JP3132378B2 - Estimation method of electric line temperature - Google Patents

Estimation method of electric line temperature

Info

Publication number
JP3132378B2
JP3132378B2 JP08028625A JP2862596A JP3132378B2 JP 3132378 B2 JP3132378 B2 JP 3132378B2 JP 08028625 A JP08028625 A JP 08028625A JP 2862596 A JP2862596 A JP 2862596A JP 3132378 B2 JP3132378 B2 JP 3132378B2
Authority
JP
Japan
Prior art keywords
temperature
time
estimated
value
wind
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08028625A
Other languages
Japanese (ja)
Other versions
JPH09200949A (en
Inventor
啓一郎 高田
義文 蓑輪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP08028625A priority Critical patent/JP3132378B2/en
Publication of JPH09200949A publication Critical patent/JPH09200949A/en
Application granted granted Critical
Publication of JP3132378B2 publication Critical patent/JP3132378B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H6/00Emergency protective circuit arrangements responsive to undesired changes from normal non-electric working conditions using simulators of the apparatus being protected, e.g. using thermal images
    • H02H6/005Emergency protective circuit arrangements responsive to undesired changes from normal non-electric working conditions using simulators of the apparatus being protected, e.g. using thermal images using digital thermal images
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/22Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for distribution gear, e.g. bus-bar systems; for switching devices
    • H02H7/226Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for distribution gear, e.g. bus-bar systems; for switching devices for wires or cables, e.g. heating wires

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、とくに架空送電線
路等のより線構造の電線路の温度監視に好適な電線路の
温度推定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for estimating the temperature of an electric wire which is particularly suitable for monitoring the temperature of an electric wire having a stranded structure such as an overhead electric power transmission line.

【0002】[0002]

【従来の技術】従来、より線構造の架空送電線路等の各
種電線路の温度(電線温度)は、直接測温することがで
きないため、一般に、送電線路に設置した電力用電流変
成器(CT)の2次出力により通電電流を検出して間接
的に検出される。
2. Description of the Related Art Conventionally, since the temperature (wire temperature) of various electric lines such as an overhead transmission line having a stranded structure cannot be directly measured, generally a power current transformer (CT) installed in the transmission line is generally used. ) Is detected indirectly by detecting the energizing current based on the secondary output.

【0003】そして、通電電流が所定のしきい値に達す
ると、送電電流の過大に伴う電線の異常過熱からの保護
を図るため、電流継電器を作動し、遮断器の開放トリッ
プ等により送電を停止等している。
When the supplied current reaches a predetermined threshold value, a current relay is activated to stop the power transmission from being overheated due to an excessive transmission current, and the power transmission is stopped by an open trip of a circuit breaker or the like. Are equal.

【0004】しかし、前述のように、電線路の通電電流
を検出するのみでは、実際の電線路の温度を検出するこ
とができず、その現実的な熱的運用状態を監視すること
ができない等の不都合がある。
However, as described above, it is not possible to detect the actual temperature of the electric line only by detecting the current flowing through the electric line, and it is not possible to monitor the actual thermal operation state. There are inconveniences.

【0005】そこで、本出願の出願人は、特願平7−6
7090号の出願の明細書及び図面に記載の電線路の温
度監視方法を既に発明している。
Therefore, the applicant of the present application filed Japanese Patent Application No.
We have already invented a method for monitoring the temperature of an electrical line described in the specification and the drawings of the application No. 7090.

【0006】この既出願の温度監視方法は、監視線路の
通電電流の検出値から監視線路の電線内部の発生熱量に
基づく電線内部温度の推定値を演算して求め、通電電流
に基づく電線温度を推定する。
In the temperature monitoring method of this patent application, an estimated value of the wire internal temperature based on the amount of heat generated inside the wire of the monitoring line is calculated from the detected value of the current flowing through the monitoring line, and the wire temperature based on the flowing current is calculated. presume.

【0007】また、気温,日射強度等の各気象条件の検
出値から監視線路の電線表面の発生熱量に基づく電線表
面温度の推定値を演算して求め、各気象条件に基づく電
線温度を推定する。
Further, an estimated value of the electric wire surface temperature based on the amount of heat generated on the electric wire surface of the monitoring line is calculated from the detected values of each weather condition such as temperature and solar radiation intensity to estimate the electric wire temperature based on each weather condition. .

【0008】さらに、電線内部温度の推定値と電線表面
温度の推定値との差から監視線路の電線内部と電線表面
との温度差を求め、監視線路の電線表面温度の気温に応
じた設定値に前記温度差を加算し、各電線温度の推定値
を総合して監視線路の温度を求める。
Further, a temperature difference between the inside of the electric wire of the monitoring line and the surface of the electric wire is obtained from a difference between the estimated value of the internal temperature of the electric wire and the estimated value of the surface temperature of the electric wire. The temperature difference of the monitoring line is obtained by summing the estimated values of the electric wire temperatures.

【0009】この場合、監視線路の通電電流と、気温,
日射等の気象条件とに基づき、監視線路の電線温度が演
算によって推定され、電線温度そのものが検出される。
In this case, the current flowing through the monitoring line, the temperature,
Based on weather conditions such as insolation, the electric wire temperature of the monitoring line is estimated by calculation, and the electric wire temperature itself is detected.

【0010】そして、監視線路の温度を気象条件の補正
を加えて推定するため、過電流通電に伴う異常過熱の発
生等が実際の気象条件を考慮した高い精度で監視され
る。
Since the temperature of the monitoring line is estimated by correcting the weather conditions, the occurrence of abnormal overheating due to the overcurrent is monitored with high accuracy in consideration of the actual weather conditions.

【0011】ところで、前記の通電電流に基づく電線温
度の推定演算は、つぎの数1の指数関数式〈1〉により
行われる。
By the way, the calculation for estimating the electric wire temperature based on the supplied current is performed by the following exponential function <1>.

【0012】[0012]

【数1】 θin={Δθimax(In/Imax)k−θin-1}・[1−exp{−(tn−tn-1 )/Ti}]+θin-1=(Δθi−θin-1)・{1−exp(−Δt/Ti)}+ θin-1 …〈1〉 式中のtn,tn-1,…はつぎの各値である。[Number 1] θin = {Δθimax (In / Imax ) k -θi n-1} · [1-exp {- (t n -t n-1) / Ti}] + θi n-1 = (Δθi-θi n −1 ) · {1-exp (−Δt / Ti)} + θi n−1 ... <1> In the expression, t n , t n−1 ,.

【0013】tn,tn-1:n回目(今回),n-1回目
(前回)の演算時刻[分] Δt:演算(サンプリング・制御)の時間間隔(=tn
−tn-1) θin,θin-1:時刻tn,tn-1の推定温度(温度予測
値)[℃] In:時刻tnの電流センサの検出値(計測線路電流値)
[A] Imax :通電電流の基準値(公称許容電流値)[A] Δθimax:Imaxにおける飽和温度上昇値[℃] Ti:通電電流変化による温度変化時定数 k:電流比による内部発生熱量飽和値補正指数 そして、式中の(In/Imax)のべき指数kは内部発生
熱量飽和値補正指数であり、電線路の場合およそ2前後
の値である。
T n , t n-1 : n-th (current), n-1- th (previous) operation time [minutes] Δt: time interval of operation (sampling / control) (= t n
-T n-1) θi n, θi n-1: the time t n, t n-1 of the estimated temperature (temperature estimated value) [℃] In: Detection value of the current sensor at time t n (measured line current value)
[A] Imax: Reference value of energizing current (nominal allowable current value) [A] Δθimax: Saturation temperature rise value at Imax [° C] Ti: Temperature change time constant due to energizing current change k: Internally generated caloric saturation value due to current ratio Correction index The exponent k of (In / Imax) in the equation is an internally generated calorific value saturation correction index, which is about 2 in the case of an electric line.

【0014】また、前記既出願においてはΔθmax,θi
n を熱量として電線温度を求めているが、温度と熱量と
が比例関係にあるため、この熱量の演算式は実質的には
指数関数式〈1〉と同じである。
In the above-mentioned application, Δθmax, θi
Although the wire temperature is determined using n as the heat quantity, the equation for calculating the heat quantity is substantially the same as the exponential function equation <1> because the temperature and the heat quantity are in a proportional relationship.

【0015】さらに、前記の気温,日射強度等の気象条
件に基づく電線温度の推定演算も、指数関数式〈1〉と
同様の指数関数式により行える。
Further, the calculation for estimating the electric wire temperature based on the above-mentioned weather conditions such as the temperature and solar radiation intensity can also be performed by an exponential function similar to the exponential function <1>.

【0016】そして、前記既出願においては通電電流に
基づく電線内部温度と気象条件に基づく電線表面温度と
の温度差を気温に応じた設定温度に加算して監視線路の
温度を推定しているが、気象条件に基づく推定温度を気
温に基づく推定温度θan,日射強度に基づく推定温度θ
snとした場合、推定温度θin,θan,θsnを加算するつ
ぎの数2の推定演算式〈2〉から監視線路の温度θn を
推定しても同様の結果が得られる。
In the above-mentioned application, the temperature of the monitoring line is estimated by adding the temperature difference between the internal temperature of the electric wire based on the supplied current and the surface temperature of the electric wire based on weather conditions to a set temperature corresponding to the air temperature. Estimated temperature based on weather conditions, estimated temperature θan based on air temperature, estimated temperature θ based on insolation intensity
When sn is used, a similar result can be obtained by estimating the temperature θn of the monitoring line from the following estimating equation <2> in which the estimated temperatures θin, θan, and θsn are added.

【0017】[0017]

【数2】θn=θin+θan+θsn …〈2〉[Equation 2] θn = θin + θan + θsn ... <2>

【0018】[0018]

【発明が解決しようとする課題】前記従来の電線路の温
度推定方法の場合、監視線路は屋外に敷設され、その電
線温度が風による熱放散の影響を大きく受けて変動する
にもかかわらず、この影響を考慮しないため、実際には
電線温度の精度の高い推定が行えない問題点がある。
In the conventional method for estimating the temperature of an electric line, the monitoring line is laid outdoors, and although the electric line temperature fluctuates greatly due to the heat dissipation by wind, Since this effect is not taken into account, there is a problem in that highly accurate estimation of the wire temperature cannot be actually performed.

【0019】また、例えば実際の送電線路にあっては、
その固有抵抗が電線路の温度にしたがって増減変化し、
この変化によって通電電流に基づく監視線路の発熱量が
変わり、電線路の温度がその固有抵抗の温度変化に依存
して変化する。
For example, in an actual transmission line,
Its specific resistance increases and decreases according to the temperature of the wireway,
Due to this change, the amount of heat generated in the monitoring line based on the supplied current changes, and the temperature of the electric line changes depending on the temperature change of its specific resistance.

【0020】そのため、従来の電線路の温度推定方法の
場合、固有抵抗の温度変化によっても電線温度の推定誤
差が生じ、監視線路の温度を正確に推定できない問題点
がある。
Therefore, in the case of the conventional method for estimating the temperature of an electric line, there is a problem that an estimation error of the electric line temperature occurs due to the temperature change of the specific resistance, and the temperature of the monitoring line cannot be accurately estimated.

【0021】本発明は、風の影響を考慮して監視線路の
温度を推定し得るようにすることを目的とする。さらに
は、監視線路の固有抵抗の温度変化に基づく推定誤差を
排除して電線温度を一層正確に推定し得るようにするこ
とを目的とする。
An object of the present invention is to be able to estimate the temperature of a monitoring line in consideration of the influence of wind. Still another object of the present invention is to eliminate the estimation error based on the temperature change of the specific resistance of the monitoring line and to more accurately estimate the wire temperature.

【0022】[0022]

【課題を解決するための手段】前記の課題を解決するた
めに、請求項1の電線路の温度推定方法の場合、監視対
象の電線路(以下監視線路という)の通電電流に基づく
各時刻の電線温度の推定値と、気温,日射強度等の各気
象条件に基づく各時刻の電線温度の推定値とを加算して
前記監視線路の各時刻の電線温度を推定する電線路の温
度推定方法において、前記各推定値それぞれに各時刻の
風速の逆数の補正関数式を乗算して各時刻の前記各推定
値に風の影響の補正を施し、前記各推定値を、風の影響
を補正して求めるものであるまた、請求項2の電線路
の温度推定方法の場合、監視対象の監視線路の通電電流
に基づき、つぎの式の演算から電線温度の推定値を求
め、 θin=(Δθin−θi n-1 )・{1−exp(−Δt/Tin)}+θi n-1 tn,t n-1 :n回目(今回), n-1 回目(前回)の演算時刻 Δt:演算の時間間隔(=t n −t n-1 Tin:通電電流変化による温度変化時定数 θin,θi n-1 :時刻t n ,t n-1 の推定値(推定温度) Δθin:時刻t n の温度上昇値であり、Δθin=Δθimax(In/Imax) k In:時刻t n の電流センサの検出値 Imax :通電電流の基準値 Δθimax:Imaxにおける飽和温度上昇値 Ti:通電電流変化による温度変化時定数 k:電流比による内部発生熱量飽和値補正指数 気温,日射強度に基づき、つぎの式の演算から各気象条
件に基づく前記監視線路の推定値を求め、 θan=(An−θa n-1 )・{1−exp(−Δt/Ta)}+θa n-1 θsn=(Δθsmax・Sn−θs n-1 )・[1−exp{−(t n −t n-1 )/Ts } ]+θs n-1 =(Δθs−θs n-1 )・{1−exp(−Δt/Ts)}+θs n-1 θan,θa n-1 :時刻t n ,t n-1 の気温に基づく推定値(推定温度) Ssn,Ss n-1 :時刻t n ,t n-1 の日射に基づく推定値(推定温度) An :時刻t n の計測気温 Sn :時刻t n の計測日射強度 Δθsmax:日射強度飽和温度上昇値 Δθs:時刻t n の温度上昇値 Ta :気温変化による温度変化時定数 Ts :日射強度変化による温度変化時定数 前記各推定値θin,θan,θsnを加算して前記監視線路
の温度θn(=θin+θan+θsn)を推定する電線路の
温度推定方法において、 前記推定値θinにつき、温度上
昇値Δθin,温度変化時定数Tinにつぎの補正関数式f
i1 (Wn),f i2 (Wn)それぞれを乗算して風の影響の
補正を施し、 i1 (Wn)=α 1 /(Wn+β 1 )+γ 1 i2 (Wn)=α 2 /(Wn+β 2 )+γ 2 Wn:時刻t n の風速 α 1 ,α 2 ,β 1 ,β 2 ,γ 1 ,γ 2 :定数 前記推定値θanにつき、温度変化時定数Taにつぎの補
正関数式fa(Wn)を乗算して風の影響の補正を施
し、 fa(Wn)=α 3 /(Wn+β 3 )+γ 3 Wn:時刻t n の風速 α 3 ,β 3 ,γ 3 :定数 前記推定値θsnにつき、温度上昇値Δθs,温度変化時
定数Tsにつぎの補正関数式f s1 (Wn),f s2 (Wn)
を乗算して風の影響の補正を施し、 s1 (Wn)=α 4 /(Wn+β 4 )+γ 4 s2 (Wn)=α 5 /(Wn+β 5 )+γ 5 Wn:時刻t n の風速 α 4 ,α 5 ,β 4 ,β 5 ,γ 4 ,γ 5 :定数 前記各推定値θin,θan,θsnを、風の影響を補正して
求めるものである。
According to a first aspect of the present invention, there is provided a method for estimating a temperature of an electric line, which is based on a current flowing through an electric line to be monitored (hereinafter referred to as a monitoring line).
The estimated value of the electric wire temperature at each time, temperature, temperature of the electric lines of estimating the electric wire temperature at each time of the monitoring line by adding the estimated value of the electric wire temperature at each time based on the weather conditions, such as solar irradiance In the estimation method, each of the estimated values is
Multiplying the reciprocal of the wind speed by the correction function formula and estimating the above at each time
Subjected to correction of the influence of the wind on the value, the respective estimated values, and requests to correct the effects of the wind. Further, the electric wire path according to claim 2
In the case of the method for estimating the temperature of
The estimated value of the wire temperature is calculated from the following formula based on
Because, θin = (Δθin-θi n -1) · {1-exp (-Δt / Tin)} + θi n-1 tn, t n-1: n -th (time), the calculation of n-1 th (last) time Delta] t: calculation of the time interval (= t n -t n-1 ) Tin: energizing current change due to the temperature change time constant θin, θi n-1: the time t n, the estimated value of t n-1 (estimated temperature) Derutashitain : a temperature rise value of the time t n, Δθin = Δθimax (in / Imax) k in: current sensor at time t n detection value Imax: the reference value of the energizing current Derutashitaimax: saturation in Imax temperature rise Ti: energizing current Temperature change time constant k due to change k: Index of correction of internally generated calorific value by current ratio Based on temperature and solar radiation intensity, each weather condition is calculated from the following formula.
An estimated value of the monitoring line based on the condition is obtained, and θan = (An−θan −1 ) · {1-exp (−Δt / Ta)} + θan −1 θsn = (Δθsmax · Sn−θsn −1 ) · [1-exp {- ( t n -t n-1) / Ts}] + θs n-1 = (Δθs-θs n-1) · {1-exp (-Δt / Ts)} + θs n-1 θan , θa n-1: time t n, t n-1 of the estimated value based on the temperature (estimated temperature) Ssn, Ss n-1: time t n, the estimated value based on the solar radiation of t n-1 (estimated temperature) An : time t n of measuring air temperature Sn: measurement irradiance at time t n Derutashitasmax: irradiance saturation temperature rise value .DELTA..theta.s: time t n of the temperature rise value Ta: change in temperature time constant due to temperature change Ts: temperature change due to the solar radiation intensity change The time constant is added to the estimated values θin, θan, θsn and the monitoring line is added.
Estimate the temperature θn (= θin + θan + θsn)
In the temperature estimation method, the estimated value θin
The following correction function formula f is added to the rising value Δθin and the temperature change time constant Tin.
i1 (Wn) and f i2 (Wn) are multiplied by
Subjected to correction, f i1 (Wn) = α 1 / (Wn + β 1) + γ 1 f i2 (Wn) = α 2 / (Wn + β 2) + γ 2 Wn: wind speed α 1 of the time t n, α 2, β 1 , β 2 , γ 1 , γ 2 : constants For the above-mentioned estimated value θan, the following addition is made to the temperature change time constant Ta.
The effect of wind is corrected by multiplying the positive function expression fa (Wn).
And, fa (Wn) = α 3 / (Wn + β 3) + γ 3 Wn: time t n of the wind speed α 3, β 3, γ 3 : per constant the estimated value Shitasn, the temperature rise value .DELTA..theta.s, temperature changes
The following correction function expressions f s1 (Wn) and f s2 (Wn) are added to the constant Ts.
Multiplied by the subjected to a correction of the influence of wind, f s1 (Wn) = α 4 / (Wn + β 4) + γ 4 f s2 (Wn) = α 5 / (Wn + β 5) + γ 5 Wn: wind speed of time t n α 4, α 5, β 4, β 5, γ 4, γ 5: constant each estimate θin, θan, the Shitasn, to correct the effects of the wind
Is what you want.

【0023】したがって、通電電流、各気象条件それぞ
れに基づく電線温度の推定値が風による熱放散の影響を
排除して正確に求められ、これらの推定値を総合するこ
とにより、風の影響を排除して精度よく監視線路の温度
が推定される。
Therefore, the estimated value of the electric wire temperature based on the energizing current and each weather condition can be accurately obtained without the influence of the heat dissipation due to the wind, and the influence of the wind is eliminated by integrating these estimated values. Then, the temperature of the monitoring line is accurately estimated.

【0024】また、請求項の電線温度の推定方法にお
いては、通電電流に基づく電線温度の推定値θinの温度
上昇値Δθinを、風の影響の補正関数式f i1 (Wn)及
びつぎの監視線路の固有抵抗の温度変化の影響の補正関
数式f(Rt)を乗算して補正し、 f(Rt)=1+1/{Rt/(θi n-1 −20)+1} Rt:固有抵抗であり、Rt 0 を温度t 0 における固有抵
抗とすると、Rt=Rt 0 {1+αt 0 (t−t 0 )} 前記推定値θinの温度変化時定数Tinを、風の影響の補
正関数式f i2 (Wn),前記補正関数式(Rt)に基づ
き、つぎの式により補正し、 Tin={Ti/f(Rt)}・f i2 (Wn)電電流に基づく電線温度の推定値を、風の影響及び監
視線路の固有抵抗の温度変化の影響を補正して求める。
In the method for estimating a wire temperature according to a third aspect of the present invention, the temperature of the estimated value θin of the wire temperature based on the supplied current is calculated.
The rise value Δθin is calculated using the correction function f i1 (Wn)
Correction of the effect of temperature change on the specific resistance of the next monitoring line
Corrected by multiplying the equation f (Rt), f (Rt ) = 1 + 1 / {Rt / (θi n-1 -20) +1} Rt: a resistivity, uniquely Rt 0 at temperature t 0 resistance
Assuming that Rt = Rt 0 {1 + αt 0 (t−t 0 )} The temperature change time constant Tin of the estimated value θin is compensated for by the effect of wind.
Based on the positive function formula f i2 (Wn) and the correction function formula (Rt)
Can, corrected by the following equation, Tin = {Ti / f ( Rt)} · f i2 (Wn) an estimate of the electric wire temperature based on passing Denden flow, wind effects and audit
It is obtained by correcting the influence of the temperature change of the specific resistance of the line of sight.

【0025】したがって、監視線路の固有抵抗の温度変
化の影響を受ける,通電電流に基づく電線温度の推定値
が、風の影響を排除し、しかも、その固有抵抗の温度変
化に応じた補正を施して求められ、一層正確に監視線路
の温度が推定される。
Therefore, the estimated value of the electric wire temperature based on the flowing current, which is affected by the temperature change of the specific resistance of the monitoring line, eliminates the influence of the wind and performs a correction according to the temperature change of the specific resistance. The temperature of the monitoring line is more accurately estimated.

【0026】[0026]

【発明の実施の形態】本発明の実施の1形態につき、図
1ないし図6を参照して説明する。ここでは、風の影響
及び監視線路の固有抵抗の温度変化の影響の両方の補正
を施し、補正後の各推定値θin,θan,θsnに基づき、
数2の推定演算式〈2〉から監視線路の温度を推定す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described with reference to FIGS. Here, both the effect of wind and the effect of temperature change of the specific resistance of the monitoring line are corrected, and based on the corrected estimated values θin, θan, θsn,
The temperature of the monitoring line is estimated from the estimation operation formula <2> of Expression 2.

【0027】そして、説明の便宜上、まず、監視線路の
固有抵抗値の温度変化の影響の補正について説明する。
監視線路が送電線路の場合、温度t[℃]における固有
抵抗Rtは、つぎの数3の演算式〈3〉で示される温度
0[℃]の定質量抵抗温度係数αt0[℃-1]により決
まり、数4の演算式〈4〉で求まる。
Then, for convenience of explanation, first, correction of the influence of temperature change of the specific resistance value of the monitoring line will be described.
When the monitoring line is a transmission line, the specific resistance Rt at the temperature t [° C.] is a constant mass resistance temperature coefficient α t0 [° C. −1 ] of the temperature t 0 [° C.] represented by the following equation (3). ], And is obtained by the arithmetic expression <4> of Expression 4.

【0028】[0028]

【数3】 式中のCは電線路の導電率[%],t0は電線路の温度
[℃]である。
(Equation 3) In the equation, C is the conductivity [%] of the electric line, and t 0 is the temperature [° C.] of the electric line.

【0029】[0029]

【数4】 Rt=Rt0{1+αt0(t−t0)} …〈4〉Rt = Rt 0 {1 + α t0 (t−t 0 )}... <4>

【0030】式中のRt0 は温度t0 [℃]における固
有抵抗である。そして、演算式〈3〉からも明らかなよ
うに監視線路の温度t0 [℃]により定質量抵抗温度係
数αt0が定まり、この温度係数αt0によって固有抵抗R
tが左右されるため、監視線路の温度t0 が変化すれ
ば、温度係数αt0が変化して固有抵抗Rtが変化する。
Rt 0 in the equation is a specific resistance at a temperature t 0 [° C.]. As is apparent from the operation formula <3>, the constant mass resistance temperature coefficient α t0 is determined by the monitoring line temperature t 0 [° C.], and the specific resistance R is determined by the temperature coefficient α t0 .
Since t depends, if the temperature t 0 of the monitoring line changes, the temperature coefficient α t0 changes and the specific resistance Rt changes.

【0031】さらに、固有抵抗Rtの温度変化により監
視線路の通電電流に基づく発熱量が変化してその温度が
変化する。そのため、固有抵抗Rtの温度変化を考慮し
なければ、監視線路の温度を正確に推定することができ
ない。
Further, the amount of heat generated based on the current flowing through the monitoring line changes due to the temperature change of the specific resistance Rt, and the temperature changes. Therefore, unless the temperature change of the specific resistance Rt is considered, the temperature of the monitoring line cannot be accurately estimated.

【0032】そこで、前記の指数関数式〈1〉に固有抵
抗Rtの温度変化の補正関数式f(Rt)を加え、指数関
数式〈1〉の固定された温度上昇値Δθi,温度変化時
定数Tiを,補正関数式f(Rt)を含む関数式の温度上
昇値Δθin,温度変化時定数Tin に変更したつぎの数
5の指数関数式〈5〉から通電電流に基づく電線温度を
推定し、通電電流に基づく電線温度の推定値(推定温度
θin)を、固有抵抗Rtの温度変化の補正を施して求め
る。
Therefore, a correction function f (Rt) for the temperature change of the specific resistance Rt is added to the exponential function equation <1>, and the fixed temperature rise value Δθi and the temperature change time constant of the exponential function equation <1> are obtained. From the following exponential function expression <5> in which Ti is changed to a temperature rise value Δθin and a temperature change time constant Tin of a function expression including a correction function expression f (Rt), an electric wire temperature based on the current is estimated, An estimated value (estimated temperature θin) of the electric wire temperature based on the supplied current is obtained by correcting the temperature change of the specific resistance Rt.

【0033】[0033]

【数5】θin=(Δθin−θin-1)・{1−exp(Δ
t/Tin)}+θin-1 …〈5〉 この式〈5〉中の温度
上昇値Δθin,温度変化時定数Tin は補正関数式f(R
t)を乗数とするつぎの数6の式〈6a〉,〈6b〉で
示される。
Equation 5] θin = (Δθin-θi n- 1) · {1-exp (- Δ
t / Tin)} + θi n-1 <5> The temperature rise value Δθin and the temperature change time constant Tin in the equation <5> are calculated by the correction function f (R
Expressions <6a> and <6b> of the following Expression 6 using t) as a multiplier are shown.

【0034】[0034]

【数6】 Δθin=(In/Imax)2・Δθimax・f(Rt)・fi1(Wn)…〈6a〉 Tin={Ti/f(Rt)}・fi2(Wn)…〈6b〉 なお、関数式〈6a〉,〈6b〉のfi1(Wn),fi2
(Wn)は後述の風速の補正関数式である。
Equation 6 Δθin = (In / Imax) 2 · Δθimax · f (Rt) · f i1 (Wn) ··· <6a> Tin = {Ti / f (Rt)} · f i2 (Wn) ··· <6b> , F i1 (Wn) and f i2 of the function formulas <6a> and <6b>
(Wn) is a wind speed correction function formula described later.

【0035】そして、補正関数式f(Rt)は、実験等に
基づき、具体的には、固有抵抗Rtと前回(時刻t
n-1 )の推定温度θin-1 とに基づくつぎの数7の式
〈7〉で示されることが判明した。
The correction function formula f (Rt) is calculated based on experiments and the like, and specifically, the specific resistance Rt and the previous value (time t
n-1 ) based on the estimated temperature θi n−1 , it is found that the following equation (7) is obtained.

【0036】[0036]

【数7】 f(Rt)=1+1/{Rt/(θi n-1 −20)+1}…〈7〉 つぎに、風による熱放散に伴う電線温度の補正について
説明する。
F (Rt) = 1 + 1 / {Rt / ( θin - 1−20) +1} (7) Next, the correction of the electric wire temperature accompanying the heat dissipation by the wind will be described.

【0037】まず、風による熱放散は予測時点,すなわ
ち時刻tn の風速Wn に依存して変化し、通電電流及び
各気象条件の基づく推定温度θin,θan,θsnそれぞれ
に比較的大きく影響する。
Firstly, heat dissipation by the wind prediction time, i.e. vary depending on wind Wn at time t n, applied current and the estimated temperature θin based of each weather conditions, Shitaan, a relatively large impact on each Shitasn.

【0038】一方、気温,日射強度に基づく推定温度θ
an,θsnの演算式は、風による熱放散の影響を無視した
場合、前記指数関数式〈1〉と同様のつぎの数8,数9
の指数関数式〈8〉,〈9〉で示される。
On the other hand, the estimated temperature θ based on the temperature and the solar radiation intensity
When the effect of heat dissipation due to wind is ignored, the arithmetic expressions of an and θsn are the following Expressions 8 and 9 similar to the exponential function expression <1>.
Are represented by exponential function expressions <8> and <9>.

【0039】[0039]

【数8】 θan=(An−θan-1)・{1−exp(−Δt/Ta)}+θan-1 …〈8〉[Equation 8] θan = (An−θan −1 ) · {1-exp (−Δt / Ta)} + θan −1 ... <8>

【数9】 θsn=(Δθsmax・Sn−θsn-1)・[1−exp{−(tn−tn-1)/Ts } ]+θsn-1=(Δθs−θsn-1)・{1−exp(−Δt/Ts)}+θsn-1 …〈9〉 両指数関数〈8〉,〈9〉中のθan-1,θsn-1,…はつ
ぎの各値である。
Equation 9] θsn = (Δθsmax · Sn-θs n-1) · [1-exp {- (t n -t n-1) / Ts}] + θs n-1 = (Δθs-θs n-1) · {1-exp (-Δt / Ts )} + θs n-1 ... <9> both exponential <8>, θa n-1 in <9>, θs n-1 , ... are the values of Hatsugi.

【0040】θan,θan-1:時刻tn,tn-1の気温に基
づく推定温度[℃] Ssn,Ssn-1:時刻tn,tn-1の日射に基づく推定温度
[℃] An :時刻tnの計測気温[℃] Sn :時刻tnの計測日射強度[KW/m2] Δθsmax:日射強度飽和温度上昇値 Ta :気温変化による温度変化時定数 Ts :日射強度変化による温度変化時定数
[0040] θan, θa n-1: time t n, the estimated temperature [℃] based on the temperature of t n-1 Ssn, Ss n -1: time t n, the estimated temperature based on the solar radiation of t n-1 [℃ by solar radiation intensity variation:] An: time t measured temperatures n [℃] Sn: time t n of measuring solar irradiance [KW / m 2] Δθsmax: irradiance saturation temperature rise value Ta: change in temperature time constant due to temperature changes Ts Temperature change time constant

【0041】そして、数1,数8,数9の各指数関数式
〈1〉,〈8〉,〈9〉において、温度上昇値Δθi,
Δθsの時刻tnの値Δθin,Δθsn 及び時定数Ti,T
a,Ts の時刻tnの値Tin,Tan,Tsn は、いずれも
同時刻tn の風速Wn [m/s]に対してほぼ図6の実
線の特性を有することが実験等によって判明した。
Then, in each of the exponential function expressions <1>, <8>, <9> of Expressions 1, 8, and 9, the temperature rise values Δθi,
The value of the time t n of Δθs Δθin, Δθsn and the time constant Ti, T
The values of a, the time t n of Ts Tin, Tan, Tsn is to have a solid characteristic of approximately 6 both with respect to wind speed Wn at the same time t n [m / s] has been found by experiment or the like.

【0042】そこで、各推定温度θin,θan,θsnを求
める指数関数式〈1〉,〈8〉,〈9〉の温度上昇値Δ
θi,Δθs,温度変化時定数Tin,Ta,Ts それぞれ
に風の影響の補正関数式を乗算し、風の影響を補正して
排除する。
Therefore, the temperature rise value Δ of the exponential function formulas <1>, <8>, <9> for obtaining the estimated temperatures θin, θan, θsn
.theta.i, .DELTA..theta.s, and temperature change time constants Tin , Ta, and Ts are each multiplied by a correction function for the influence of the wind to correct and eliminate the influence of the wind.

【0043】すなわち、通電電流に基づく推定温度θin
については、指数関数式〈5〉の温度上昇値Δθin,温
度変化時定数Tinを、指関数式〈1〉の温度上昇値Δ
θi,温度変化時定数Ti に式〈6a〉,〈6b〉の風
速Wn の補正関数式fi1(Wn),fi2(Wn)を乗算し
た関数式とし、指数関数式〈5〉から求める。
That is, the estimated temperature θin based on the supplied current
The temperature rise value Δθin exponential formula <5>, the temperature change time constant Tin, the temperature rise value of the exponential equation <1> delta
θi and the temperature change time constant Ti are multiplied by the correction functions f i1 (Wn) and f i2 (Wn) of the wind speed Wn in the equations <6a> and <6b>, and are obtained from the exponential function equation <5>.

【0044】また、気温に基づく推定温度θanについて
は、指数関数式〈8〉の温度変化時定数Ta に風速Wn
の補正関数式fa(Wn)を乗算したつぎの数10の指数
関数式〈10〉から求める。
The estimated temperature θan based on the air temperature is calculated by adding the wind speed Wn to the temperature change time constant Ta of the exponential function equation <8>.
From the following exponential function expression <10> multiplied by the correction function expression fa (Wn).

【0045】[0045]

【数10】 θan=(An−θan-1)・[1−exp{−Δt/(Ta・fa(Wn))}]+θa n-1 =(An−θan-1)・{1−exp(−Δt/Tn)}+θan-1 …〈10〉## EQU10 ## θan = (An−θa)n-1) · [1−exp {−Δt / (Ta · fa (Wn))}] + θa n-1 = (An-θan-1) · {1-exp (−Δt / Tn)} + θan-1 … <10>

【0046】さらに、日射強度に基づく推定温度θsnに
ついては、指数関数式〈9〉の温度上昇値Δθs , 温
度変化時定数Ts に風速Wn の補正関数式fs1(W
n),fs2(Wn)を 乗算したつぎの数11の指数関数
式〈11〉から求める。
[0046] Further, for the estimated temperature θsn based on solar irradiance, temperature rise value of the exponential function expression <9> .DELTA..theta.s, correction function expression f s1 (W wind speed Wn to temperature change time constant Ts
n) and f s2 (Wn) are multiplied by an exponential function equation <11> of the following Expression 11.

【0047】[0047]

【数11】 θsn=Δθs・fs1(Wn)・[1−exp{−Δt/(Ts・fs2(Wn))} ]+θsn-1 …〈11〉Equation 11] θsn = Δθs · f s1 (Wn ) · [1-exp {-Δt / (Ts · f s2 (Wn))}] + θs n-1 ... <11>

【0048】そして、各補正関数式fi1(Wn)〜fs2
(Wn)は、実験等に基づき、それぞれ風速Wn に基づ
くつぎの数12の式〈12a〉,〈12b〉,…,〈1
2e〉で示されることが判明した。
Then, each correction function expression f i1 (Wn) to f s2
(Wn) is based on experiments and the like, and the following equations (12a), <12b>,.
2e>.

【0049】[0049]

【数12】 fi1(Wn)=α1 /(Wn+β1 )+γ1 …〈12a〉 fi2(Wn)=α2 /(Wn+β2 )+γ2 …〈12b〉 fa(Wn)=α3 /(Wn+β3)+γ3 …〈12c〉 fs1(Wn)=α4 /(Wn+β4)+γ4 …〈12d〉 fs2(Wn)=α5 /(Wn+β5)+γ5 …〈12e〉 各式中のα1〜α5,β1〜β5,γ1〜γ5はそれぞれ定数
であり、電線の種類によって異なり、実験等によって得
られている適当な値に設定される。
F i1 (Wn) = α 1 / (Wn + β 1 ) + γ 1 ... <12a> f i2 (Wn) = α 2 / (Wn + β 2 ) + γ 2 ... <12b> fa (Wn) = α 3 / (Wn + β 3) + γ 3 ... <12c> f s1 (Wn) = α 4 / (Wn + β 4) + γ 4 ... <12d> f s2 (Wn) = α 5 / (Wn + β 5) + γ 5 ... <12e> each formula Α 1 to α 5 , β 1 to β 5 , and γ 1 to γ 5 are constants, which vary depending on the type of electric wire, and are set to appropriate values obtained by experiments and the like.

【0050】そして、指数関数式〈5〉,〈10〉,
〈11〉により通電電流,気温,日射強度に基づく電線
温度の推定値(推定温度θin,θan,θsn)を求め、そ
れらを推定演算式〈2〉により加算して総合し、610
mm2 の銅心アルミより線ACSRの監視線路の温度θn
を推定したところ、その通電電流,日射強度,風速,気
温が図2,図3,図4,図5の実線ハ,ニ,ホ,ヘに示
すように変化する条件下のおいて、図1に示す結果が得
られた。
Then, exponential function expressions <5>, <10>,
The estimated values (estimated temperatures θin, θan, θsn) of the electric wire temperature based on the supplied current, the air temperature, and the solar radiation intensity are obtained by <11>, and they are added by the estimation operation formula <2> and integrated to obtain 610.
temperature θn of mm 2 of copper heart aluminum than line ACSR of monitoring line
As a result, under the conditions in which the supplied current, insolation intensity, wind speed, and air temperature change as shown by the solid lines c, d, e, and f in FIGS. 2, 3, 4, and 5, FIG. The result shown in FIG.

【0051】同図において、太線イが風の影響及び監視
線路の固有抵抗の温度変化の影響を補正して推定した監
視線路の温度であり、細線ロはその実測温度である。そ
して、図1からも明らかなように風の影響及び監視線路
の固有抵抗の温度変化の影響を考慮することにより、極
めて高精度に監視線路の温度を推定することができる。
In the figure, the bold line a indicates the temperature of the monitoring line estimated by correcting the influence of the wind and the temperature change of the specific resistance of the monitoring line, and the thin line B indicates the measured temperature. As apparent from FIG. 1, the temperature of the monitoring line can be estimated with extremely high accuracy by taking into account the influence of the wind and the effect of the temperature change of the specific resistance of the monitoring line.

【0052】また、推定演算式〈2〉により各推定θi
n,θan,θsnを加算する代わりに、前記既出願のよう
に電線の内部温度,表面温度を求めて総合し、監視線路
の温度を推定してもよいのは勿論である。
Further, each estimated θi is calculated by the
Instead of adding n, θan, and θsn, it is a matter of course that the temperature of the monitoring line may be estimated by obtaining and integrating the internal temperature and the surface temperature of the electric wire as in the above-mentioned application.

【0053】[0053]

【発明の効果】本発明は、以下に記載する効果を奏す
る。まず、通電電流,各気象条件に基づく各電線温度の
推定値を、風の影響を補正して求めたため、風による熱
放散の影響を排除して監視線路の電線温度を正確に求め
て推定することができ、監視線路の熱的運用状態を精度
よく監視して異常過熱発生時の保守,制御等を行うこと
ができる。
The present invention has the following effects. First, since the estimated value of each electric wire temperature based on the energized current and each weather condition was obtained by correcting the effect of wind, the effect of heat dissipation due to wind was eliminated and the electric wire temperature of the monitoring line was accurately obtained and estimated. It is possible to accurately monitor the thermal operation state of the monitoring line and perform maintenance and control when abnormal overheating occurs.

【0054】また、通電電流に基づく電線温度の推定値
を、風の影響だけでなく監視線路の固有抵抗の温度変化
の影響をも補正して求めると、通電電流に基づく電線温
度をより高精度に推定することができ、監視線路の電線
温度を一層正確に求めて推定することができる。
Further, when the estimated value of the wire temperature based on the flowing current is obtained by correcting not only the effect of the wind but also the effect of the temperature change of the specific resistance of the monitoring line, the wire temperature based on the flowing current can be obtained with higher accuracy. Thus, it is possible to more accurately obtain and estimate the electric wire temperature of the monitoring line.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の1形態の監視線路の電線温度の
推定値と実測値の比較説明図である。
FIG. 1 is an explanatory diagram for comparing an estimated value and an actually measured value of an electric wire temperature of a monitoring line according to an embodiment of the present invention.

【図2】図1の監視線路の通電電流の変化の説明図であ
る。
FIG. 2 is an explanatory diagram of a change in a current flowing through a monitoring line in FIG. 1;

【図3】図1の監視線路の日射強度の変化の説明図であ
る。
FIG. 3 is an explanatory diagram of a change in the solar radiation intensity of the monitoring line in FIG. 1;

【図4】図1の監視線路の風速の変化の説明図である。FIG. 4 is an explanatory diagram of a change in wind speed of a monitoring line in FIG. 1;

【図5】図1の監視線路の温度の変化の説明図である。FIG. 5 is an explanatory diagram of a change in temperature of the monitoring line in FIG. 1;

【図6】図1の推定値の演算パラメータの風速変化の特
性図である。
FIG. 6 is a characteristic diagram of a change in wind speed of a calculation parameter of the estimated value in FIG. 1;

【符号の説明】[Explanation of symbols]

イ 監視線路の温度の推定値 ロ 監視線路の温度の実測値 B. Estimated value of monitoring line temperature b. Actual measured value of monitoring line temperature

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H02H 6/00 H02H 5/04 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int. Cl. 7 , DB name) H02H 6/00 H02H 5/04

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 監視対象の電線路(以下監視線路とい
う)の通電電流に基づく各時刻の電線温度の推定値と、
気温,日射強度等の各気象条件に基づく各時刻の電線温
度の推定値とを加算して前記監視線路の各時刻の電線
度を推定する電線路の温度推定方法において、前記各推定値それぞれに各時刻の風速の逆数の補正関数
式を乗算して各時刻の前記各推定値に風の影響の補正を
施し、 前記各推定値を、風の影響を補正して求めることを特徴
とする電線路の温度推定方法。
An estimated value of an electric wire temperature at each time based on a current flowing through an electric line to be monitored (hereinafter referred to as a monitored line) ;
Temperature, the temperature estimation method of the electric lines of estimating the time of the electric wire temperature <br/> degree of the monitored line by adding the estimated value of the electric wire temperature at each time based on the weather conditions, such as solar irradiance, the Correction function of reciprocal of wind speed at each time for each estimated value
Multiply the equation to correct the effect of wind on the estimated values at each time.
Subjected, each of said estimated values, the temperature estimation method of the electric wire path, characterized in that obtained by correcting the influence of the wind.
【請求項2】 監視対象の監視線路の通電電流に基づ
き、つぎの数1の式の演算から電線温度の推定値を求
め、 【数1】 θin=(Δθin−θi n-1 )・{1−exp(−Δt/Tin)}+θi n-1 tn,t n-1 :n回目(今回), n-1 回目(前回)の演算時刻 Δt:演算の時間間隔(=t n −t n-1 Tin:通電電流変化による温度変化時定数 θin,θi n-1 :時刻t n ,t n-1 の推定値(推定温度) Δθin:時刻t n の温度上昇値であり、Δθin=Δθimax(In/Imax) k In:時刻t n の電流センサの検出値 Imax :通電電流の基準値 Δθimax:Imaxにおける飽和温度上昇値 Ti:通電電流変化による温度変化時定数 k:電流比による内部発生熱量飽和値補正指数 気温,日射強度に基づき、つぎの数2の式の演算から各
気象条件に基づく前記監視線路の推定値を求め、 【数2】 θan=(An−θa n-1 )・{1−exp(−Δt/Ta)}+θa n-1 θsn=(Δθsmax・Sn−θs n-1 )・[1−exp{−(t n −t n-1 )/Ts } ]+θs n-1 =(Δθs−θs n-1 )・{1−exp(−Δt/Ts)}+θs n-1 θan,θa n-1 :時刻t n ,t n-1 の気温に基づく推定値(推定温度) Ssn,Ss n-1 :時刻t n ,t n-1 の日射に基づく推定値(推定温度) An :時刻t n の計測気温 Sn :時刻t n の計測日射強度 Δθsmax:日射強度飽和温度上昇値 Δθs:時刻t n の温度上昇値 Ta :気温変化による温度変化時定数 Ts :日射強度変化による温度変化時定数 前記各推定値θin,θan,θsnを加算して前記監視線路
の温度θn(=θin+θan+θsn)を推定する電線路の
温度推定方法において、 前記推定値θinにつき、温度上昇値Δθin,温度変化時
定数Tinにつぎの数3の補正関数式f i1 (Wn),f i2
(Wn)それぞれを乗算して風の影響の補正を施し、 【数3】 i1 (Wn)=α 1 /(Wn+β 1 )+γ 1 i2(Wn)=α2/(Wn+β2 )+γ2 Wn:時刻t n の風速 α 1 ,α 2 ,β 1 ,β 2 ,γ 1 ,γ 2 :定数 前記推定値θanにつき、温度変化時定数Taにつぎの数
4の補正関数式fa(Wn)を乗算して風の影響の補正
を施し、 【数4】fa(Wn)=α 3 /(Wn+β 3 )+γ 3 Wn:時刻t n の風速 α 3 ,β 3 ,γ 3 :定数 前記推定値θsnにつき、温度上昇値Δθs,温度変化時
定数Tsにつぎの数5の補正関数式f s1 (Wn),f
s2 (Wn)を乗算して風の影響の補正を施し、 【数5】 s1 (Wn)=α 4 /(Wn+β 4 )+γ 4 s2 (Wn)=α 5 /(Wn+β 5 )+γ 5 Wn:時刻t n の風速 α 4 ,α 5 ,β 4 ,β 5 ,γ 4 ,γ 5 :定数 前記各推定値θin,θan,θsnを、風の影響を補正して
求めることを特徴とする電線路の温度推定方法。
(2)Based on the current flowing through the monitoring line to be monitored
Then, an estimated value of the wire temperature is calculated from the following equation (1).
, (Equation 1)θin = (Δθin−θi n-1 ) · {1-exp (-Δt / Tin)} + θi n-1  tn, t n-1 : The nth time (this time), n-1 Second (previous) calculation time Δt: calculation time interval (= t n -T n-1 ) Tin: Temperature change time constant due to change in energizing current θin, θi n-1 : Time t n , T n-1 Estimated value (estimated temperature) Δθin: time t n Δin = Δθimax (In / Imax) k  In: time t n Current sensor detection value Imax: Reference value of the conducting current Δθimax: Saturation temperature rise value at Imax Ti: Time constant of temperature change due to change in conduction current k: Correction index for internally generated calorific value saturation value based on current ratio Based on the temperature and solar irradiance, each of
Obtain an estimated value of the monitoring line based on weather conditions, (Equation 2)θan = (An−θa n-1 ) · {1-exp (−Δt / Ta)} + θa n-1  θsn = (Δθsmax · Sn−θs n-1 ) · [1-exp {− (t n -T n-1 ) / Ts} ] + Θs n-1 = (Δθs−θs n-1 ) · {1-exp (-Δt / Ts)} + θs n-1  θan, θa n-1 : Time t n , T n-1 Estimated value based on temperature (estimated temperature) Ssn, Ss n-1 : Time t n , T n-1 Value based on solar radiation (estimated temperature) An: time t n Measured air temperature Sn: time t n Measured solar radiation intensity Δθsmax: Insolation intensity saturation temperature rise Δθs: time t n Temperature rise Ta: Temperature change time constant due to temperature change Ts: Time constant of temperature change due to change of solar radiation intensity The estimated values θin, θan, θsn are added and the monitoring line
Estimate the temperature θn (= θin + θan + θsn)
In the temperature estimation method, For the estimated value θin, the temperature rise value Δθin, when the temperature changes
The correction function f of the following equation 3 is added to the constant Tin. i1 (Wn), f i2
(Wn) Multiply each to correct for wind effects, (Equation 3)f i1 (Wn) = α 1 / (Wn + β 1 ) + Γ 1  fi2(Wn) = αTwo/ (Wn + βTwo ) + ΓTwo Wn: time t n Wind speed α 1 , Α Two , Β 1 , Β Two , Γ 1 , Γ Two :constant For the estimated value θan, the temperature change time constant Ta
Correction of wind effect by multiplying by the correction function formula fa (Wn)
Subject to (Equation 4)fa (Wn) = α Three / (Wn + β Three ) + Γ Three Wn: time t n Wind speed α Three , Β Three , Γ Three :constant For the estimated value θsn, the temperature rise value Δθs,
The correction function f of the following equation 5 is added to the constant Ts. s1 (Wn), f
s2 (Wn) to correct for wind effects, (Equation 5)f s1 (Wn) = α Four / (Wn + β Four ) + Γ Four f s2 (Wn) = α Five / (Wn + β Five ) + Γ Five Wn: time t n Wind speed α Four , Α Five , Β Four , Β Five , Γ Four , Γ Five :constant The above estimated values θin, θan, θsn are corrected for the effect of wind.
A method for estimating the temperature of an electric line, which is characterized by being obtained.
【請求項3】 通電電流に基づく電線温度の推定値θin
の温度上昇値Δθinを、風の影響の補正関数式f i1 (W
n)及びつぎの数6の監視線路の固有抵抗の温度変化の
影響の補正関数式f(Rt)を乗算して補正し、 【数6】f(Rt)=1+1/{Rt/(θi n-1 −20)+1} Rt:固有抵抗であり、Rt 0 を温度t 0 における固有抵
抗とすると、Rt=Rt 0 {1+αt 0 (t−t 0 )} 前記推定値θinの温度変化時定数Tinを、風の影響の補
正関数式f i2 (Wn),前記補正関数式(Rt)に基づ
き、つぎの数7の式により補正し、 【数7】Tin={Ti/f(Rt)}・f i2 (Wn) 前記通電電流に基づく電線温度の推定値を、風の影響及
び監視線路の固有抵抗の温度変化の影響を補正して求め
ることを特徴とする請求項2記載の電線路の温度推定方
法。
3. An estimated value θin of an electric wire temperature based on a flowing current.
Of the temperature rise value Δθin is corrected by the correction function f i1 (W
n) and the following equation 6
Effect of the correction function expression f a (Rt) corrected by multiplying, [6] f (Rt) = 1 + 1 / {Rt / (θi n-1 -20) +1} Rt: a resistivity, the Rt 0 Inherent resistance at temperature t 0
Assuming that Rt = Rt 0 {1 + αt 0 (t−t 0 )} The temperature change time constant Tin of the estimated value θin is compensated for by the effect of wind.
Based on the positive function formula f i2 (Wn) and the correction function formula (Rt)
Then, correction is made by the following equation (7). Tin = {Ti / f (Rt)}. Fi2 (Wn) The estimated value of the wire temperature based on the current is calculated by the influence of wind.
Of the specific resistance of the monitoring and monitoring lines by compensating for the effects of temperature changes.
3. The method according to claim 2, wherein the temperature of the electric line is estimated.
Law.
JP08028625A 1996-01-22 1996-01-22 Estimation method of electric line temperature Expired - Fee Related JP3132378B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08028625A JP3132378B2 (en) 1996-01-22 1996-01-22 Estimation method of electric line temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08028625A JP3132378B2 (en) 1996-01-22 1996-01-22 Estimation method of electric line temperature

Publications (2)

Publication Number Publication Date
JPH09200949A JPH09200949A (en) 1997-07-31
JP3132378B2 true JP3132378B2 (en) 2001-02-05

Family

ID=12253746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08028625A Expired - Fee Related JP3132378B2 (en) 1996-01-22 1996-01-22 Estimation method of electric line temperature

Country Status (1)

Country Link
JP (1) JP3132378B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19946808A1 (en) * 1999-09-29 2001-04-19 Bosch Gmbh Robert Electric starter device for an internal combustion engine
EP1324454B1 (en) * 2001-12-21 2006-05-10 ABB Schweiz AG Determining an operational limit of a power transmission line
EP1887673A1 (en) * 2006-08-11 2008-02-13 Abb Research Ltd. Parameter estimation of a thermal model of a power line
JP4624400B2 (en) 2007-11-19 2011-02-02 株式会社オートネットワーク技術研究所 Electric wire protection method and electric wire protection device for vehicle

Also Published As

Publication number Publication date
JPH09200949A (en) 1997-07-31

Similar Documents

Publication Publication Date Title
JP5377362B2 (en) Load circuit protection device
JP4624400B2 (en) Electric wire protection method and electric wire protection device for vehicle
US7400482B2 (en) Circuit breaker and method for sensing current indirectly from bimetal voltage and determining bimetal temperature and corrected temperature dependent bimetal resistance
EP0421892A1 (en) Circuit breaker with an electronic release
CN111458551B (en) Current measuring device, current measuring method and calibration method
CN111542760B (en) System and method for correcting current value of shunt resistor
JP3132378B2 (en) Estimation method of electric line temperature
EP3348978B1 (en) Temperature measurement device using thermocouple
US7239496B2 (en) Distance protective relay using a programmable thermal model for thermal protection
JPH08242533A (en) Method for monitoring temperature of electric line
JP3100512B2 (en) Method and apparatus for diagnosing overheating of contact portion of air interrupter
US10036670B2 (en) Systems and methods for peak junction temperature sensing and thermal safe operating area protection
JP2991107B2 (en) Method of determining temperature and solar radiation intensity for weather monitoring
JP3127767B2 (en) Monitoring method of electric wire temperature
JP3129181B2 (en) How to determine load limit of electric line
JP2014027875A (en) Protector of load circuit
US10886090B2 (en) Method and device for protecting an electrical architecture
JPH0530637A (en) Overheat detecting and notifying method at conductive part
US7952311B2 (en) Method and apparatus for variation of a rated current
JPH06303791A (en) Method of compensating temperature of secondary resistor of induction motor
JPH0812221B2 (en) DC power transmission system fault location device
JPH07123332B2 (en) Conductive part overheat detection method
US20240195168A1 (en) Method and control circuit for operating a switching element of an electrical component in order to avoid overheating by electrical dissipated heat, and an electrical component having the control circuit
JP3435919B2 (en) Induction motor vector control device
JP3711634B2 (en) Induction machine control method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081124

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees