JP3132576B2 - Slab type solid-state laser device - Google Patents

Slab type solid-state laser device

Info

Publication number
JP3132576B2
JP3132576B2 JP10768591A JP10768591A JP3132576B2 JP 3132576 B2 JP3132576 B2 JP 3132576B2 JP 10768591 A JP10768591 A JP 10768591A JP 10768591 A JP10768591 A JP 10768591A JP 3132576 B2 JP3132576 B2 JP 3132576B2
Authority
JP
Japan
Prior art keywords
laser
slab
storage container
type solid
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10768591A
Other languages
Japanese (ja)
Other versions
JPH04336479A (en
Inventor
義彦 新藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP10768591A priority Critical patent/JP3132576B2/en
Publication of JPH04336479A publication Critical patent/JPH04336479A/en
Application granted granted Critical
Publication of JP3132576B2 publication Critical patent/JP3132576B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/07Construction or shape of active medium consisting of a plurality of parts, e.g. segments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/025Constructional details of solid state lasers, e.g. housings or mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0602Crystal lasers or glass lasers
    • H01S3/0606Crystal lasers or glass lasers with polygonal cross-section, e.g. slab, prism
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/0915Processes or apparatus for excitation, e.g. pumping using optical pumping by incoherent light
    • H01S3/092Processes or apparatus for excitation, e.g. pumping using optical pumping by incoherent light of flash lamp
    • H01S3/093Processes or apparatus for excitation, e.g. pumping using optical pumping by incoherent light of flash lamp focusing or directing the excitation energy into the active medium

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、Nd:YAGレーザな
どを対象とした高出力のスラブ形固体レーザ装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-power slab-type solid-state laser device for an Nd: YAG laser or the like.

【0002】[0002]

【従来の技術】頭記したスラブ形固定レーザ装置は、冷
却媒体が通流する収納容器内にNd:YAGレーザなど
のロッドから切出したスラブ形の固体レーザ媒体, およ
び励起光源を組み込み、これに共振器用ミラーを組合わ
せてレーザ発振器として構成したものであり、その構
成,原理は、例えば本発明と同一出願人が先に提案した
特開平3−22579号公報などに開示されている。ま
た、本発明の出願人は、前記のスラブ形固定レーザ装置
に対し、レーザ媒体の両端の斜端面に最小の間隙をもっ
て対向するレーザ光透過部材を収納容器のレーザ光取出
部に設けた構成を特願平2−324071として提案し
ている。
2. Description of the Related Art The slab-type fixed laser device described above incorporates a slab-type solid laser medium cut out from a rod such as an Nd: YAG laser and an excitation light source in a storage container through which a cooling medium flows. A laser oscillator is formed by combining resonator mirrors, and the structure and principle thereof are disclosed in, for example, JP-A-3-22579 previously proposed by the same applicant as the present invention. In addition, the applicant of the present invention has a configuration in which a laser light transmitting member facing a slanted end face of both ends of a laser medium with a minimum gap is provided in a laser light extraction portion of a storage container with respect to the slab type fixed laser device. It is proposed as Japanese Patent Application No. 2-324071.

【0003】ここで、例えばNd:YAGレーザは、イ
ットリウム・アルミニウム・ガーネット(略称YAG)
の結晶体を母材に、活性媒質としてNdイオンを注入し
たものであり、前記レーザ材料を炉内で溶解し、引上装
置により結晶を育成しながら引き上げた単結晶体のロッ
ドから良質部分を切出してスラブ形のレーザ媒質を製造
するようにしている。なお、前記のようにして製造され
るNd:YAGレーザは製造技術面から大きな単結晶体
を得ることが困難であり、現在メーカから入手可能なサ
イズは最大でも縦10mm,横27mm,長さ210mm程度
である。
Here, for example, an Nd: YAG laser is an yttrium aluminum garnet (abbreviated as YAG).
The crystal material of the above is a base material, and Nd ions are implanted as an active medium. The laser material is melted in a furnace, and a good-quality portion is removed from a rod of a single crystal material pulled up while growing a crystal by a pulling device. The laser medium is cut out to produce a slab-shaped laser medium. In the Nd: YAG laser manufactured as described above, it is difficult to obtain a large single crystal from the viewpoint of manufacturing technology, and currently available sizes from a manufacturer are 10 mm long, 27 mm wide, and 210 mm long. It is about.

【0004】一方、固体レーザ装置のレーザ出力、特に
連続動作での発振出力は、装置内に組み込まれたレーザ
媒体の大きさに支配されて決まる。ところで、前述した
固体レーザ装置では1台の装置ごとにその収納容器内に
1本の単結晶レーザ媒体を収容して構成されており、こ
のために装置1台のレーザ出力も自ずと限界がある。そ
こで、特に大出力レーザ装置の要求に対しては、複数台
のレーザ発振器を直列に連結して用いるカスケード接続
型固体レーザ装置が従来より提唱され、既に実用化され
ている。図3はこのカスケード接続型固体レーザ装置を
示すものであり、共通架台20の上に光軸を合わせて複
数基の固体レーザ発振器21を直列に配置し、かつその
両側に共振器用ミラーとして全反射ミラー22,出力ミ
ラー23を配備して構成されている。なお、各レーザ発
振器21には各基ごとに単結晶体の固体レーザ媒体2
4,励起光源などが収納容器に組み込まれている。な
お、Lはレーザ光、LOはレーザ出力を示す。かかる構
成により装置全体でのレーザ出力は各基のレーザ発振器
21の出力の総和にほぼ等しくなり、これにより大出力
のレーザ装置が得られる。
On the other hand, the laser output of a solid-state laser device, particularly the oscillation output in continuous operation, is determined by the size of a laser medium incorporated in the device. By the way, in the above-mentioned solid-state laser device, one single-crystal laser medium is stored in a storage container for each device, and therefore, the laser output of one device naturally has a limit. Therefore, in particular, in response to a demand for a high-power laser device, a cascade-connected solid-state laser device using a plurality of laser oscillators connected in series has been proposed and has already been put to practical use. FIG. 3 shows this cascade-connected solid-state laser device. A plurality of solid-state laser oscillators 21 are arranged in series on a common frame 20 with their optical axes aligned, and total reflection is performed on both sides as mirrors for resonators. A mirror 22 and an output mirror 23 are provided. Each laser oscillator 21 has a single crystal solid laser medium 2 for each group.
4. The excitation light source and the like are incorporated in the storage container. Note that L indicates laser light and LO indicates laser output. With such a configuration, the laser output of the entire apparatus becomes substantially equal to the sum of the outputs of the laser oscillators 21 of each group, thereby obtaining a high-output laser apparatus.

【0005】[0005]

【発明が解決しようとする課題】ところで、前記したカ
スケード接続型レーザ装置は、次記のような難点があ
る。すなわち、 (1)共通架台20の上に複数基のレーザ発振器21を
個々に据付ける際には、各レーザ発振器21の固体レー
ザ媒体24,ミラー22,23の相互間で光軸を正確に
合わせることが必要であり、多少でも光軸がずれている
とパワー損失が増大して所定の出力特性が得られない。
しかも、この光軸合わせの調整作業は極めて厄介であ
り、高精度な位置決めには多くの労力と時間を要する。
また、このような調整を工場出荷試験時に行っても、製
品を現地に輸送する際に振動などが加わると共通架台2
0に対する個々のレーザ発振器21の据付位置が微妙に
狂うことが避けられず、このために据付先の現地では再
度調整が必要となるなど、その取扱いが極めて面倒であ
る。 (2)また、かかるカスケード接続型レーザ装置の構成
要素である各基のレーザ発振器21は個々に独立して製
作されるために、装置全体が大形化するほか、トータル
的なコストが嵩んで非常に高価なものとなる。
The cascade connection type laser device described above has the following problems. That is, (1) when a plurality of laser oscillators 21 are individually installed on the common gantry 20, the optical axes are accurately aligned between the solid-state laser medium 24 and the mirrors 22 and 23 of each laser oscillator 21. If the optical axis is slightly deviated, the power loss increases and a predetermined output characteristic cannot be obtained.
Moreover, the adjustment work of the optical axis alignment is extremely troublesome, and high-precision positioning requires much labor and time.
Even if such adjustments are made at the time of the factory shipment test, if the product is transported to the site, vibrations and the like are applied,
It is unavoidable that the installation position of each laser oscillator 21 with respect to 0 is slightly deviated, and therefore, the adjustment is required again at the installation site, which is extremely troublesome. (2) In addition, since the laser oscillators 21 as the components of the cascade connection type laser device are individually manufactured independently, the entire device becomes large and the total cost increases. It will be very expensive.

【0006】本発明は上記の点にかんがみなされたもの
であり、小形,コンパクトな構成で、しかも取扱性にも
優れた効果を発揮する高出力のスラブ形固体レーザ装置
を提供することを目的とする。
The present invention has been made in view of the above points, and has as its object to provide a high-power slab-type solid-state laser device having a small size, a compact structure, and excellent effects in handling. I do.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明によれば、冷却媒体が通流する収納容器に
スラブ形の固体レーザ媒体,励起光源,レーザ光の透過
部材を組み込み、これに共振器用ミラーを組合わせて構
成したスラブ形固体レーザ装置において、同一収納容器
内に光軸を合わせて複数本のスラブ形レーザ媒体を直列
に並べて収納配備したスラブ形固体レーザ装置であっ
て、直列に並ぶ複数のレーザ媒体のうち両端に位置する
レーザ媒体のそれぞれ反隣接レーザ媒体側に、光軸を合
わせて収納容器内にスラブ形の導光部材を直列に配備し
たものとする。
According to the present invention, a slab-type solid laser medium, an excitation light source, and a laser beam transmitting member are incorporated in a storage container through which a cooling medium flows. A slab-type solid-state laser device configured by combining a resonator mirror with the slab-type solid-state laser device, wherein a plurality of slab-type laser media are arranged and stored in series in the same storage container with their optical axes aligned. In addition, it is assumed that slab-shaped light guide members are arranged in series in the storage container with their optical axes aligned with the laser media located on both ends of the plurality of laser media arranged in series, respectively, on opposite sides of the laser media.

【0008】また、本発明によれば、冷却媒体が通流す
る収納容器にスラブ形の固体レーザ媒体,励起光源,レ
ーザ光の透過部材を組み込み、これに共振器用ミラーを
組合わせて構成したスラブ形固体レーザ装置において、
同一収納容器内に光軸を合わせて複数本のスラブ形レー
ザ媒体を直列に並べて収納配備したスラブ形固体レーザ
装置であって、収納容器の内壁面を取付座面としてレー
ザ媒体の保持具を設置し、該保持具を介して収納容器内
に配列した各レーザ媒体を所定位置に位置決め固定する
ものであり、保持具が熱絶縁材を介してレーザ媒体の励
起光非照射側面を両側から挟持するものであるものとす
る。
According to the present invention, a slab in which a slab-shaped solid laser medium, an excitation light source, and a laser beam transmitting member are incorporated in a storage container through which a cooling medium flows, and a resonator mirror is combined with the slab-shaped solid laser medium. In the solid state laser device,
A slab-type solid-state laser device in which a plurality of slab-type laser media are stored and arranged in series in the same storage container with their optical axes aligned, and a holder for the laser medium is installed with the inner wall surface of the storage container as a mounting seat surface. The laser medium arranged in the storage container is positioned and fixed at a predetermined position via the holding tool, and the holding tool sandwiches the excitation light non-irradiation side surface of the laser medium from both sides via the heat insulating material. Shall be.

【0009】[0009]

【作用】上記の構成によれば、単一の収容容器内に複数
の固体レーザ媒体を直列に配列して励起光を照射するよ
うにしたので、1台の装置で従来のカスケード接続型レ
ーザ装置と同等なレーザ出力が得られる。また、直列に
並ぶスラブ形レーザ媒体の両端に光軸を合わせて配備し
たスラブ形の導光部材は光透過率の高い光学ガラスで作
られたものであり、レーザ媒体とほぼ同一断面形状と、
励起光源ランプの両端端子金具の寸法に相応して定めた
長さを有し、レーザ媒体と収容容器の端面に取付けたレ
ーザ光透過部材との間を中継する導光路として機能す
る。このような導光部材を収容容器内に組み込むことに
より、励起光源ランプの端子金具との干渉なしに光源ラ
ンプをレーザ媒体に対して最短距離に接近配置しつつ励
起光を各レーザ媒体に対して均一に照射することができ
る。
According to the above construction, a plurality of solid-state laser media are arranged in series in a single storage container to irradiate excitation light. A laser output equivalent to the above is obtained. In addition, the slab-type light guide member provided with the optical axis aligned at both ends of the slab-type laser medium arranged in series is made of optical glass having high light transmittance, and has substantially the same cross-sectional shape as the laser medium,
It has a length determined according to the dimensions of the terminal fittings at both ends of the excitation light source lamp, and functions as a light guide path for relaying between the laser medium and the laser light transmitting member attached to the end face of the container. By incorporating such a light guide member in the container, the excitation light is applied to each laser medium while the light source lamp is arranged at the shortest distance to the laser medium without interference with the terminal fitting of the excitation light source lamp. Irradiation can be uniform.

【0010】一方、レーザ媒体の保持具は収納容器の内
壁面を位置決め基準面として設置し、該保持具を介して
直列に並ぶ各レーザ媒体を個々に所定位置に位置決め固
定する。ここで、収納容器の内壁面はレーザ媒体に対し
て均一な冷媒通路を構成するように高精度に加工されて
おり、この内壁面を取付け基準面として利用することで
各レーザ媒体を光軸が一致するように正確な位置に保持
できる。しかも、該保持具は熱絶縁材を介してスラブ形
のレーザ媒体に対して励起光の照射を受けない非励起面
を両側から挟持するようにしたので、保持具が励起光の
障害物となるおそれがなく、かつレーザ媒体内部での不
当な温度勾配発生を抑えて各レーザ媒体を所定位置に固
定支持することができる。
On the other hand, the holder for the laser medium is provided with the inner wall surface of the storage container as a positioning reference plane, and the laser media arranged in series are individually positioned and fixed at predetermined positions via the holder. Here, the inner wall surface of the storage container is processed with high precision so as to form a uniform refrigerant passage for the laser medium, and by using this inner wall surface as a mounting reference surface, the optical axis of each laser medium is adjusted. Can be held in the correct position to match. Moreover, since the holder holds the non-excitation surface, which is not irradiated with the excitation light, to the slab-shaped laser medium via the heat insulating material from both sides, the holder becomes an obstacle to the excitation light. Each laser medium can be fixedly supported at a predetermined position with no fear and with the occurrence of an unreasonable temperature gradient inside the laser medium suppressed.

【0011】[0011]

【実施例】以下本発明の実施例を図1,図2により説明
する。図1はスラブ形固定レーザ装置全体の構成断面
図、図2は図1の矢視II−II断面図を示すものであり、
図において、1は液密な密閉容器とした構成された装置
の収納容器、2は収納容器1内の中央に光軸を合わせて
直列に配備した複数本(図示例では2本)のスラブ形レ
ーザ媒体(単結晶のレーザロッドから断面矩形状に切出
して作られたもの)、3はレーザ媒体2を中央に挟んで
その上下両側に平行配備した励起光源ランプ、4は光源
ランプ3のリフレクタ、5は光源ランプ3とレーザ媒体
2との間に介装した紫外光フィルタ、6は直列に並ぶレ
ーザ媒体2の両側に光軸を合わせて直列に配備したスラ
ブ形の導光部材、7は導光部材6の端面と向かい合わせ
て収納容器1の端板1aに取付けたレーザ光取出窓とな
るレーザ光透過部材、8,9はレーザ光透過部材7に対
向して収納容器1の両側に配備した共振器用の全反射ミ
ラー,出力ミラー、10は前記した各レーザ媒体2,お
よび導光部材6を個々に所定位置に位置決め固定する保
持具であり、レーザ媒体2,導光部材6に対してその長
手方向の両端部を支持している。また、収納容器1の各
接合面,収納容器1に組み込んだ各部品の貫通部にはO
リングなどにより液密シールされている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. FIG. 1 is a cross-sectional view of the entire slab-type fixed laser device, and FIG. 2 is a cross-sectional view taken along the line II-II of FIG.
In the drawing, reference numeral 1 denotes a storage container of a device configured as a liquid-tight closed container, and reference numeral 2 denotes a plurality (two in the illustrated example) of slab shapes arranged in series with the optical axis at the center in the storage container 1. A laser medium (cut out of a single crystal laser rod into a rectangular cross section); 3 is an excitation light source lamp arranged in parallel on the upper and lower sides of a laser medium 2 at the center; 4 is a reflector of the light source lamp 3; Reference numeral 5 denotes an ultraviolet light filter interposed between the light source lamp 3 and the laser medium 2, reference numeral 6 denotes a slab-shaped light guide member arranged in series with the optical axis on both sides of the laser medium 2 arranged in series, and reference numeral 7 denotes a light guide. Laser light transmitting members 8 and 9 serving as laser light extraction windows attached to the end plate 1a of the storage container 1 facing the end surface of the optical member 6, are provided on both sides of the storage container 1 so as to face the laser light transmission member 7. Total reflection mirror and output mirror for tuned resonator Reference numeral 10 denotes a holder for individually positioning and fixing the laser medium 2 and the light guide member 6 at predetermined positions, and supports both longitudinal ends of the laser medium 2 and the light guide member 6. . In addition, O is provided on each joint surface of the storage container 1 and the penetrating portion of each component incorporated in the storage container 1.
It is liquid-tightly sealed by a ring or the like.

【0012】上記の構成で、収納容器1の内部には図示
されてない冷却媒体入口,出口を通じて冷却媒体(純
水)が次記のように通流し、レーザ媒体2,励起光源ラ
ンプ3,リフレクタ4などを冷却して発生熱を系外に排
熱するようにしている。すなわち、図2において収納容
器1の入口側ヘッダ室1bに流入した冷却媒体は、ここ
からレーザ媒体2と紫外光フィルタ5との間に仕切られ
た空間1cを流れ、さらに励起光源ランプ3の周囲空間
1dを通流した後に出口側ヘッダ室1eを経由して流出
するように通流する。
In the above configuration, the cooling medium (pure water) flows through the cooling medium inlet and outlet (not shown) inside the storage container 1 as described below, and the laser medium 2, the excitation light source lamp 3, the reflector 4 is cooled to discharge the generated heat to the outside of the system. That is, the cooling medium flowing into the inlet side header chamber 1b of the storage container 1 in FIG. 2 flows therefrom into the space 1c partitioned between the laser medium 2 and the ultraviolet light filter 5, and further around the excitation light source lamp 3. After flowing through the space 1d, it flows so as to flow out through the outlet side header chamber 1e.

【0013】一方、励起光源ランプ3は、その発光部の
長さが直列に並ぶ2本のレーザ媒体2の総和長に対応し
た長さを有し、その両端の端子金具3aを含めて収納容
器1の内部に収容されている。また、2本のレーザ媒体
2の前後両端側に直列配備した導光部材6は光学ガラス
で作られたスラブ形の導光部材で、その断面形状はスラ
ブ形レーザ媒体2と同一もしくは一回り大きく、長さは
レーザ媒体2の前後端とレーザ光透過部材7との間の間
隔に合わせたサイズに構成されている。この導光部材6
はレーザ媒体2とレーザ光透過部材7との間を中継する
導光路として機能するもので、レーザ光は導光部材6の
中を全反射を繰り返しながらジグザグ進む。
On the other hand, the excitation light source lamp 3 has a length corresponding to the total length of the two laser media 2 whose light emitting portions are arranged in series, and includes a housing container including terminal fittings 3a at both ends thereof. 1. The light guide members 6 arranged in series at the front and rear ends of the two laser media 2 are slab-shaped light guide members made of optical glass, and their cross-sectional shapes are the same as or slightly larger than the slab-type laser medium 2. The length is set to a size corresponding to the distance between the front and rear ends of the laser medium 2 and the laser light transmitting member 7. This light guide member 6
Functions as a light guide path for relaying between the laser medium 2 and the laser light transmitting member 7, and the laser light travels in a zigzag manner while repeating total reflection inside the light guide member 6.

【0014】前記のように収納容器1の内部にレーザ媒
体2とほぼ同様な断面形状を有するスラブ形の導光部材
6をレーザ媒体2と収納容器1の端面に取付けたレーザ
光透過部材7との間に介在させて追加装備することによ
り、励起光源ランプ3の端子金具3aとの干渉なしに光
源ランプ3の発光部をレーザ媒体2に接近して配備しつ
つ、かつ直列配置の各レーザ媒体2に対して励起光をレ
ーザ媒体の励起面全域に均一照射することができ、これ
によりレーザ発振効率を高めてレーザ出力の増大化が図
れる。
As described above, the slab-shaped light guide member 6 having substantially the same cross-sectional shape as the laser medium 2 is provided inside the storage container 1, and the laser light transmission member 7 having the laser medium 2 and the end face of the storage container 1 attached thereto. , The light emitting portion of the light source lamp 3 is disposed close to the laser medium 2 without interference with the terminal fitting 3a of the excitation light source lamp 3, and the laser medium 2 can be uniformly irradiated with the excitation light over the entire excitation surface of the laser medium, thereby increasing the laser oscillation efficiency and the laser output.

【0015】次にレーザ媒体2の保持具10についての
詳細構造を述べる。図2において、まずレーザ媒体2を
囲んで収納容器1の内部に画成した冷却媒体通流空間1
cはその両側の内壁面がV字形溝を形成するように高精
度に加工されており、このV字形の内壁面を取付座面と
してここに熱絶縁材11を介して各レーザ媒体2を両側
面(励起光源ランプ3から励起光照射を受けない非励起
側の側面)から挟持するように先端部が二股状に分かれ
たY字形の保持具9が向かい合わせに設置されている。
ここで、一方の保持具(図2の下方側)はその基部が貫
通ボルト12を介して収納容器2に遊嵌式に固定され、
他方の保持具(図2の上方側)は締付ねじ13を介して
背後から締付け固定されている。なお、前記した導光部
材6も同様な保持具10を介して固定される。
Next, a detailed structure of the holder 10 for the laser medium 2 will be described. In FIG. 2, first, a cooling medium flow space 1 defined inside a storage container 1 surrounding a laser medium 2.
c is machined with high precision so that the inner wall surfaces on both sides thereof form a V-shaped groove. The V-shaped inner wall surface is used as a mounting seat surface, and each laser medium 2 is placed on both sides via a heat insulating material 11 here. A Y-shaped holder 9 having a bifurcated tip is provided facing each other so as to be sandwiched from the surface (the side surface on the non-excitation side not receiving the excitation light irradiation from the excitation light source lamp 3).
Here, one of the holders (the lower side in FIG. 2) has its base fixed to the storage container 2 via the through bolt 12 in a loose fit manner.
The other holder (upper side in FIG. 2) is tightened and fixed from behind by a tightening screw 13. In addition, the above-mentioned light guide member 6 is also fixed via a similar holder 10.

【0016】前記構成のように高精度に加工された収納
容器1の内壁面を取付座面とし、これを基準面に保持具
10を介して直列に並ぶ各レーザ媒体2,導光部材6を
個々にその非励起面を両側から挟持固定するようにした
支持構造では、保持具10がレーザ媒体2の励起面に対
する励起光照射の障害物となることがなく、かつ各レー
ザ媒体2,導光部材6を相互間で光軸が一致するような
位置に正しく位置決めして固定支持することができる。
The inner wall surface of the storage container 1 which has been machined with high precision as described above is used as a mounting seat surface, and the laser media 2 and the light guide member 6 arranged in series on a reference surface via a holder 10 are arranged. In the support structure in which the non-excitation surfaces are individually held and fixed from both sides, the holder 10 does not become an obstacle to the excitation light irradiation on the excitation surface of the laser medium 2 and each laser medium 2 The members 6 can be correctly positioned and fixedly supported at positions where the optical axes coincide with each other.

【0017】[0017]

【発明の効果】本発明のスラブ形固体レーザ装置は以上
説明したように構成されているので、次記の効果を奏す
る。 (1)同一収容容器内に単結晶からなる複数本のスラブ
形レーザ媒体を光軸を合わせて直列配備し、各レーザ媒
体に励起光を照射するよう構成したので、1台のレーザ
装置で従来のカスケード接続型レーザ装置と同等な高出
力が得られる。しかも、各独立した複数基のレーザ発振
器を共通架台上に並べて据付けたカスケード接続型レー
ザ装置構成と比べて必要な部品点数も少なくて済み、装
置の小形,コンパクト化,並びに製作コストの低減化が
図れるほか、工場から据付現地へ輸送する際の振動によ
るレーザ媒体相互の光軸ずれも生じ難く、取扱い面での
信頼性も大幅に向上する。
Since the slab-type solid-state laser device of the present invention is constructed as described above, the following effects can be obtained. (1) A plurality of single-crystal slab-type laser media are arranged in series in the same container with their optical axes aligned, and each laser medium is irradiated with excitation light. And a high output equivalent to that of the cascade connection type laser device. Furthermore, the number of required parts is smaller than that of a cascade-connected laser device in which a plurality of independent laser oscillators are arranged on a common base, and the device can be reduced in size, size, and manufacturing cost. In addition to this, the optical axes of the laser media do not easily deviate from each other due to vibration when transported from the factory to the installation site, and the handling reliability is greatly improved.

【0018】(2)また、直列に並ぶレーザ媒体に対
し、その両端側にスラブ形の導光部材を追加装備して収
納容器の端面に取付けたレーザ光透過部材との間に中継
導光路を形成した構造を採用することにより、励起光源
ランプの端子金具との干渉なしに光源ランプをレーザ媒
体に接近配備させつつ、各レーザ媒体の励起面全域に励
起光を均一照射することができ、これによりレーザ装置
の効率(ランプ入力に対するレーザ出力の比率)の向上
化が図れる。
(2) Further, a slab-shaped light guide member is additionally provided at both ends of the laser media arranged in series, and a relay light guide path is provided between the laser medium and the laser light transmitting member mounted on the end face of the storage container. By adopting the formed structure, it is possible to uniformly radiate the excitation light to the entire excitation surface of each laser medium while disposing the light source lamp close to the laser medium without interference with the terminal fitting of the excitation light source lamp. Thereby, the efficiency of the laser device (ratio of laser output to lamp input) can be improved.

【0019】(3)さらに、高精度に加工された収納容
器内の冷媒流通路の内壁面を取付座面として利用し、こ
の取付座面を基準面に保持具を介して各レーザ媒体を所
定位置に固定した支持構造を採用することにより、直列
に並ぶ各レーザ媒体の相互間で正しく光軸を合わせて組
立てることができる。ここで、保持具が熱絶縁材を介し
てレーザ媒体の非励起面を両側から挟持するような断熱
支持構造とするで、保持具自身が励起光の照射の障害物
となることがなく、かつレーザ媒体の内部に不当な温度
勾配を与えることもない。
(3) Further, the inner wall surface of the refrigerant flow passage in the storage container which has been machined with high precision is used as a mounting seat surface, and the mounting seat surface is used as a reference surface for holding each laser medium via a holder. By adopting the support structure fixed at the position, the laser media arranged in series can be assembled with their optical axes correctly aligned. Here, since the holder has a heat-insulating support structure that sandwiches the non-excitation surface of the laser medium from both sides via the heat insulating material, the holder itself does not become an obstacle to the irradiation of the excitation light, and There is no improper temperature gradient inside the laser medium.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明実施例の構成断面図FIG. 1 is a cross-sectional view of a configuration according to an embodiment of the present invention.

【図2】図1の矢視II−II断面図FIG. 2 is a sectional view taken along the line II-II of FIG.

【図3】従来におけるカスケード接続型固体レーザ装置
の構成図
FIG. 3 is a configuration diagram of a conventional cascade connection type solid-state laser device.

【符号の説明】[Explanation of symbols]

1 収納容器 2 スラブ形固体レーザ媒体 3 励起光源ランプ 6 スラブ形導光部材 7 レーザ光透過部材 8 全反射ミラー 9 出力ミラー 10 保持具 11 熱絶縁材 DESCRIPTION OF SYMBOLS 1 Storage container 2 Slab type solid laser medium 3 Excitation light source lamp 6 Slab type light guide member 7 Laser light transmission member 8 Total reflection mirror 9 Output mirror 10 Holder 11 Heat insulating material

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01S 3/02 - 3/0979 H01S 3/23 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) H01S 3/02-3/0979 H01S 3/23

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】冷却媒体が通流する収納容器にスラブ形の
固体レーザ媒体,励起光源,レーザ光の透過部材を組み
込み、これに共振器用ミラーを組合わせて構成したスラ
ブ形固体レーザ装置において、同一収納容器内に光軸を
合わせて複数本のスラブ形レーザ媒体を直列に並べて収
納配備したスラブ形固体レーザ装置であって、 直列に並ぶ複数のレーザ媒体のうち両端に位置するレー
ザ媒体のそれぞれ反隣接レーザ媒体側に、光軸を合わせ
て収納容器内にスラブ形の導光部材を直列に配備したこ
とを特徴とするスラブ形固体レーザ装置。
1. A slab-type solid-state laser device comprising a slab-type solid-state laser medium, an excitation light source and a laser beam transmitting member incorporated in a storage container through which a cooling medium flows, and a resonator mirror combined therewith. A slab-type solid-state laser device in which a plurality of slab-type laser media are arranged and stored in series in the same storage container with their optical axes aligned, wherein each of the laser media located at both ends of the plurality of laser media in a series is arranged. A slab-type solid-state laser device in which a slab-type light guide member is arranged in series in a storage container with an optical axis aligned with a side of an anti-adjacent laser medium.
【請求項2】冷却媒体が通流する収納容器にスラブ形の
固体レーザ媒体,励起光源,レーザ光の透過部材を組み
込み、これに共振器用ミラーを組合わせて構成したスラ
ブ形固体レーザ装置において、同一収納容器内に光軸を
合わせて複数本のスラブ形レーザ媒体を直列に並べて収
納配備したスラブ形固体レーザ装置であって、 収納容器の内壁面を取付座面としてレーザ媒体の保持具
を設置し、該保持具を介して収納容器内に配列した各レ
ーザ媒体を所定位置に位置決め固定するものであり、 保持具が熱絶縁材を介してレーザ媒体の励起光非照射側
面を両側から挟持するものであることを特徴とするスラ
ブ形固体レーザ装置。
2. A slab-type solid-state laser device comprising a slab-type solid laser medium, an excitation light source and a laser beam transmitting member incorporated in a storage container through which a cooling medium flows, and a resonator mirror combined therewith. A slab-type solid-state laser device in which a plurality of slab-type laser media are arranged and arranged in series in the same storage container with their optical axes aligned, and a holder for the laser medium is installed with the inner wall surface of the storage container as a mounting seat surface. The laser medium arranged in the storage container is positioned and fixed at a predetermined position via the holder, and the holder holds the excitation light non-irradiation side surface of the laser medium from both sides via the heat insulating material. A slab-type solid-state laser device, characterized in that:
JP10768591A 1991-05-14 1991-05-14 Slab type solid-state laser device Expired - Fee Related JP3132576B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10768591A JP3132576B2 (en) 1991-05-14 1991-05-14 Slab type solid-state laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10768591A JP3132576B2 (en) 1991-05-14 1991-05-14 Slab type solid-state laser device

Publications (2)

Publication Number Publication Date
JPH04336479A JPH04336479A (en) 1992-11-24
JP3132576B2 true JP3132576B2 (en) 2001-02-05

Family

ID=14465374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10768591A Expired - Fee Related JP3132576B2 (en) 1991-05-14 1991-05-14 Slab type solid-state laser device

Country Status (1)

Country Link
JP (1) JP3132576B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09214024A (en) * 1996-02-02 1997-08-15 Fanuc Ltd Solid-state laser oscillator
JPH10215013A (en) * 1997-01-30 1998-08-11 Fanuc Ltd Laser oscillation apparatus
EP1168532A1 (en) * 2000-06-23 2002-01-02 Universität Bern Method for compensating thermo-optic effects
JP5349757B2 (en) * 2007-01-22 2013-11-20 株式会社メガオプト Solid state laser oscillator

Also Published As

Publication number Publication date
JPH04336479A (en) 1992-11-24

Similar Documents

Publication Publication Date Title
JP3657009B2 (en) High efficiency, high repetition rate, intracavity diode pumped solid state laser
US5774488A (en) Solid-state laser with trapped pump light
US5243615A (en) High-powered intracavity non-linear optic laser
US6999491B2 (en) High intensity and high power solid state laser amplifying system and method
EP0222005A1 (en) Energy scalable laser amplifier.
EP0512816B1 (en) Laser resonator assembly
US8848758B2 (en) Waveguide CO2 laser with multiply folded resonator
CA1285058C (en) Unitary solid-state laser
EP0854551B1 (en) Three-level laser system
US3886474A (en) Gas laser having an integral optical resonator with external stabilizing means
JP3132576B2 (en) Slab type solid-state laser device
EP1003252A2 (en) Solid state laser master oscillator gain module
JP2004207496A (en) Solid laser oscillator
JP2002517101A (en) Tunable vertical diode pumped solid-state laser
JPH0645667A (en) Solid laser device
JP2000307181A (en) Solid-state laser system and laser beam machining device
JPH05343765A (en) Slab type solid laser device
US5675595A (en) Composite multiple wavelength laser material and multiple wavelength laser for use therewith
JPH09116216A (en) Laser diode pumping solid laser equipment
JPH06120586A (en) Solid state laser equipment
JP2000277837A (en) Solid state laser device
JP4240763B2 (en) Laser equipment
JP3430049B2 (en) Solid state laser device
Demaria et al. Waveguide CO 2 laser with mutiply folded resonator
KR20240027852A (en) Actively cooled end pump solid state laser gain medium

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071124

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081124

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091124

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees