and the magnetic effect adversely affects the shielding current of other adjacent superconductors. Giving a rapid magnetic flux, leading to a flux jump. The resistor layer cuts off such interaction of the shielding current to localize it and contributes to stabilization.

【0022】本発明の磁気遮蔽体の積層体は、図1
(B)に示すように、常電導金属層12、超電導体層1
1、常電導金属層12及び抵抗体層13の順序で繰り返
し積層したものが良い。超電導体層11の両面に金属層
12,12で電導状態で冷却され、且つ金属層12,1
2間が抵抗体層13で事実上絶縁されて、抵抗体層13
がフラックスジャンプの発生伝播を規制するからであ
る。そこで、常電導金属層12を薄くしても不安定には
成り難いから、積層体全体を薄層化でき、合成樹脂層や
セラミック層にすれば、磁気遮蔽体を軽量化することが
できる。このような磁気遮蔽体は、図1(A)に示すよ
うな超電導体層11の両面に常電導金属層12,12を
挟接した三層構造体1aに、抵抗体層13を介装して、
交互に積層して容易に形成される。
The laminate of the magnetic shield of the present invention is shown in FIG.
As shown in (B), the normal conductive metal layer 12, the superconductor layer 1
1. It is preferable that the normal conductive metal layer 12 and the resistor layer 13 are repeatedly laminated in this order. The metal layers 12, 1 are cooled in a conductive state on both surfaces of the superconductor layer 11, and
2 is practically insulated by the resistor layer 13,
This regulates the generation and propagation of the flux jump. Therefore, even if the normal conductive metal layer 12 is thinned, it is unlikely to be unstable, so that the entire laminated body can be thinned, and the magnetic shield can be reduced in weight by using a synthetic resin layer or a ceramic layer. Such a magnetic shield has a resistor layer 13 interposed in a three-layer structure 1a in which normal conductive metal layers 12, 12 are sandwiched on both surfaces of a superconductor layer 11 as shown in FIG. hand,
It is easily formed by alternately stacking.

【0023】図1(C)は、常電導金属層12と超電導
体層11との交互積層の途中に抵抗体層13を適宜介装
したもので、この場合は交互積層体を単位積層体とし
て、単位積層体1aと抵抗体層13とを交互に積層して
容易に形成される。
FIG. 1C shows a structure in which a resistor layer 13 is appropriately interposed in the course of alternate lamination of the normal-conducting metal layer 12 and the superconductor layer 11. In this case, the alternate laminated body is used as a unit laminated body. , And are easily formed by alternately laminating the unit laminated body 1a and the resistor layer 13.

【0024】以上のように、抵抗体層を介装させること
により、最大遮蔽磁界近傍での強磁界を安定して遮蔽で
きるから、磁気遮蔽体を薄くすることができ、さらに、
常電導金属層も薄層になし得るから磁気遮蔽体として厚
さを薄くして軽量化することができる。
As described above, since the strong magnetic field near the maximum shielding magnetic field can be stably shielded by interposing the resistor layer, the magnetic shield can be made thinner.
Since the normal conducting metal layer can also be formed as a thin layer, it can be reduced in thickness and weight as a magnetic shield.

【0025】[0025]

【実施例】本発明の磁気遮蔽体の磁気遮蔽能を調べる試
験を、以下の如く実施した。 (実施例1)まず、磁気遮蔽体の製作につき、Nb−T
i合金を圧延加工して軟化焼鈍した厚み10μmのNb
−Ti箔の両面にCuをスパッタリングにより厚み2μ
mで蒸着させて、直径45mmの円板状三層構造体とし
た。
EXAMPLE A test for examining the magnetic shielding ability of the magnetic shielding of the present invention was carried out as follows. (Example 1) First, Nb-T
Rolled and soft annealed i-alloy, 10 μm thick Nb
-Sputtering Cu on both sides of Ti foil to a thickness of 2μ
m to form a disk-shaped three-layer structure having a diameter of 45 mm.

【0026】この三層構造体8枚と厚み5μmのポリエ
チレンテレフタレートのフィルム8枚とを交互に重積し
てその両面をガラス繊維強化合成樹脂(FRP)板で挟
持して本発明の円板状の磁気遮蔽体とした。
Eight three-layered structures and eight 5 μm-thick polyethylene terephthalate films are alternately stacked, and both sides thereof are sandwiched between glass fiber reinforced synthetic resin (FRP) plates to form a disc-shaped disk according to the present invention. Magnetic shield.

【0027】比較例として、上記ポリエチレンテレフタ
レートのフィルムを介装させることなく、単に8枚の上
記三層構造体を重積して、同様にその両面をガラス繊維
強化合成樹脂(FRP)板で挟持して円板上の磁気遮蔽
体とした。
As a comparative example, eight sheets of the three-layer structure were simply stacked without interposing the above-mentioned polyethylene terephthalate film, and similarly, both surfaces thereof were sandwiched between glass fiber reinforced synthetic resin (FRP) plates. Thus, a magnetic shield on the disk was obtained.

【0028】磁気遮蔽の試験装置は、低温容器内部に固
定された超電導マグネットが、液体ヘリウムに浸漬・冷
却されており、超電導マグネットのコイル中空部に、円
板状の上記磁気遮蔽体がその積層面が磁力線と垂直とな
るように固定され、積層体の表面中央部近傍に、磁界強
度検出用のホール素子が配置されている。磁気遮蔽体と
ホール素子は、共に4.2Kの液体ヘリウムの冷却下に
ある。
In the test apparatus for magnetic shielding, a superconducting magnet fixed inside a low-temperature container is immersed and cooled in liquid helium, and the disk-shaped magnetic shield is laminated in a hollow portion of a coil of the superconducting magnet. The surface is fixed so as to be perpendicular to the line of magnetic force, and a Hall element for detecting a magnetic field intensity is arranged near the center of the surface of the laminate. Both the magnetic shield and the Hall element are under 4.2K liquid helium cooling.

【0029】試験は、磁気遮蔽体を配置した状態で、超
電導マグネットのコイル電流を増加させながら、ホール
素子の検出出力により磁界強度を測定した。また、当該
磁気遮蔽体を配置しないで同様の位置での磁界強度の測
定を行って外部磁界とした。
In the test, the magnetic field strength was measured by the detection output of the Hall element while increasing the coil current of the superconducting magnet in a state where the magnetic shield was arranged. In addition, the magnetic field strength was measured at the same position without disposing the magnetic shield, and an external magnetic field was obtained.

【0030】図2に、0.2T/minの励磁速度での
試験結果を示すが、図2(A)は本発明の実施例である
抵抗体層を備えた積層体の磁気遮蔽体の磁気遮蔽曲線を
示しており、外部磁界約0.23Tまでの励磁によって
も、磁気遮蔽体背後の磁界は零であり(図中a領域)、
0.23Tを超えた磁界強度から、磁気遮蔽体を透過す
るようになり(図中b領域)、本例では約0.23Tの
磁気遮蔽量(図中e点)を有しており、またフラックス
ジャンプは発生しなかった。
FIG. 2 shows test results at an excitation speed of 0.2 T / min. FIG. 2A shows the magnetic properties of the magnetic shield of the laminated body provided with the resistor layer according to the embodiment of the present invention. It shows a shielding curve, and the magnetic field behind the magnetic shield is zero even when the external magnetic field is excited up to about 0.23 T (a region in the figure).
From the magnetic field strength exceeding 0.23 T, the magnetic shield penetrates the magnetic shield (region b in the drawing), and has a magnetic shielding amount of about 0.23 T (point e in the drawing) in this example. No flux jump occurred.

【0031】これに対して、図2(B)に示すように、
抵抗体層を備えていない比較例1では、0.2T/mi
nの励磁速度で外部磁界の増加中0.1Tを超えた時点
で、フラックスジャンプが発生して(図中c領域)、内
部磁界は零から急激に増加して外部磁界に等しくなり、
磁気遮蔽の機能を消失した。この場合の内部磁界が零に
保持できる最大の外部磁界、即ち、磁気遮蔽量は、フラ
ックスジャンプの発生時の外部磁界0.1Tとなった。
On the other hand, as shown in FIG.
In Comparative Example 1 having no resistor layer, 0.2 T / mi
When the external magnetic field exceeds 0.1 T during the increase in the external magnetic field at the excitation speed of n, a flux jump occurs (region c in the figure), and the internal magnetic field rapidly increases from zero and becomes equal to the external magnetic field.
The function of the magnetic shield has been lost. In this case, the maximum external magnetic field that can maintain the internal magnetic field at zero, that is, the amount of magnetic shielding was 0.1 T of the external magnetic field when the flux jump occurred.

【0032】(実施例2)次に、円筒状の磁気遮蔽体に
おける実施例を示す。磁気遮蔽体は、外径60mm、内
径35mm、厚み50μmの円環状Alフィルム基板表
面に、NbTi合金を0.4μmの厚みで及び金属Cu
を0.8μmの厚みで交互にスパッタリングにより蒸着
して、それぞれ25層を有する円環状単位積層体を形成
した。
(Embodiment 2) Next, an embodiment using a cylindrical magnetic shield will be described. The magnetic shield is made of an NbTi alloy having a thickness of 0.4 μm and metal Cu on an annular Al film substrate surface having an outer diameter of 60 mm, an inner diameter of 35 mm, and a thickness of 50 μm.
Was alternately deposited by sputtering at a thickness of 0.8 μm to form an annular unit laminate having 25 layers.

【0033】この円環状の単位積層体と、抵抗体として
内外径の同じで厚み10μmのCuNi合金フィルムと
を交互に積層して、図3に示す様な、FRP製フランジ
32,33により挟持固定された長さ60mmの円筒状
の磁気遮蔽体1とした。
This annular unit laminated body and a CuNi alloy film having the same inner and outer diameters and having a thickness of 10 μm are alternately laminated as resistors, and clamped and fixed by FRP flanges 32 and 33 as shown in FIG. A cylindrical magnetic shield 1 having a length of 60 mm was obtained.

【0034】比較例2として、上記の円環状の単位積層
体のみを、CuNi合金フィルムを使用しないで、多数
積層して図3に示すのと同様の長さ60mmの円筒状の
磁気遮蔽体とした。
As Comparative Example 2, a cylindrical magnetic shield having a length of 60 mm similar to that shown in FIG. 3 was formed by laminating a large number of the above annular unit laminates without using a CuNi alloy film. did.

【0035】磁気遮蔽試験は、超電導マグネットのコイ
ル中空部に同軸状に円筒状の上記磁気遮蔽体1を配置固
定して、その円筒中空部10内に、磁界検出用ホール素
子センサーを固定した。励磁速度は0.4T/minの
下で、上記実施例1の要領で実施した。
In the magnetic shielding test, the cylindrical magnetic shield 1 was coaxially arranged and fixed in the hollow portion of the coil of the superconducting magnet, and the magnetic field detecting Hall element sensor was fixed in the cylindrical hollow portion 10. Excitation speed was set at 0.4 T / min in the same manner as in Example 1 above.

【0036】図4(A)は、本実施例2の磁界約4Tま
で励磁したときの遮蔽体内部磁界を示すが、フラックス
ジャンプを生じることなく、最大磁気遮蔽量2.5T
(図中e点)を示している。これに対して、比較例2
は、約2.2Tの励磁の時点でフラックスジャンプが発
生して、内部磁界は急速に外部磁界にまで増加してい
る。
FIG. 4A shows the magnetic field inside the shield when the magnetic field of the second embodiment is excited to about 4 T. The magnetic shield amount is 2.5 T without flux jump.
(Point e in the figure). On the other hand, Comparative Example 2
The flux jump occurs at the time of excitation of about 2.2 T, and the internal magnetic field rapidly increases to the external magnetic field.

【0037】(実施例3)いずれも外径60mm、内径
35mmの円環状フィルムを積層した円筒状の磁気遮蔽
体であるが、厚み20μmのAl箔、同10μmのNb
Ti合金フィルム、同20μmのAl箔及び同10μm
のCuNi合金フィルムを順次積層して、長さ100m
mの円筒状の磁気遮蔽体とした。
(Embodiment 3) Each of the cylindrical magnetic shields is formed by laminating an annular film having an outer diameter of 60 mm and an inner diameter of 35 mm, and has a thickness of 20 μm Al foil and a thickness of 10 μm Nb.
Ti alloy film, Al foil of 20 μm and 10 μm
CuNi alloy films are sequentially laminated to a length of 100 m.
m of a cylindrical magnetic shield.

【0038】比較例3として、上記の実施例に使用した
厚み20μmのAl箔に代えて、厚み30μmのAl箔
を用い、Cu−Ni合金フィルムを省略して、長さ10
0mmの円筒状の磁気遮蔽体とした。
As Comparative Example 3, an Al foil having a thickness of 30 μm was used instead of the Al foil having a thickness of 20 μm used in the above embodiment, and the Cu—Ni alloy film was omitted.
A 0 mm cylindrical magnetic shield was used.

【0039】実施例2と同様の磁気遮蔽試験を行い、そ
の結果を図4に示す。
The same magnetic shielding test as in Example 2 was performed, and the results are shown in FIG.

【0040】図5(A)は、本実施例の内部磁界の挙動
を示すように、フラックスジャンプを何ら発生せず、約
2Tの最大磁気遮蔽量を示すが、比較例3は、図5
(B)に示すように、図中e点においてフラックスジャ
ンプが発生し、最大磁気遮蔽体が1.4T程度に低下し
ている。
FIG. 5A shows a maximum magnetic shielding amount of about 2 T without any flux jump as shown in the behavior of the internal magnetic field of the present embodiment.
As shown in (B), a flux jump occurs at point e in the figure, and the maximum magnetic shield is reduced to about 1.4T.

【0041】以上のように、強磁界中に曝露された磁気
遮蔽体にフラックスジャンプが発生すると、最大磁気遮
蔽量が低下し、さらに外部磁界のほぼ全磁束が磁気遮蔽
体中を透過するので、磁気遮蔽の機能を図さなくなる
が、本発明の抵抗体層を具備した磁気遮蔽体は、フラッ
クスジャンプの発生を確実に阻止することができ、磁気
遮蔽の信頼性を高めることができる。
As described above, when a flux jump occurs in the magnetic shield exposed to the strong magnetic field, the maximum magnetic shield amount decreases, and almost all the magnetic flux of the external magnetic field passes through the magnetic shield. Although the function of the magnetic shield is not achieved, the magnetic shield including the resistor layer of the present invention can reliably prevent the occurrence of the flux jump, and can increase the reliability of the magnetic shield.

【0042】(実施例4)次に、円筒状磁気遮蔽体によ
り、零磁界から強磁界までの変動磁場中での磁気遮蔽の
安定化を調査した。超電導層はNb−Ti合金とし、常
電導金属層には金属Cuを採用し、厚み60μmの金属
アルミニウム箔を基板として、スパッタリング法を用い
て、Nb−Ti合金層0.4μmと金属銅層0.8μm
を交互に全層50層にわたって蒸着して、全厚90μm
の単位積層板を得て、これから内径10mm、外径20
mmのリングを切り出して単位積層リングとした。
(Example 4) Next, the stabilization of the magnetic shield in a fluctuating magnetic field from a zero magnetic field to a strong magnetic field was investigated using a cylindrical magnetic shield. The superconducting layer is made of an Nb-Ti alloy, the normal conducting metal layer is made of metal Cu, a 60 μm thick metal aluminum foil is used as a substrate, and the Nb—Ti alloy layer 0.4 μm and the metallic copper layer 0 are formed by sputtering. 0.8 μm
Are alternately deposited over all 50 layers to a total thickness of 90 μm
, A unit laminated plate having an inner diameter of 10 mm and an outer diameter of 20 mm
A ring of mm was cut out to obtain a unit laminated ring.

【0043】次いで、縁縁層として厚み10μmのポリ
エチレンテレフタレート・フィルムを同様形状のリング
としてこの縁縁リングと、上記の単位積層リングとを交
互に積層して、長さ300mの円筒体を形成し、図3に
示すような構造の磁気遮蔽体とした。
Next, a polyethylene terephthalate film having a thickness of 10 μm as an edge layer is formed into a ring having the same shape, and the edge ring and the unit lamination ring are alternately laminated to form a cylinder having a length of 300 m. A magnetic shield having a structure as shown in FIG.

【0044】磁気遮蔽能力の試験は、液体ヘリウム中に
浸漬され冷却された超電導コイルの内径65mmの中空
部の内部に、上記円筒状の磁気遮蔽体を固定し、当該磁
気遮蔽体の中空部内には、その中心軸上に端部より10
mm入った点を基点にして、さらに70mm間隔で測定
用ホール素子センサーを計5個所配置した。測定中は、
磁気遮蔽体とホール素子は、共に4.2Kの液体ヘリウ
ムの冷却下にある。
In the test of the magnetic shielding ability, the cylindrical magnetic shield was fixed inside a hollow part having an inner diameter of 65 mm of a superconducting coil immersed and cooled in liquid helium, and was placed in the hollow part of the magnetic shield. Is 10 mm from the end on its central axis.
Starting from the point at which mm was entered, five Hall element sensors for measurement were further arranged at intervals of 70 mm. During the measurement,
Both the magnetic shield and the Hall element are under 4.2K liquid helium cooling.

【0045】試験結果を、図6に示したが、図6(A)
は、測定の上記基点での外部磁界と磁気遮蔽体内部の磁
界の関係を示し、外部磁界3Tであっても、磁気遮蔽体
の中空部は零磁界が得られている。外部磁界が3T以上
になると、磁気遮蔽体内部への磁気浸透が生じる。この
傾向は、磁気遮蔽体円筒の端部より10mmの内側基点
と中央部とでは、ほとんど差は認められない。
FIG. 6 shows the test results.
Shows the relationship between the external magnetic field at the base point of the measurement and the magnetic field inside the magnetic shield. Even when the external magnetic field is 3T, a zero magnetic field is obtained in the hollow portion of the magnetic shield. When the external magnetic field exceeds 3T, magnetic penetration into the inside of the magnetic shield occurs. This tendency hardly differs between the inner base point 10 mm from the end of the magnetic shield cylinder and the center.

【0046】図8は、0〜3Tの強界強度の範囲で、磁
界速度0.6T/minで励磁と消磁とを計10回繰り
返した場合の磁気遮蔽体内部磁界の変化を示すが、変動
磁界であっても、3Tまでの強磁界を完全に遮蔽する能
力があり、このような変動磁界中でもフラックスジャン
プを発生することなく安定であった。
FIG. 8 shows the change in the magnetic field inside the magnetic shield when excitation and demagnetization are repeated 10 times at a magnetic field speed of 0.6 T / min in the range of the strong field strength of 0 to 3 T. Even with a magnetic field, it has the ability to completely shield a strong magnetic field up to 3T, and was stable without generating a flux jump even in such a fluctuating magnetic field.

【0047】また外部磁界3T一定で長時間保持した場
合の磁束侵入経時変化を調べたが、磁気遮蔽体内部磁界
は、10時間に渡って、常に0Tであった。このことは
本発明の磁気遮蔽体が極めて安定であることを示してい
る。
The change in magnetic flux penetration with time when the external magnetic field was kept constant at 3T for a long time was examined. The magnetic field inside the magnetic shield was always 0T for 10 hours. This indicates that the magnetic shield of the present invention is extremely stable.

【0048】[0048]

【発明の効果】超電導体層と常電導金属層との積層体か
ら成る超電導磁気遮蔽体において、本発明は、積層体に
抵抗体層を介在させて、強磁場中でのフラックスジャン
プによる不安定現象の発生を防止するから、積層体の最
大磁気遮蔽量近傍における強磁界を有効かつ安定に遮蔽
することができる。また、外部磁場の憂乱・揺らぎによ
る磁界変動に対しても本発明の磁気遮蔽体は、有効に磁
気遮蔽能を示す。
According to the present invention, there is provided a superconducting magnetic shield comprising a laminated body of a superconducting layer and a normal-conducting metal layer. Since the occurrence of the phenomenon is prevented, it is possible to effectively and stably shield a strong magnetic field near the maximum magnetic shielding amount of the laminate. Further, the magnetic shield of the present invention also effectively exhibits magnetic shielding ability against magnetic field fluctuation due to disturbance / fluctuation of an external magnetic field.

【0049】最大磁気遮蔽量に近い強磁界を安定に遮蔽
できるから、磁気遮蔽体の全厚みを低減することがで
き、また強磁界遮蔽の安定化に寄与する常電導金属層を
薄くすることができるから、磁気遮蔽体を軽量化・小型
化することが容易にできる。特に抵抗体層を比重の小さ
い、無機化合物や合成樹脂とすれば、軽量化に有効であ
る。
Since a strong magnetic field close to the maximum magnetic shielding amount can be stably shielded, the total thickness of the magnetic shield can be reduced, and the thickness of the normal conducting metal layer which contributes to stabilization of the strong magnetic field shielding can be reduced. Therefore, the weight and size of the magnetic shield can be easily reduced. In particular, if the resistor layer is made of an inorganic compound or a synthetic resin having a small specific gravity, it is effective for weight reduction.

【図面の簡単な説明】[Brief description of the drawings]

【図1】超電導磁気遮蔽体の積層構造を示す概念図
(A,B,C)。
FIG. 1 is a conceptual diagram (A, B, C) showing a laminated structure of a superconducting magnetic shield.

【図2】板状の超電導磁気遮蔽体の磁気遮蔽曲線図で、
(A)はCuNi合金の抵抗体層を有する実施例を、
(B)は比較例を示す。
FIG. 2 is a magnetic shield curve diagram of a plate-shaped superconducting magnetic shield.
(A) shows an embodiment having a resistor layer of CuNi alloy,
(B) shows a comparative example.

【図3】円筒状の超電導磁気遮蔽体の断面図。FIG. 3 is a sectional view of a cylindrical superconducting magnetic shield.

【図4】円筒状の超電導磁気遮蔽体の図2同様図。FIG. 4 is a view similar to FIG. 2, showing a cylindrical superconducting magnetic shield.

【図5】円筒状の超電導磁気遮蔽体の図2同様図。FIG. 5 is a view similar to FIG. 2 of a cylindrical superconducting magnetic shield.

【図6】実施例に係る円筒状の超電導磁気遮蔽体中空部
における磁気遮蔽曲線図(A)と、変動外部磁界に対す
る内部磁界の変化を示す図(B)。
FIG. 6A is a magnetic shielding curve diagram in a cylindrical superconducting magnetic shield hollow portion according to an example, and FIG. 6B is a diagram showing a change in an internal magnetic field with respect to a fluctuating external magnetic field.

【符号の説明】[Explanation of symbols]

1 超電導磁気遮蔽体 11 超電導体層 12 常電導金属層 13 抵抗体層 DESCRIPTION OF SYMBOLS 1 Superconducting magnetic shield 11 Superconducting layer 12 Normal conducting metal layer 13 Resistor layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高木 鉄雄 大阪市北区堂山町1番5号 高圧ガス工 業株式会社内 (72)発明者 井上 勝 大阪市北区堂山町1番5号 高圧ガス工 業株式会社内 (72)発明者 大谷 光平 大阪市北区堂山町1番5号 高圧ガス工 業株式会社内 (72)発明者 佐藤 学 大阪市北区堂山町1番5号 高圧ガス工 業株式会社内 (56)参考文献 特開 平2−97098(JP,A) 特開 昭61−58299(JP,A) 特開 昭62−105497(JP,A) 特開 平3−273700(JP,A) 特開 昭63−233577(JP,A) 特開 平3−283475(JP,A) 特開 昭63−245823(JP,A) 実開 昭60−18512(JP,U) (58)調査した分野(Int.Cl.7,DB名) H05K 9/00 ZAA ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Tetsuo Takagi 1-5 Doyamacho, Kita-ku, Osaka City Inside High-Pressure Gas Industry Co., Ltd. (72) Inventor Masaru Inoue 1-5 Doyamacho, Kita-ku, Osaka High-pressure gas Inside Kogyo Co., Ltd. (72) Kohei Otani 1-5 Doyamacho, Kita-ku, Osaka City High Pressure Gas Kogyo Co., Ltd. (72) Inventor Manabu Sato 1-5 Doyamacho, Kita-ku, Osaka City High-Pressure Gas Industry (56) References JP-A-2-97098 (JP, A) JP-A-61-58299 (JP, A) JP-A-62-105497 (JP, A) JP-A-3-273700 (JP, A) A) JP-A-63-233577 (JP, A) JP-A-3-283475 (JP, A) JP-A-63-245823 (JP, A) Japanese Utility Model Showa 60-18512 (JP, U) (58) Survey Field (Int.Cl. 7 , DB name) H05K 9/00 ZAA

Claims (10)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 超電導体層と、電導度及び熱伝導度の高
い常電導金属層と、当該金属層よりも電導度の小さな抵
抗体層と、を積層して成る超電導磁気遮蔽体であって、 当該抵抗体層が、使用温度下で、常電導金属層の電気抵
抗率より101倍以上大きい電気抵抗率を有する合金層
であることを特徴とする超電導磁気遮蔽体。
1. A superconducting magnetic shield comprising a superconducting layer, a normal conducting metal layer having high electric conductivity and thermal conductivity, and a resistor layer having a lower electric conductivity than the metal layer. , the resistance layer, under operating temperature, superconducting magnetic shield, characterized in that an alloy layer having a high electrical resistivity 10 1 times or more than the electric resistivity of the normal-conducting metal layer.
【請求項2】 超電導体層の両面に、電導度及び熱伝導
度の高い常電導金属層を挟接して成る三層構造体又は超
電導体層と電導度及び熱伝導度の高い常電導金属体層と
を積層して成る多層積層体を単位積層体と成し、当該単
位積層体をさらに積層して成り、当該隣接する単位積層
体相互間のいずれかに、上記常電導金属層よりも電導度
の小さな抵抗体層を介在させた超電導磁気遮蔽体であっ
て、 当該抵抗体層が、使用温度下で、常電導金属層の電気抵
抗率より101倍以上大きい電気抵抗率を有する合金層
であることを特徴とする超電導磁気遮蔽体。
2. A three-layer structure in which a superconducting metal layer having high electrical conductivity and thermal conductivity is sandwiched on both surfaces of a superconductor layer, or a superconducting layer and a normal conductive metal material having high electrical conductivity and thermal conductivity The unit laminate is formed by laminating a layer and a unit laminate, and the unit laminate is further laminated, and any of the adjacent unit laminates is more conductive than the normal conductive metal layer. every a small resistor layer superconducting magnetic shield which is interposed, the resistance layer, under operating temperature, the alloy layer having 10 1 times or more greater electrical resistivity than the electrical resistivity of the normal-conducting metal layer A superconducting magnetic shield, characterized in that:
【請求項3】 上記合金層が、Cu−Al合金、Fe−
Ni系合金、又はCr−Ni系オーステナイト鋼である
請求項1又は2に記載の超電導磁気遮蔽体。
3. The method according to claim 1, wherein the alloy layer is made of a Cu—Al alloy,
The superconducting magnetic shield according to claim 1, which is a Ni-based alloy or a Cr—Ni-based austenitic steel.
【請求項4】 超電導体層と、電導度及び熱伝導度の高
い常電導金属層と、当該金属層よりも電導度の小さな抵
抗体層と、を積層して成る超電導磁気遮蔽体であって、 当該抵抗体層が、合成樹脂接着剤硬化体若しくは合成樹
脂薄膜であることを特徴とする超電導磁気遮蔽体。
4. A superconducting magnetic shield comprising a superconducting layer, a normal conducting metal layer having high electric conductivity and thermal conductivity, and a resistor layer having a lower electric conductivity than the metal layer. A superconducting magnetic shield, wherein the resistor layer is a hardened synthetic resin adhesive or a thin synthetic resin film.
【請求項5】 超電導体層の両面に、電導度及び熱伝導
度の高い常電導金属層を挟接して成る三層構造体又は超
電導体層と電導度及び熱伝導度の高い常電導金属体層と
を積層して成る多層積層体を単位積層体と成し、当該単
位積層体をさらに積層して成り、当該隣接する単位積層
体相互間のいずれかに、上記常電導金属層よりも電導度
の小さな抵抗体層を介在させた超電導磁気遮蔽体であっ
て、 当該抵抗体層が、合成樹脂接着剤硬化体若しくは合成樹
脂薄膜であることを特徴とする超電導磁気遮蔽体。
5. A three-layer structure in which a superconducting metal layer having high electrical conductivity and thermal conductivity is sandwiched on both surfaces of a superconductor layer, or a superconducting layer and a normal conducting metal material having high electrical conductivity and thermal conductivity. The unit laminate is formed by laminating a layer and a unit laminate, and the unit laminate is further laminated, and any of the adjacent unit laminates is more conductive than the normal conductive metal layer. What is claimed is: 1. A superconducting magnetic shield comprising a resistor layer having a small degree of resistance, wherein said resistor layer is a cured synthetic resin adhesive or a synthetic resin thin film.
【請求項6】 上記の超電導体層と常電導金属層とが密
着一体に積層された請求項1、2、4又は5に記載の超
電導磁気遮蔽体。
6. The superconducting magnetic shield according to claim 1, wherein the superconducting layer and the normal conducting metal layer are laminated in close contact with each other.
【請求項7】 上記単位積層体相互間が密着され、かつ
当該単位積層体と上記抵抗体層とが密着されて、一体に
積層されて成る請求項2又は5に記載の超電導磁気遮蔽
体。
7. The superconducting magnetic shield according to claim 2, wherein the unit laminates are in close contact with each other, and the unit laminate and the resistor layer are in close contact with each other and are integrally laminated.
【請求項8】 少なくとも超電導体層には、その表裏に
貫通する単数個若しくは複数個の小孔が設けられている
請求項1ないし7のいずれかに記載の超電導磁気遮蔽
体。
8. The superconducting magnetic shield according to claim 1, wherein at least one or a plurality of small holes penetrating the superconducting layer is provided on both sides thereof.
【請求項9】 上記の超電導体層、常電導金属層及び抵
抗体層が環状に形成されて、筒状に積層されてなる請求
項1ないし8いずれか記載の超電導磁気遮蔽体。
9. The superconducting magnetic shield according to claim 1, wherein said superconducting layer, normal conducting metal layer and resistor layer are formed in a ring shape and laminated in a cylindrical shape.
【請求項10】 抵抗体層が、常電導金属層相互間に挟
接されて成る請求項1ないし5のいずれかに記載の超電
導磁気遮蔽体。
10. The superconducting magnetic shield according to claim 1, wherein the resistor layer is sandwiched between the normal conducting metal layers.
JP04124224A 1992-04-16 1992-04-16 Superconducting magnetic shield Expired - Fee Related JP3133481B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04124224A JP3133481B2 (en) 1992-04-16 1992-04-16 Superconducting magnetic shield

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04124224A JP3133481B2 (en) 1992-04-16 1992-04-16 Superconducting magnetic shield

Publications (2)

Publication Number Publication Date
JPH05299883A JPH05299883A (en) 1993-11-12
JP3133481B2 true JP3133481B2 (en) 2001-02-05

Family

ID=14880068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04124224A Expired - Fee Related JP3133481B2 (en) 1992-04-16 1992-04-16 Superconducting magnetic shield

Country Status (1)

Country Link
JP (1) JP3133481B2 (en)

Also Published As

Publication number Publication date
JPH05299883A (en) 1993-11-12

Similar Documents

Publication Publication Date Title
EP0310396B1 (en) Planar inductor
EP0190767B1 (en) Superconductor for a magnetic field shielding and a process for making such superconductors
JP6486817B2 (en) Superconducting coil and superconducting coil device
US9418776B2 (en) Oxide superconductor wire and superconducting coil
JP2007266149A (en) Method of connecting superconductive wire rod, and superconductive wire rod
JPH07142245A (en) High-temperature superconducting magnet, its designing method, its operating method, and manufacture of high-temperature superconducting tape material
JP5645713B2 (en) SUPERCONDUCTING COIL DEVICE AND METHOD FOR DETECTING NORMAL CONDUCTIVE TRANSITION OF SUPERCONDUCTING COIL
JP6610790B2 (en) Bulk magnet structure and bulk magnet system for NMR
JP6490851B2 (en) Superconducting coil and superconducting coil device
US5310705A (en) High-field magnets using high-critical-temperature superconducting thin films
JPH0714120B2 (en) Superconducting magnetic shield
WO2013125721A1 (en) Superconducting current lead, superconducting current lead device, and superconducting magnet device
US5394130A (en) Persistent superconducting switch for conduction-cooled superconducting magnet
JP3133481B2 (en) Superconducting magnetic shield
JP6329736B2 (en) Laminated pancake type superconducting coil and superconducting equipment provided with the same
WO2004055837A1 (en) Superconducting magnet, process for producing the same and its magnetizing method
JPH04342179A (en) Superconducting magnetic shield
WO2011129245A1 (en) Superconducting wire material, superconducting coil, and superconducting protective device
JP5969418B2 (en) Permanent current switch
JPH05267889A (en) Magnetic shield for sensor
JP6658384B2 (en) Bulk magnet structure and bulk magnet system for NMR
US3486146A (en) Superconductor magnet and method
JP4634954B2 (en) Superconducting device
JPH08236340A (en) Superconducting magnetic shield material, manufacture thereof, and superconducting magnet device equipped therewith
JP2014022543A (en) Superconducting coil and superconducting coil device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071124

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081124

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees