JP3132397B2 - Collective exhaust system - Google Patents

Collective exhaust system

Info

Publication number
JP3132397B2
JP3132397B2 JP08239826A JP23982696A JP3132397B2 JP 3132397 B2 JP3132397 B2 JP 3132397B2 JP 08239826 A JP08239826 A JP 08239826A JP 23982696 A JP23982696 A JP 23982696A JP 3132397 B2 JP3132397 B2 JP 3132397B2
Authority
JP
Japan
Prior art keywords
cylindrical portion
exhaust gas
exhaust
draft
boiler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP08239826A
Other languages
Japanese (ja)
Other versions
JPH1061942A (en
Inventor
敏広 茅原
茂広 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miura Co Ltd
Original Assignee
Miura Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miura Co Ltd filed Critical Miura Co Ltd
Priority to JP08239826A priority Critical patent/JP3132397B2/en
Publication of JPH1061942A publication Critical patent/JPH1061942A/en
Application granted granted Critical
Publication of JP3132397B2 publication Critical patent/JP3132397B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Incineration Of Waste (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、煙突等の排気筒
に取り付けて、ドラフト力を調整するための集合排気装
置に関するものである。
TECHNICAL FIELD The present invention is attached to an exhaust pipe such as a chimney, it relates to collecting case exhaust device for adjusting the draft force.

【0002】[0002]

【従来の技術】一般に、ボイラや焼却炉等の燃焼装置の
排気は煙突を介して行なわれる。この煙突内に導入され
た排気ガスは、高温で空気よりも比重が小さいため、空
気との比重差により浮力が生じる。この浮力によって排
気ガスは上昇し、一方では、ボイラの燃焼室から新たに
排気ガスが流入するため、排出が促進される。このよう
な煙突(排気筒)内において排気ガスが上方に吸引され
る現象を「ドラフト」という。このドラフトにより排気
筒内に及ぼす力(以下、「ドラフト力」という)は、煙
突が高いほど、また排気ガスが高温で、比重が小さいほ
ど、増加する。このドラフト力は、燃焼機器に応じて適
正になるように設定されるが、このドラフト力が過大で
あると、燃焼装置側の炉内の圧力(以下、炉圧とい
う。)が低下し、燃焼性に悪影響を及ぼす。ここで、本
書では、このドラフト力を前記の浮力から流路損失等の
各種の損失を差し引いたものとしている。
2. Description of the Related Art Generally, exhaust from a combustion device such as a boiler or an incinerator is performed through a chimney. Exhaust gas introduced into the chimney has a specific gravity smaller than that of air at a high temperature, so that a difference in specific gravity from air causes buoyancy. The buoyancy causes the exhaust gas to rise, and on the other hand, the exhaust gas is newly introduced from the combustion chamber of the boiler, so that the emission is promoted. The phenomenon in which exhaust gas is sucked upward in such a chimney (exhaust stack) is called “draft”. The force (hereinafter referred to as "draft force") exerted in the exhaust stack by the draft increases as the chimney becomes higher, and as the exhaust gas becomes hotter and has a lower specific gravity. The draft force is set so as to be appropriate according to the combustion equipment. However, if the draft force is excessive, the pressure in the furnace on the combustion device side (hereinafter, referred to as furnace pressure) decreases, and combustion occurs. Adversely affect sex. Here, in this document, the draft force is obtained by subtracting various losses such as flow path loss from the buoyancy.

【0003】ところで、燃焼装置用の煙突は、燃焼装置
毎に取付ける場合と、複数台の燃焼装置の排気を1本あ
るいは数本の煙突にまとめて排出する集合煙突とがあ
る。燃焼装置毎に取付ける場合には、排気ガスの変化量
は少なく、排気は比較的問題なく行なわれる。一方、上
述のような集合煙突の場合、燃焼装置の起動台数や、各
燃焼装置の燃焼量に変化がない場合には、煙突からの排
気は支障無く円滑に行われる。しかし、燃焼装置の起動
台数が増減したり、各燃焼装置の燃焼量に変動が生じた
場合には、煙突内に排出される排気ガスの量の変動が大
きいため、ドラフトに変動が生じる。即ち、稼働中の燃
焼装置からは高温の排気ガスが排出されるが、この際に
生じる排気ガスのドラフト力が過大であると、停止中の
燃焼装置からはその送風手段を介して空気が吸引され、
排気筒内に流入する。この停止中の燃焼装置を起動する
場合には、その炉圧が負圧となっているため、規定量よ
りも多くの空気が供給されてしまい、燃焼性に悪影響を
及ぼす。特に、ガス燃料を用いる燃焼装置の場合には、
その燃料の供給圧力が低いこともあって、その燃料が燃
焼炉内に吸引されることにより規定の値よりも燃料供給
量が増加してしまう。しかし、排気ガスを放出するため
の煙突は、ボイラの燃焼量や台数によって、また、設置
上の制約によって、高さや内径が決まるため、前記のド
ラフト力を適切な値に設定するのが難しかった。
[0003] There are two types of chimneys for combustion devices: one for each combustion device, and one for collecting exhaust gas from a plurality of combustion devices into one or several chimneys. In the case of mounting for each combustion device, the amount of change in the exhaust gas is small, and the exhaust is performed without any problem. On the other hand, in the case of the above-mentioned collective chimney, if there is no change in the number of activated combustion devices or the amount of combustion in each combustion device, the exhaust from the chimney is smoothly performed without any trouble. However, when the number of activated combustion devices increases or decreases, or when the combustion amount of each combustion device fluctuates, the amount of exhaust gas discharged into the chimney fluctuates greatly, so that the draft fluctuates. That is, high-temperature exhaust gas is discharged from the operating combustion device, but if the draft force of the exhaust gas generated at this time is excessive, air is sucked from the stopped combustion device via the blowing means. And
It flows into the exhaust stack. When the stopped combustion device is started, the furnace pressure is negative, so that more air than the specified amount is supplied, which adversely affects the combustibility. In particular, in the case of a combustion device using gas fuel,
Because the supply pressure of the fuel is low, the fuel is sucked into the combustion furnace, so that the fuel supply amount exceeds a prescribed value. However, since the height and inner diameter of the chimney for discharging the exhaust gas are determined by the combustion amount and the number of boilers, and by restrictions on installation, it is difficult to set the draft force to an appropriate value. .

【0004】また、燃焼装置の起動時において、燃焼開
始時には、排気ガスが排気筒内に急激に流入し、排気筒
内の圧力が急激に上昇するため、燃焼装置自体もこの圧
力の影響を受ける。即ち、排気筒内の圧力が急激に上昇
すると、各燃焼装置の炉圧が高まることになり、これに
よって振動燃焼を引き起こす場合がある。
When the combustion device is started, at the start of combustion, exhaust gas rapidly flows into the exhaust cylinder, and the pressure in the exhaust cylinder rises sharply, so that the combustion device itself is also affected by this pressure. . That is, if the pressure in the exhaust stack rises sharply, the furnace pressure of each combustion device will increase, which may cause oscillating combustion.

【0005】[0005]

【発明が解決しようとする課題】この発明が解決するた
めの課題は、簡単な構成でドラフト力を調整することが
でき、排気筒内の圧力変動を防止できる集合排気装置を
提供することである。
BRIEF Problems to be Solved problem for the present invention is resolved, it is possible to adjust the draft force with a simple configuration, to provide a can Ru collector coupling exhaust system prevents pressure fluctuations in the exhaust pipe It is.

【0006】[0006]

【課題を解決するための手段】この発明は、複数の燃焼
装置の各排気筒を集合排気筒に接続してなる集合排気装
置において、前記各排気筒には、排気ガス流入側の第一
部と、排気ガス流出側の第二筒部とからなり、前記第
一筒部の下流側の所定の長さの部分を第二筒部の上流側
の内側に径方向に所定の間隔をおいて配置するととも
に、前記第一筒部の下流側に先細りのテーパ部を形成
し、前記第一筒部と前記第二筒部との間に、第二筒部の
内部と外気を連通する流通空間を形成したことを特徴と
する。
SUMMARY OF THE INVENTION The present invention, in the collecting exhaust system formed by connecting the collecting exhaust pipe to the exhaust pipe of the multiple combustion apparatus, wherein each stack has a first exhaust gas inlet side A cylindrical portion , comprising a second cylindrical portion on the exhaust gas outflow side, a predetermined length portion on the downstream side of the first cylindrical portion and a predetermined interval in the radial direction inside the upstream side of the second cylindrical portion. And a tapered portion formed on the downstream side of the first cylindrical portion, between the first cylindrical portion and the second cylindrical portion , between the inside of the second cylindrical portion and characterized in that the formation of the inter-flow air communicating outside air.

【0007】[0007]

【発明の実施の形態】この発明は、ボイラ、焼却炉等の
燃焼機器の排気筒に取り付け、排気筒内から排出される
排気ガスの流動状態、即ちドラフトを安定に保つための
ドラフトレギュレータとして適用される。この発明のド
ラフトレギュレータは、一般に、排気筒の根元近くに取
付けて使用するが、所謂集合煙突方式の場合には、集合
する前の各排気筒に取付ける場合と、集合後の排気筒に
取付ける場合がある。ここで、このドラフトレギュレー
タの取り付け方向は、前述のドラフトを制御する目的か
らすれば、排気ガスの流通方向が上下方向となるように
取り付けるのが好ましいが、水平方向となるように取り
付けてもドラフトの制御を行うことができる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention is applied to a draft regulator attached to an exhaust pipe of a combustion device such as a boiler or an incinerator to keep the flow state of exhaust gas discharged from the exhaust pipe, that is, a draft stable. Is done. The draft regulator of the present invention is generally used by being mounted near the base of an exhaust stack, but in the case of a so-called collective chimney system, when it is mounted on each exhaust pipe before being assembled and when it is mounted on the exhaust stack after being assembled There is. Here, for the purpose of controlling the above-mentioned draft, the mounting direction of the draft regulator is preferably such that the exhaust gas flows in the vertical direction, but even if the draft regulator is mounted in the horizontal direction, the draft regulator may be mounted in the horizontal direction. Can be controlled.

【0008】この発明のドラフトレギュレータは、燃焼
機器からの排気ガスの流入を受ける側の第一筒部と、煙
突等に向けて排気ガスを流出する側の第二筒部とからな
る。前記第一筒部の下流側の所定の長さの部分は、第二
筒部の上流側の内側に径方向に所定の間隔をおいて配置
し、この第二筒部の内側に位置する第一筒部の下流側に
は、先細りのテーパ部を形成する。更に、第一筒部と第
二筒部との間に、第二筒部の内部と外気を連通する流通
空間を形成する。この構成によると、第一筒部から噴出
する排気ガスは、先端のテーパ部によってその流速を高
め、第二筒部内に流入する。排気ガスが第一筒部から第
二筒部に流入する際には、静圧が動圧に変換され、テー
パ部先端の静圧は負圧になり、流通空間の圧力を低下さ
せる。そのため、第二筒内には、この流通空間を介して
外気(ドラフトレギュレータ外の空気)が導入される。
そのため、第二筒部内の排気ガスは、外気の流入により
温度は低下し、比重が増加する。従って、排気筒内にお
ける排気ガスの外気との比重差による浮力は低下し、更
に、排気筒内においては、外気を導入し、排気ガスと同
じ速度に加速するために、浮力による力が消費される。
従って、これらにより、ドラフト力は低下するが、ドラ
フト力の低下にともなって、流通空間から流入する空気
量が減少するため、ドラフト力は所定の値となる。以上
のように、この発明のドラフトレギュレータは、排気筒
を流れる排気ガスのドラフト力を制御し、第一筒部側の
圧力を安定させる。この第一筒部側の圧力が安定するこ
とにより、燃焼機器の炉圧も安定する。ここで、前記流
通空間は、第一筒部と第二筒部との間に環状に形成した
構成,適宜周方向に分断した形状、即ち筒部の軸線方向
に沿って1乃至複数の流路を形成した構成を含み、更
に、この適宜周方向に分断した形状とする場合には、軸
線方向に対して若干の傾斜を持たせて形成した構成を含
む。
[0008] The draft regulator according to the present invention comprises a first cylindrical portion on the side receiving exhaust gas from combustion equipment and a second cylindrical portion on the side discharging exhaust gas toward a chimney or the like. A portion of a predetermined length on the downstream side of the first cylindrical portion is arranged at a predetermined interval in the radial direction inside the upstream side of the second cylindrical portion, and a third portion located inside the second cylindrical portion. A tapered portion is formed on the downstream side of the cylindrical portion. Further, a flow space is formed between the first tubular portion and the second tubular portion to communicate the inside of the second tubular portion with the outside air. According to this configuration, the exhaust gas ejected from the first cylindrical portion has its flow velocity increased by the tapered portion at the tip, and flows into the second cylindrical portion. When the exhaust gas flows from the first cylindrical portion to the second cylindrical portion, the static pressure is converted into a dynamic pressure, and the static pressure at the tip of the tapered portion becomes a negative pressure, thereby reducing the pressure in the flow space. Therefore, outside air (air outside the draft regulator) is introduced into the second cylinder through this circulation space.
Therefore, the temperature of the exhaust gas in the second cylindrical portion decreases due to the inflow of the outside air, and the specific gravity increases. Therefore, the buoyancy due to the specific gravity difference between the exhaust gas and the outside air in the exhaust pipe decreases, and further, in the exhaust pipe, the force due to the buoyancy is consumed to introduce the outside air and accelerate to the same speed as the exhaust gas. You.
Accordingly, the draft force is reduced by these, but the amount of air flowing in from the circulation space decreases with the reduction of the draft force, and the draft force becomes a predetermined value. As described above, the draft regulator of the present invention controls the draft force of the exhaust gas flowing through the exhaust cylinder, and stabilizes the pressure on the first cylinder portion side. By stabilizing the pressure on the first cylinder side, the furnace pressure of the combustion equipment is also stabilized. Here, the flow space is formed in a ring shape between the first cylindrical portion and the second cylindrical portion, and is appropriately divided in a circumferential direction, that is, one or a plurality of flow paths along the axial direction of the cylindrical portion. In the case where the shape is appropriately divided in the circumferential direction, a configuration formed with a slight inclination with respect to the axial direction is included.

【0009】更に、この発明のドラフトレギュレータに
おいて、第一筒部の下流側の所定の長さの部分は、第二
筒部の上流側の内側に径方向に所定の間隔をおいて配置
している。この構成は、燃焼装置の着火や燃焼量の変化
等により、排気ガス量が急激に増加した場合について、
第一筒部内での急激な圧力上昇を防止する機能を有す
る。即ち、第一筒部内を流れる排気ガス量が急激に増大
すると同時に、圧力が急激に上昇する。そして、第二筒
部内に流入しようとするが、第二筒部より下流の排気ガ
スや空気は、その慣性により、急には移動しない。従っ
て、排気ガスは、第一筒部と第二筒部の間の流通空間に
一時的に流入する。その後、第二筒部内の排気ガスが移
動し始めると、これにつれて流通空間内の排気ガスも第
二筒部内に流入する。従って、この発明のドラフトレギ
ュレータによれば、燃焼装置側において、排気ガスが急
激に増加しても、流通空間によってこの圧力上昇を緩衝
するため、安定した排気ガスの流通が行なわれる。この
ことは、着火時における排気ガスや、煤の漏れを防止す
ることである。
Further, in the draft regulator according to the present invention, a portion having a predetermined length on the downstream side of the first cylindrical portion is arranged inside the upstream side of the second cylindrical portion at a predetermined radial distance. I have. This configuration is suitable for the case where the amount of exhaust gas suddenly increases due to ignition of the combustion device or change in the amount of combustion, etc.
It has a function of preventing a sudden increase in pressure in the first cylindrical portion. That is, at the same time as the amount of exhaust gas flowing in the first cylindrical portion rapidly increases, the pressure rapidly increases. The exhaust gas and air downstream of the second cylindrical portion do not move suddenly due to their inertia. Therefore, the exhaust gas temporarily flows into the flow space between the first tubular portion and the second tubular portion. Thereafter, when the exhaust gas in the second cylindrical portion starts to move, the exhaust gas in the circulation space also flows into the second cylindrical portion. Therefore, according to the draft regulator of the present invention, even if the exhaust gas increases abruptly on the combustion device side, the pressure rise is buffered by the circulation space, so that stable exhaust gas circulation is performed. This is to prevent leakage of exhaust gas and soot during ignition.

【0010】更に、この発明のドラフトレギュレータに
おいて、第二筒部には、前記第一筒部のテーパ部と対面
する位置に、第二テーパ部を形成する。この構成によ
り、前記流通空間をから第二筒部への外気の流入を円滑
に行う。
Further, in the draft regulator according to the present invention, a second tapered portion is formed in the second cylindrical portion at a position facing the tapered portion of the first cylindrical portion. With this configuration, the inflow of outside air from the circulation space to the second cylindrical portion is smoothly performed.

【0011】更に、この発明のドラフトレギュレータに
おいて、第二筒部の上流側の内周部分に液受け部を形成
する共に、この液受け部に排液管を接続したことによ
り、排気筒内で生じた結露水を確実に排出する。即ち、
結露水には、排気ガス中の窒素酸化物(NOx )や硫黄
酸化物(SOx )等が溶け込んで低濃度の硝酸や硫酸を
生じ、これがドラフトレギュレータや排気筒を腐食させ
る一つの要因となっているが、前述構成により、結露水
を確実に排出することにより、この腐食を防止する。
Further, in the draft regulator according to the present invention, a liquid receiving portion is formed on the inner peripheral portion on the upstream side of the second cylindrical portion, and a drain pipe is connected to the liquid receiving portion, so that the inside of the exhaust cylinder is reduced. Drain the generated dew water without fail. That is,
Nitrogen oxides (NOx) and sulfur oxides (SOx) in the exhaust gas dissolve into the condensed water to produce low-concentration nitric acid and sulfuric acid, which is one of the factors that corrode the draft regulator and the exhaust stack. However, the above configuration prevents this corrosion by reliably discharging dew water.

【0012】[0012]

【実施例】以下、この発明に係るドラフトレギュレータ
の第一実施例について、図面を参照しながら説明する。
尚、図1は、この発明に係るドラフトレギュレータの第
一実施例の断面形状を示す説明図、図2は、この発明に
係るドラフトレギュレータの使用形態を示す説明図であ
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a first embodiment of a draft regulator according to the present invention will be described with reference to the drawings.
FIG. 1 is an explanatory view showing a cross-sectional shape of the first embodiment of the draft regulator according to the present invention, and FIG. 2 is an explanatory view showing a use form of the draft regulator according to the present invention.

【0013】先ず、最初に、この発明のドラフトレギュ
レータの使用形態について図2を参照しながら説明す
る。図2は、燃焼装置としてボイラを例示するものであ
り、更にこの例では、複数のボイラからの排気ガスをま
とめて排出する集合煙突方式を例示するものである。図
面において、ボイラ室1内には、複数のボイラ2を設置
してある。各ボイラ2の排気筒3は上方に延びて、略水
平に配置した一本の集合排気筒4に接続してある。この
集合排気筒4は、屋内で各ボイラ2からの排気をまと
め、屋外の煙突5に排出するものである。以上のような
構成において、この発明に係るドラフトレギュレータ1
0は、各ボイラ2の排気筒3の上流側の根元近くに取り
付けてある。尚、図1中の二点鎖線は、このドラフトレ
ギュレータ10を、集合排気筒4下流における煙突5の
根元部分に取り付けた場合について例示するものであ
る。
First, the use of the draft regulator of the present invention will be described with reference to FIG. FIG. 2 exemplifies a boiler as a combustion device, and further illustrates, in this example, a collective stack system in which exhaust gases from a plurality of boilers are collectively discharged. In the drawing, a plurality of boilers 2 are installed in a boiler room 1. The exhaust pipe 3 of each boiler 2 extends upward and is connected to one collective exhaust pipe 4 arranged substantially horizontally. The exhaust stack 4 collects exhaust air from the boilers 2 indoors and discharges the exhaust gas to the chimney 5 outdoors. With the above configuration, the draft regulator 1 according to the present invention
Numeral 0 is attached near the base on the upstream side of the exhaust stack 3 of each boiler 2. The two-dot chain line in FIG. 1 illustrates the case where the draft regulator 10 is attached to the root of the chimney 5 downstream of the exhaust stack 4.

【0014】以下では、この発明に係るドラフトレギュ
レータ10の第一実施例について図1を参照しながら説
明する。図1において、ドラフトレギュレータ10は、
排気筒3のボイラ2側に接続する第一筒部11と、前記
集合排気筒4側に接続する第二筒部12とで構成され
る。前記第一筒部11の下流側の所定の長さの部分は、
第二筒部12の上流側の内側に径方向に所定の間隔をお
いて配置する。即ち、第一筒部11の下流側の部分は、
前記第二筒部12の内側に所定の長さ入り込んだ所謂オ
ーバーラップした構成となっている。この第一筒部11
と第二筒部12とのオーバーラップ部分20において
は、両者間に、第二筒部12の内部と外気を連通する流
通空間14を形成してある。更に、この第二筒部12の
内側に位置する第一筒部11の下流側には、先細りのテ
ーパ部13を形成してある。更に、第二筒部12におい
て、前記テーパ部13と対面する対応する第二テーパ部
15を形成してある。
Hereinafter, a first embodiment of a draft regulator 10 according to the present invention will be described with reference to FIG. In FIG. 1, the draft regulator 10 includes:
The exhaust pipe 3 includes a first cylindrical section 11 connected to the boiler 2 side and a second cylindrical section 12 connected to the collective exhaust pipe 4 side. A portion of a predetermined length on the downstream side of the first cylindrical portion 11 is
Arranged at predetermined intervals in the radial direction inside the upstream side of the second cylindrical portion 12. That is, the downstream portion of the first cylindrical portion 11 is
It has a so-called overlapping configuration in which a predetermined length is inserted inside the second cylindrical portion 12. This first cylindrical portion 11
A flow space 14 for communicating the inside of the second cylindrical portion 12 with the outside air is formed between the two at the overlapping portion 20 between the first cylindrical portion 12 and the second cylindrical portion 12. Further, a tapered portion 13 is formed on the downstream side of the first cylindrical portion 11 located inside the second cylindrical portion 12. Further, in the second cylindrical portion 12, a corresponding second tapered portion 15 facing the tapered portion 13 is formed.

【0015】以上の構成のドラフトレギュレータの機能
を説明する。先ず、各ボイラ2が、燃焼を開始して一定
の燃焼状態となり、各ボイラ2の排気筒3を流れる排気
ガスの温度、流量が一定となっている場合について説明
する。この場合、1台のボイラ2に注目すると、ボイラ
2からの排気ガスは、第一筒部11からその先端部のテ
ーパ部13を通して、第二筒部12内に流入する。排気
ガスは、テーパ部13を通過する際には、流路断面積が
絞られているため、流速が増加する。この排気ガスがテ
ーパ部13から第二筒部12内に流入する際には、流通
空間14の圧力を低下させる。従って、第一筒部11と
第二筒部12との間の流通空間14から外気が吸引さ
れ、排気ガスと共に第二筒部12内に流入する。第二筒
部12内に流入した排気ガスは、前記の外気の導入によ
り希釈され、温度が低下するとともに比重も増加する。
即ち、この排気ガスは外気との比重差が少なくなるた
め、排気筒3内における外気との比重差による浮力は低
下する。更に、この第二筒部12においては、外気を吸
引し排気ガスと同じ速度に加速して上昇させるために、
前記浮力による力が消費される。以上の比重の増加と力
の消費による損失によってドラフト力は低下するが、ド
ラフト力の低下にともなって、流通空間14から流入す
る空気量が減少するため、ドラフト力は所定の値で安定
する。従って、ボイラ2の定常燃焼中は、排気筒3内の
ドラフト力は一定となるため、第一筒部11での圧力は
一定となり、ボイラ2の炉圧を安定させる。以上のよう
にして、各ボイラ2の排気筒3について同様にドラフト
力が一定に保たれるため、集合排気筒4以降の排気ガス
の流れは安定に保たれ、煙突5から排出される。この状
況は、1台のボイラ2に1本の煙突5を取り付けた場合
においても同様である。
The function of the draft regulator having the above configuration will be described. First, a case will be described in which each boiler 2 starts combustion and enters a constant combustion state, and the temperature and flow rate of the exhaust gas flowing through the exhaust pipe 3 of each boiler 2 are constant. In this case, paying attention to one boiler 2, the exhaust gas from the boiler 2 flows into the second tubular portion 12 from the first tubular portion 11 through the tapered portion 13 at the tip thereof. When the exhaust gas passes through the tapered portion 13, the flow velocity increases because the cross-sectional area of the flow path is narrowed. When the exhaust gas flows from the tapered portion 13 into the second cylindrical portion 12, the pressure in the flow space 14 is reduced. Therefore, outside air is sucked from the flow space 14 between the first cylindrical portion 11 and the second cylindrical portion 12 and flows into the second cylindrical portion 12 together with the exhaust gas. The exhaust gas that has flowed into the second cylindrical portion 12 is diluted by the introduction of the outside air, and the temperature decreases and the specific gravity increases.
That is, since the specific gravity difference between the exhaust gas and the outside air is reduced, the buoyancy due to the specific gravity difference between the exhaust gas and the outside air in the exhaust pipe 3 is reduced. Further, in the second cylindrical portion 12, in order to suck the outside air and accelerate the same to the same speed as the exhaust gas to raise the same,
The force due to the buoyancy is consumed. Although the draft force decreases due to the above-described increase in specific gravity and loss due to power consumption, the draft force stabilizes at a predetermined value because the amount of air flowing in from the circulation space 14 decreases as the draft force decreases. Accordingly, during the steady combustion of the boiler 2, the draft force in the exhaust pipe 3 is constant, so that the pressure in the first cylinder section 11 is constant, and the furnace pressure of the boiler 2 is stabilized. As described above, the draft force of the exhaust stack 3 of each boiler 2 is similarly kept constant, so that the flow of the exhaust gas after the collective exhaust stack 4 is kept stable and discharged from the chimney 5. This situation is the same when one chimney 5 is attached to one boiler 2.

【0016】前述の状態からボイラ2の稼動台数の変化
や各ボイラ2側の燃焼量が変化した場合について説明す
る。この場合には、集合排気筒4内の排気ガスの温度及
び、流量も変化するため、煙突5におけるドラフト力が
変化する。しかし、各排気筒3内におけるドラフト力
は、前述したように、それぞれに取り付けたドラフトレ
ギュレータ10によって略一定に制御されるため、前記
排気筒3から集合排気筒4に至る排気ガスのドラフトに
及ぼす影響は殆ど無い。従って、前述同様に第一筒部1
1における圧力は略一定に制御され、各ボイラ2の炉圧
は安定する。
A case where the number of operating boilers 2 and the amount of combustion on each boiler 2 change from the above-described state will be described. In this case, since the temperature and the flow rate of the exhaust gas in the collective exhaust pipe 4 also change, the draft force in the chimney 5 changes. However, as described above, the draft force in each exhaust cylinder 3 is controlled to be substantially constant by the draft regulator 10 attached to each of the exhaust cylinders 3, so that the draft force exerts on the draft of the exhaust gas from the exhaust cylinder 3 to the collective exhaust cylinder 4. There is almost no effect. Therefore, as described above, the first cylindrical portion 1
The pressure at 1 is controlled to be substantially constant, and the furnace pressure of each boiler 2 is stabilized.

【0017】この場合において、停止状態のボイラ2に
おいては、集合排気筒4から煙突5へのドラフトの影響
により、その排気筒3内を吸引する。しかし、停止中の
ボイラ2における排気筒3においては、ドラフトレギュ
レータ10の流通空間14から外気が吸引され、排気筒
3内に流入するため、ボイラ2の送風機(送風手段:図
示省略)を介して吸引される空気の量は大幅に低下する
ことになる。従って、停止中のボイラ2においては、そ
の炉圧に影響を受けること無く、起動する場合にも、適
正な量の空気、及び燃料を供給でき、着火性、燃焼性が
安定する。
In this case, in the boiler 2 in the stopped state, the inside of the stack 3 is sucked by the influence of the draft from the stack 4 to the chimney 5. However, in the exhaust pipe 3 of the stopped boiler 2, outside air is sucked from the circulation space 14 of the draft regulator 10 and flows into the exhaust pipe 3, so that the air is blown through the blower (blower means: not shown) of the boiler 2. The amount of air drawn in will be greatly reduced. Therefore, in the stopped boiler 2, an appropriate amount of air and fuel can be supplied even when the boiler 2 is started without being affected by the furnace pressure, and ignitability and combustibility are stabilized.

【0018】更に、ボイラ2の着火時や、燃焼量の増加
時においては、第一筒部11内を流れる排気ガス量が急
激に増大すると同時に、圧力が急激に上昇するが、この
第一筒部11内での急激な圧力上昇は、前記ドラフトレ
ギュレータ10によって緩衝され、下流側に伝わること
も、上流側に逆に伝わることも阻止される。即ち、ボイ
ラ2からの排気ガスは、第一筒部11から第二筒部12
内に流入しようとするが、第二筒部12より上方の空気
は、その慣性により、急には移動しない。従って、排気
ガスは、第一筒部11と第二筒部12の間の流通空間1
4に一時的に流入する。その後、第二筒部12内の排気
ガスが集合排気筒4に向けて移動し始めると、これにつ
れて流通空間14内の排気ガスも第二筒部12内に流入
するためである。従って、前記の排気ガスは、第一筒部
11と第二筒部12の流通空間14に、その圧力を逃が
すことにより、上流側及び下流側に悪影響を及ぼすこと
も無く、排気ガスの安定した流通が行なわれる。また、
ドラフトレギュレータ10から排気ガスが洩れることは
ない。更に、このとき、前記ボイラが、液体燃料を使用
するものの場合には、排気ガスには煤等の煤塵が含まれ
る場合があるが、このように第一筒部11と第二筒部1
2を重複させたオーバーラップ部分20を設けたことに
より、外部に排出されることはない。
Further, when the boiler 2 is ignited or when the amount of combustion increases, the amount of exhaust gas flowing through the first cylindrical portion 11 increases rapidly, and at the same time, the pressure increases sharply. The rapid pressure increase in the section 11 is buffered by the draft regulator 10 and is prevented from being transmitted to the downstream side or to the upstream side. That is, the exhaust gas from the boiler 2 is transferred from the first cylinder 11 to the second cylinder 12.
The air above the second cylindrical portion 12 does not move suddenly due to its inertia. Therefore, the exhaust gas flows through the first space 11 and the second space 12 between the first space 11 and the second space 12.
4 temporarily. Thereafter, when the exhaust gas in the second cylindrical portion 12 starts to move toward the collective exhaust tube 4, the exhaust gas in the circulation space 14 also flows into the second cylindrical portion 12 as the exhaust gas moves. Therefore, the above-mentioned exhaust gas does not adversely affect the upstream side and the downstream side by releasing the pressure into the flow space 14 between the first cylindrical portion 11 and the second cylindrical portion 12, and the exhaust gas is stabilized. Distribution takes place. Also,
Exhaust gas does not leak from the draft regulator 10. Further, at this time, if the boiler uses a liquid fuel, the exhaust gas may contain dust such as soot, but as described above, the first cylindrical portion 11 and the second cylindrical portion 1
By providing the overlap portion 20 in which the two are overlapped, there is no discharge to the outside.

【0019】更に、前記第二筒部12の下流側の端部に
は、その内周に沿って樋状の液受け部16を形成してあ
る。更に、前記第二筒部12の下流側端部の外表面に
は、この液受け部16と連通する排液管17を接続する
ことにより、排気筒3内での結露水を確実に排出する。
即ち、結露水には、排気ガス中の窒素酸化物(NOx )
や硫黄酸化物(SOx )等が溶け込んで低濃度の硝酸や
硫酸を生じ、これがドラフトレギュレータ10や排気筒
3を腐食する要因となっている。しかし、この発明にお
いては、前述構成によって結露水を確実に排出すること
により、この腐食を防止することができる。
Further, a trough-shaped liquid receiving portion 16 is formed at the downstream end of the second cylindrical portion 12 along the inner periphery thereof. Further, a drain pipe 17 communicating with the liquid receiving section 16 is connected to the outer surface of the downstream end of the second cylindrical section 12 so that dew water in the exhaust pipe 3 is reliably discharged. .
That is, the condensed water contains nitrogen oxides (NOx) in the exhaust gas.
And sulfur oxides (SOx) are dissolved to generate low-concentration nitric acid and sulfuric acid, which cause corrosion of the draft regulator 10 and the exhaust stack 3. However, in the present invention, this corrosion can be prevented by reliably discharging the dew water by the above-described configuration.

【0020】図3は、この発明に係るドラフトレギュレ
ータの第二実施例を示すもので、この第二実施例におい
ては、第二筒部12を円柱形状としたものである。第二
筒部12の下流側は、第一筒部11と同様の筒形状とし
たものである。この第二実施例において、前記第二筒部
12は、第一筒部11の外周を覆う部分は、第一筒部1
1より大径の円筒形状とし、この第二筒部12と第一筒
部11との間に、前記同様に環状の流通空間14を形成
してある。この第二実施例におけるドラフトの制御に関
する作用は、第一実施例と同様であるので、詳細説明は
省略するが、この構成によれば、製作が容易になるとい
う利点を有する。
FIG. 3 shows a second embodiment of the draft regulator according to the present invention. In the second embodiment, the second cylindrical portion 12 has a cylindrical shape. The downstream side of the second tubular portion 12 has the same tubular shape as the first tubular portion 11. In the second embodiment, the portion of the second cylindrical portion 12 that covers the outer periphery of the first cylindrical portion 11 is the first cylindrical portion 1.
A cylindrical shape having a diameter larger than 1 is formed, and an annular flow space 14 is formed between the second cylindrical portion 12 and the first cylindrical portion 11 as described above. The operation related to the control of the draft in the second embodiment is the same as that of the first embodiment, and therefore detailed description is omitted. However, according to this configuration, there is an advantage that manufacturing is facilitated.

【0021】[0021]

【発明の効果】本発明によれば、各排気筒内におけるド
ラフト力は、それぞれに取り付けたドラフトレギュレー
タによって制御されるため、排気筒から集合排気筒4に
至る排気ガスのドラフトに及ぼす影響は殆ど無く、第一
筒部における圧力は略一定に制御され、各ボイラの炉圧
を安定化することができる。
According to the present invention, the door in each exhaust cylinder is provided.
Draft regulation attached to each raft force
From the stack to the stack 4
There is almost no effect on exhaust gas drafts
The pressure in the cylinder is controlled to be approximately constant, and the furnace pressure of each boiler is controlled.
Can be stabilized.

【0022】しかも、この発明のドラフトレギュレータ
において、第一筒部の下流側の所定の長さの部分は、第
二筒部の上流側の内側に径方向に所定の間隔をおいて配
置した構成としたから、燃焼装置の着火等により、急激
に圧力が上昇したとしても、二重の筒部によって圧力を
逃がし、上流側の燃焼装置に悪影響を及ぼすことを防止
するとともに、ドラフトレギュレータからの排気ガスや
煤の洩れを防止することができる。
Further, in the draft regulator according to the present invention, the portion having a predetermined length on the downstream side of the first cylindrical portion is arranged at a predetermined radial distance inside the upstream side of the second cylindrical portion. Therefore, even if the pressure rises sharply due to the ignition of the combustion device, etc., the pressure is released by the double cylindrical portion to prevent the combustion device on the upstream side from being adversely affected, and exhaust from the draft regulator. Leakage of gas and soot can be prevented.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明に係るドラフトレギュレータの第一実
施例の断面形状を示す説明図である。
FIG. 1 is an explanatory view showing a cross-sectional shape of a first embodiment of a draft regulator according to the present invention.

【図2】この発明の集合排気装置を示す説明図である。FIG. 2 is an explanatory view showing a collective exhaust device of the present invention.

【図3】この発明に係るドラフトレギュレータの第二実
施例の断面形状を示す説明図である。
FIG. 3 is an explanatory view showing a cross-sectional shape of a second embodiment of the draft regulator according to the present invention.

【符号の説明】[Explanation of symbols]

1 ボイラ室 2 ボイラ 3 排気筒 4 集合排気筒 5 煙突 10 ドラフトレギュレータ 11 第一筒部 12 第二筒部 13 テーパ部 14 流通空間 15 第二テーパ部 16 液受け部 17 排液管 DESCRIPTION OF SYMBOLS 1 Boiler room 2 Boiler 3 Exhaust cylinder 4 Collecting exhaust cylinder 5 Chimney 10 Draft regulator 11 First cylinder section 12 Second cylinder section 13 Taper section 14 Flow space 15 Second taper section 16 Liquid receiving section 17 Drain pipe

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) F23L 17/02 F23L 17/16 F23L 17/00 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) F23L 17/02 F23L 17/16 F23L 17/00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 複数の燃焼装置の各排気筒3を集合排気
筒4に接続してなる集合排気装置において、前記各排気
筒3には、排気ガス流入側の第一筒部11と、排気ガス
流出側の第二筒部12とからなり、前記第一筒部11の
下流側の所定の長さの部分を第二筒部12の上流側の内
側に径方向に所定の間隔をおいて配置するとともに、前
記第一筒部11の下流側に先細りのテーパ部13を形成
し、前記第一筒部11と前記第二筒部12との間に、第
二筒部12の内部と外気を連通する流通空間14を形成
したことを特徴とする集合排気装置
An exhaust pipe 3 of a plurality of combustion devices is collectively exhausted.
In the collective exhaust device connected to the cylinder 4, the exhaust
The first cylinder 11 on the exhaust gas inflow side and the exhaust gas
And the second cylindrical portion 12 on the outflow side.
A portion having a predetermined length on the downstream side is defined as a portion on the upstream side of the second cylindrical portion 12.
At a predetermined distance in the radial direction on the side
A tapered portion 13 is formed on the downstream side of the first cylindrical portion 11.
And, between the first cylindrical portion 11 and the second cylindrical portion 12,
Forming a circulation space 14 that communicates the inside of the two cylindrical portions 12 with the outside air
A collective exhaust device characterized in that:
JP08239826A 1996-08-21 1996-08-21 Collective exhaust system Expired - Lifetime JP3132397B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08239826A JP3132397B2 (en) 1996-08-21 1996-08-21 Collective exhaust system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08239826A JP3132397B2 (en) 1996-08-21 1996-08-21 Collective exhaust system

Publications (2)

Publication Number Publication Date
JPH1061942A JPH1061942A (en) 1998-03-06
JP3132397B2 true JP3132397B2 (en) 2001-02-05

Family

ID=17050434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08239826A Expired - Lifetime JP3132397B2 (en) 1996-08-21 1996-08-21 Collective exhaust system

Country Status (1)

Country Link
JP (1) JP3132397B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005050212A1 (en) * 2005-10-20 2007-05-03 SenerTec Kraft-Wärme-Energiesysteme GmbH Exhaust gases joining device for use in heating system, has exhaust gas lines provided in connecting piece and comprising injectors at their ends, where injectors have smaller cross section than lines
JP2009019846A (en) * 2007-07-13 2009-01-29 Masaji Furukawa Combustion apparatus
DE102014103447A1 (en) * 2014-03-13 2015-09-17 Viessmann Werke Gmbh & Co Kg heating system

Also Published As

Publication number Publication date
JPH1061942A (en) 1998-03-06

Similar Documents

Publication Publication Date Title
JP4466667B2 (en) High-humidity air-utilizing gas turbine, control device for high-humidity air-utilizing gas turbine, and control method for high-humidity air-utilizing gas turbine
JP5867742B2 (en) Combustion device with solid fuel burner
JP3404981B2 (en) Gas heating device
JP2009019869A (en) Apparatus/method for cooling combustion chamber/venturi in low nox combustor
MX2010011944A (en) Low nox burner.
JP3132397B2 (en) Collective exhaust system
JPS5827216Y2 (en) burner assembly
SE463330B (en) BRAENN CHAMBER LIVES WITH FLOATING BRAENSLE POWERED HEAT MAGGES
KR101008683B1 (en) Burner for DPF System
CN110553262A (en) Low-nitrogen combustion device and combustion boiler
RU2062405C1 (en) Combustion chamber
JP7132096B2 (en) gas turbine combustor
JP4145188B2 (en) Oil burner
JP2759306B2 (en) Nitrogen oxide reduction burner
CN217276583U (en) Fatigue testing device for engine exhaust temperature sensor
JP4167121B2 (en) Liquid fuel low NOx combustion system
JP3253343B2 (en) Pulverized coal burning burner
CN211694881U (en) Low-nitrogen gas burner
MX2011008932A (en) Burner for a thermal post-combustion device.
JP2582266Y2 (en) Boiler having a two-stage combustion type combustion chamber with a burner located below the water level of the can
JPS6218802Y2 (en)
JP4022421B2 (en) Combustor
JP3025713B2 (en) Gas burner
CN111174205A (en) Low-nitrogen gas burner
JP3667837B2 (en) Burner

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071124

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081124

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081124

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091124

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091124

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121124

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131124

Year of fee payment: 13

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term