JP3130698B2 - Wing shape of tailless aircraft - Google Patents

Wing shape of tailless aircraft

Info

Publication number
JP3130698B2
JP3130698B2 JP05042708A JP4270893A JP3130698B2 JP 3130698 B2 JP3130698 B2 JP 3130698B2 JP 05042708 A JP05042708 A JP 05042708A JP 4270893 A JP4270893 A JP 4270893A JP 3130698 B2 JP3130698 B2 JP 3130698B2
Authority
JP
Japan
Prior art keywords
wing
angle
leading edge
aircraft
attack
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05042708A
Other languages
Japanese (ja)
Other versions
JPH06255588A (en
Inventor
田 茂 雄 吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Jukogyo KK filed Critical Fuji Jukogyo KK
Priority to JP05042708A priority Critical patent/JP3130698B2/en
Publication of JPH06255588A publication Critical patent/JPH06255588A/en
Application granted granted Critical
Publication of JP3130698B2 publication Critical patent/JP3130698B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Toys (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は水平尾翼を有しない航空
機(以下、無尾翼航空機という)の翼形状に係り、特に
失速特性とステルス性能等を改良した無尾翼航空機の翼
形状に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wing shape of an aircraft having no horizontal tail (hereinafter referred to as a tailless aircraft), and more particularly to a wing shape of a tailless aircraft having improved stall characteristics and stealth performance.

【0002】[0002]

【従来の技術】一般に前進翼は翼の付根部(翼根部)か
ら失速する傾向があり、これは高迎角飛行時に翼端失速
(Tip Stall )が遅く、高迎角において舵の効きが良い
ということであり、良好な高迎角飛行性を得る翼形とし
て知られている。また、前進翼は、衝撃波の実効Sweep
角が通常の翼より大きく、遷音速で良好なマニューバビ
リティーを得る翼形ということも知られている。このた
め、主翼を前進翼とし、主翼の後縁部に制御舵面を設け
た無尾翼航空機が提案されている(特開昭59−733
96号公報参照)。
2. Description of the Related Art In general, a forward wing tends to stall from the root of the wing (wing root). This causes a tip stalling (Tip Stall) at a high angle of attack, and the rudder works well at a high angle of attack. That is, it is known as an airfoil for obtaining good high angle of attack flight. In addition, the effective wing of the shock wave
It is also known that the airfoil has a larger angle than normal wings and provides good maneuverability at transonic speeds. For this reason, a tailless aircraft has been proposed in which the main wing is a forward wing and a control control surface is provided at the trailing edge of the main wing (Japanese Patent Laid-Open No. 59-733).
No. 96).

【0003】このような無尾翼航空機では、一般に良好
な高迎角飛行性を有するが、高迎角飛行時に前進翼の翼
根部で早期に失速を生じるため、翼根部後縁に設けた制
御舵面のみでは機体の姿勢の維持が困難であった。
[0003] Such tailless aircraft generally have good high-angle-of-attack flight performance. However, during high-angle-of-attack flight, a stall occurs early in the wing root portion of the forward wing. It was difficult to maintain the attitude of the aircraft only on the surface.

【0004】これに対して従来の前進翼航空機は高迎角
飛行時の機体姿勢維持のために前翼(カナード)を設け
て、カナード後縁と主翼の翼根部後縁の制御舵面の協働
によって機体の姿勢を制御するようにしていた。
On the other hand, a conventional forward wing aircraft is provided with a front wing (canard) in order to maintain the attitude of the aircraft at a high angle of attack, and cooperates with a control surface of a rear edge of the canard and a rear edge of a wing root portion of a main wing. The attitude of the aircraft was controlled by the work.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記従
来の前進翼航空機のように、カナードを設けることは、
高迎角飛行時の主翼とのカップリングが難しいという問
題と、余分な翼(カナード)が増えたことによるレーダ
ー反射面積Radar Cross Section (RCS)の増大とい
う問題があった。
However, providing canards, as in the above-mentioned conventional forward wing aircraft,
There was a problem that it was difficult to couple with the main wing during high-angle-of-attack flight, and an increase in the radar reflection area Radar Cross Section (RCS) due to an increase in extra wings (canards).

【0006】ここで、カップリングが難しいとは、カナ
ードと機体と主翼の空力干渉の影響を考慮し、カナード
の舵面を制御するのが難しいということである。すなわ
ち、高迎角飛行時でカナードの舵を取る場合、舵角が小
さいとカナード自体の失速が起こって舵が効かなくな
り、また、重心位置の移動、他の舵面の舵角の変更等の
機体の状態変化によって相当大きなカナードの舵角の変
化が必要となるので、カナードの操舵角度は一般に大き
いが、高迎角飛行時のカナードの舵面の制御はその操舵
によって誘起されるカナードと主翼と機体の強く複雑な
空力干渉の影響を考慮して行わなければならず、適切な
舵角の制御が難しいということである。
[0006] Here, the fact that the coupling is difficult means that it is difficult to control the control surface of the canard in consideration of the influence of aerodynamic interference between the canard, the airframe, and the main wing. In other words, when steering the canard during a high angle of attack flight, if the steering angle is small, the stall of the canard itself will occur and the rudder will not work, and also the movement of the center of gravity position, the change of the rudder angle of other rudder surfaces, etc. Since the steering angle of the canard is generally large because the change in the state of the aircraft requires a considerable change in the steering angle of the canard, control of the control surface of the canard during a high angle of attack flight is controlled by the canard and main wing induced by the steering. And the influence of strong and complicated aerodynamic interference of the aircraft must be taken into account, and it is difficult to control the steering angle appropriately.

【0007】そこで、本発明の目的は、上記従来の前進
翼航空機の問題を解決し、高迎角飛行時の操舵制御が容
易であり、かつ、失速特性とステルス性能が良好な無尾
翼航空機の翼形状を提供することにある。
Accordingly, an object of the present invention is to solve the above-mentioned problems of the conventional forward wing aircraft, and to provide a tailless wing aircraft that facilitates steering control during high-angle-of-attack flight and has good stall characteristics and stealth performance. It is to provide a wing shape.

【0008】[0008]

【課題を解決するための手段】本発明による無尾翼航空
機の翼形状は、菱形翼を含む内翼と前進翼の外翼を一体
に組み合わせて前縁キンクを有する主翼を構成し、主翼
の内翼部後縁にエレボンと外翼部後縁にエルロンとを設
け、外翼部の前進角を34°ないし40°、内翼部の前
縁角を68°ないし78°、前縁キンクのスパン位置を
外翼のエクスポーズドウィングの35%ないし56%と
したことを特徴とするものである。
The wing shape of the tailless aircraft according to the present invention is such that a main wing having a leading edge kink is formed by integrally combining an inner wing including a rhombic wing and an outer wing of a forward wing. An elevon is provided at the trailing edge of the wing portion and an aileron is provided at the trailing edge of the outer wing portion. The advancing angle of the outer wing portion is 34 ° to 40 °, the leading edge angle of the inner wing portion is 68 ° to 78 °, and the span of the leading edge kink. The position is 35% to 56% of the exposed wing of the outer wing.

【0009】[0009]

【作用】本発明による無尾翼航空機の翼形状は、菱形翼
を含む内翼部と前進翼の外翼部とを一体に組み合わせ
て、前縁キンクを有する主翼を構成し、この主翼の内翼
部後縁にエレボン、外翼部後縁にエルロンを設けてい
る。上記菱形翼と前進翼の組み合わせにより、菱形翼前
縁からの安定した剥離渦流の効果で主翼の翼根部の剥離
が遅れ、又、前進翼の効果により翼端部の剥離が遅れ
る。この内翼部後縁と外翼部後縁にそれぞれエレボンと
エルロンを設けていることにより、エルロンとエレボン
の効き及び激しいロールを抑制するロールダンピングを
高迎角まで確保することができる。また、主翼の吹き上
げの場にカナード等の制御舵面がないので、カナードの
操舵による主翼への空力干渉がなく、より操舵制御が容
易な無尾翼航空機の翼を得ることができる。
According to the wing shape of the tailless aircraft according to the present invention, a main wing having a leading edge kink is formed by integrally combining an inner wing portion including a rhombic wing and an outer wing portion of a forward wing. The rear edge of the outer wing is provided with an elevon and the aileron is provided at the rear edge. By the combination of the rhombic wing and the forward wing, the separation of the root portion of the main wing is delayed by the effect of the stable separation eddy current from the leading edge of the rhombic wing, and the separation of the wing tip is delayed by the effect of the forward wing. By providing the elevon and the aileron at the inner wing trailing edge and the outer wing trailing edge, respectively, it is possible to secure the effect of the aileron and the elevon and roll damping for suppressing a violent roll up to a high angle of attack. Further, since there is no control surface such as a canard in the field where the main wing is blown up, there is no aerodynamic interference with the main wing due to the steering of the canard, and it is possible to obtain a wing of a tailless aircraft with easier steering control.

【0010】また、本発明による無尾翼航空機の翼形状
は、カナードを有する従来の前進翼航空機の翼形状に比
し、RCSの減少、機体表面の凹凸の減少により、ステ
ルス性能の向上を図ることができる。
In addition, the wing shape of the tailless aircraft according to the present invention is improved in stealth performance by reducing the RCS and the unevenness of the body surface, as compared with the wing shape of a conventional forward wing aircraft having a canard. Can be.

【0011】[0011]

【実施例】本発明の一実施例について添付の図面を用い
て以下に説明する。図1は本発明による翼形状を有する
無尾翼航空機を示している。無尾翼航空機1は、機体2
の両側に主翼3を有し、機体2上方後部に垂直尾翼4を
有している。主翼3は菱形翼5を含む内翼部6と前進翼
からなる外翼部7とを有している。外翼部7と内翼部6
は点aで前縁キンクされている。内翼部6の後縁にはエ
レボン8、外翼部7の後縁にはエルロン9がそれぞれ設
けられている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to the accompanying drawings. FIG. 1 shows a tailless aircraft having a wing shape according to the present invention. Tailless aircraft 1
Has a main wing 3 on both sides thereof, and a vertical tail 4 at an upper rear portion of the fuselage 2. The main wing 3 has an inner wing portion 6 including a rhombus wing 5 and an outer wing portion 7 composed of a forward wing. Outer wing 7 and inner wing 6
Is kinked at the point a. An elevon 8 is provided at a rear edge of the inner wing portion 6, and an aileron 9 is provided at a rear edge of the outer wing portion 7.

【0012】本実施例の外翼部7の前進翼の前進角(−
ΛFSW )は40°内翼部6の菱形翼の前縁後退角
(Λ)は68°前縁キンクaのスパン位置η′LEKINK
は、主翼3のエクスポーズドウィングの40%に設定さ
れている。
In this embodiment, the forward wing of the forward wing of the outer wing portion 7 (-
Λ FSW ) is the swept position of the leading edge of the rhombic wing of the 40 ° inner wing 6 (Λ s ) is the span position of the leading edge kink a 68 ° LEKINK
Is set to 40% of the exposed wing of the wing 3.

【0013】上記構成の主翼3の作用について図2を用
いて以下に説明する。
The operation of the main wing 3 having the above configuration will be described below with reference to FIG.

【0014】図2は本発明による翼形状の渦流の様子を
説明している。菱形翼5は一般に図2の(a)部に示す
ように前縁から渦流が生じ、翼の前縁部は剥離域となる
が、翼根部では前縁剥離渦の吹き下ろしの効果で剥離が
生じにくくなる。一方、前進翼7は、図2の(b)部に
示すように、翼の先端から剥離渦流が発生し、この渦流
は翼根部において後方に流れて翼根部が剥離域となる
が、翼端部ではなかなか剥離を生じない。本発明の翼形
状は上記菱形翼と前進翼とを組み合わせたものであり、
図2の(c)部に示すように、菱形翼5の前縁からの渦
流と前進翼7の先端からの渦流が平行になって主翼3の
スパン中央部を横切る。すなわち、主翼3の中央部の一
部のみが剥離域となり、翼根部と翼端部、双方でなかな
か剥離を生じない。この剥離状態で、内翼部6の後縁に
設けられるエレボン8と外翼部7の後縁に設けられるエ
ルロン9(図1参照)はなお、揚力を生じることができ
るので、高迎角飛行時まで操舵力を保持することができ
る。
FIG. 2 illustrates the state of a wing-shaped eddy current according to the present invention. As shown in FIG. 2 (a), the rhombus blade 5 generally generates a vortex from the leading edge, and the leading edge of the blade becomes a separation region. However, separation occurs at the root of the blade due to the effect of the leading edge separation vortex flowing down. Less likely to occur. On the other hand, in the forward wing 7, as shown in FIG. 2B, a separated vortex is generated from the tip of the wing, and this vortex flows backward at the blade root and the blade root becomes a separated area. In the part, peeling does not easily occur. The wing shape of the present invention is a combination of the rhombic wing and the forward wing,
As shown in FIG. 2C, the eddy current from the leading edge of the rhombic wing 5 and the eddy current from the tip of the forward wing 7 are parallel and cross the center of the span of the main wing 3. That is, only a part of the central portion of the main wing 3 becomes a separation area, and separation does not easily occur at both the blade root portion and the blade tip portion. In this peeled state, the elevon 8 provided on the trailing edge of the inner wing 6 and the aileron 9 (see FIG. 1) provided on the trailing edge of the outer wing 7 can still generate a lift, so that a high angle of attack flight The steering force can be maintained until time.

【0015】この翼形状でさらに迎角を大きくすると、
図2の(d)部に示すように、内翼部6と外翼部7の広
い範囲で剥離が生じる。
If the angle of attack is further increased with this wing shape,
As shown in FIG. 2D, separation occurs in a wide range of the inner wing 6 and the outer wing 7.

【0016】次に本発明による翼形状の菱形翼の前縁後
退角Λと、前進翼の前進角−ΛFSW と、前縁キンクの
位置η′LEKINKの制限について説明する。
[0016] and the leading edge sweep angle lambda s diamond blade of blade shape according to the present invention then, a forward angle 1-? FSW forward wing limitations position η 'LEKINK the leading edge kink be described.

【0017】本発明による無尾翼航空機の主翼は、内翼
部6の剥離を遅らせることによってその作用を発揮する
が、前縁後退角Λが所定値以下になると、いかなる迎
角においても渦の流速が急激に減少して揚力が減少する
ブレイクダウン現象を生じる。
The main wing tailless aircraft according to the present invention include, but exerts its effect by delaying the release of the inner blade portion 6, before the edge sweep angle lambda s is equal to or less than a predetermined value, the vortices in any angle of attack A breakdown phenomenon occurs in which the flow velocity sharply decreases and the lift decreases.

【0018】図3は薄板によるデルタ翼の風試結果を示
している。図3において横軸は前縁後退角Λを示し、
縦横は主翼後縁において渦のブレイクダウンを生じる迎
角αBD-TE を示している。
FIG. 3 shows a wind test result of a delta wing made of a thin plate. The horizontal axis represents the leading edge sweep angle lambda s 3,
The vertical and horizontal directions indicate the angle of attack α BD-TE that causes a vortex breakdown at the trailing edge of the wing.

【0019】種々の前縁後退角Λに対して、渦のブレ
イクダウンを生じる迎角αBD-TE が図中の線Pの近傍に
プロットされる。図3より明らかなように、前縁後退角
Λが55°で渦のブレイクダウンを生じる迎角α
BD-TE はほぼ0°となる。この試験結果から、前縁後退
角Λ55°をΛの下限とする。
For various leading edge receding angles Λ s , the angle of attack α BD-TE that causes vortex breakdown is plotted near line P in the figure. As it is clear from FIG. 3, the leading edge sweep angle lambda s is the angle of attack to produce a breakdown of the vortex at 55 ° alpha
BD-TE is almost 0 °. From the test results, the leading edge sweep angle lambda s 55 ° the lower limit of lambda s.

【0020】また、本発明の主翼3では前縁キンクaの
後方で早期失速を生じるので、エレボン8は前縁キンク
aの内側に設けなければ、操舵の効きを維持することが
できない。前縁キンクaのスパン位置η′LEKINKを過小
にするとエレボン8の操舵ボリュームが不足する。上記
実施例の無尾翼航空機1は、舵面/翼根部のコード長の
比を平均的な値0.11としているが、既存の航空機の
舵面/翼根部のコード比の最大値0.12を採用する場
合を考慮して十分な舵面面積を確保するためη′LEKINK
=0.35をη′LEKINKの下限とする。
Further, in the main wing 3 of the present invention, the stall occurs early behind the leading edge kink a, so that the steering effect cannot be maintained unless the elevon 8 is provided inside the leading edge kink a. If the span position η ' LEKINK of the leading edge kink a is made too small , the steering volume of the elevon 8 becomes insufficient. In the tailless aircraft 1 of the above embodiment, the ratio of the control surface / wing root portion cord length is an average value of 0.11, but the maximum value of the control surface / wing root code ratio of the existing aircraft is 0.12. Η ′ LEKINK in order to secure a sufficient control surface area in consideration of
= 0.35 is the lower limit of η ' LEKINK .

【0021】また、前進角−ΛFSW は、前進翼としての
効果から決定され、本発明では前進角−ΛFSW =34°
を前進角−ΛFSW の下限とする。
The advance angle -Λ FSW is determined from the effect of the forward wing, and in the present invention, the advance angle -Λ FSW = 34 °
Is the lower limit of the advance angle-Λ FSW .

【0022】次に上記前進角−ΛFSW (≧34°)と前
縁後退角Λ(≧55°)と前縁キンクのスパン位置
η′LEKINK(≧0.35)の制限の下で、良好な高迎角
飛行性を有する翼形状の範囲について説明する。
Next, under the restrictions of the advancing angle −Λ FSW (≧ 34 °), the leading edge receding angle s s (≧ 55 °), and the span position η ′ LEKINK (≧ 0.35) of the leading edge kink, The range of the wing shape having good high angle of attack flight will be described.

【0023】図4は、翼根部のほぼ全域で剥離域となる
迎角を縦軸に、翼端部ほぼ全域で剥離域となる迎角を横
軸にし、前進角−ΛFSW 、前縁後退角Λ、前縁キンク
のスパン位置η′LEKINKの組合せ(−ΛFSW ,Λ
η′LEKINK)から特定される翼形をプロットするように
したグラフである。
[0023] Figure 4, the vertical axis angle of attack of the stripping zone at substantially the entire blade root, and the angle of attack as a stripping zone at the blade tip almost the entire area on the horizontal axis, the advancing angle 1-? FSW, front edge sweep Combination of angle Λ s , leading edge kink span position η ′ LEKINK (−Λ FSW , s s ,
η ′ LEKINK ) is a graph in which the airfoil shape specified from the plot is plotted.

【0024】理論的には、翼根部のほぼ全域で剥離域と
なる迎角と翼端部のほぼ全域で剥離域となる迎角が等し
くなる図4の直線X上がもっとも高迎角まで操舵の効き
を維持できることとなる。しかし、上記前進角−
ΛFSW 、前縁後退角Λ、前縁キンクのスパン位置η′
LEKINKの制限と、実用的にバランスの良い剥離を生じる
翼形状は図4に示す領域A内の翼形状であることが判明
した。ここで領域Aは、−ΛFSW の下限値を含む点P1
(34°、68°,042)、η′LEKINGの上限値を含
む点P2 (40°,68°,0.56)、実施例の翼形
状を表わす点P3 (40°,68°,0.42)、Λ
の上限値を含む点P4 (40°,78°,0.42)に
よって概略囲まれた領域である。
Theoretically, on the straight line X in FIG. 4 in which the angle of attack, which is the separation area in almost the entire area of the blade root, and the angle of attack, which is the separation area in almost the entire area of the blade tip, are steered to the highest angle of attack. Can be maintained. However, the advance angle-
Λ FSW , leading edge swept angle Λ s , leading edge kink span position η '
It has been found that the wing shape in which the limitation of LEKINK and the separation that is practically well-balanced are the wing shape in the region A shown in FIG. Here, the area A is a point P1 including the lower limit of -Λ FSW.
(34 °, 68 °, 042), the point P2 (40 °, 68 °, 0.56) including the upper limit of η ' LEKING , and the point P3 (40 °, 68 °, 0. 42), Λ s
Is an area roughly surrounded by a point P4 (40 °, 78 °, 0.42) including the upper limit value of.

【0025】最終的な風洞実験では、上記実施例の主翼
3は、実用化可能であることが確認できた。
In the final wind tunnel experiment, it was confirmed that the main wing 3 of the above embodiment can be put to practical use.

【0026】[0026]

【発明の効果】上記説明から明らかなように本発明の無
尾翼航空機の翼形状は、菱形翼を含む内翼部と、前進翼
の外翼部を組み合わせて前縁キンクを有する主翼を構成
し、主翼の内翼部後縁にエレボン、外翼部後縁にエルロ
ンを設けているので、菱形翼と前進翼の作用により、エ
レボンとエルロンの操舵の効きとロールダンピングが高
迎角まで維持され、高迎角飛行性に優れた無尾翼航空機
の翼形状を得ることができる。
As is clear from the above description, the wing shape of the tailless aircraft of the present invention is such that a main wing having a leading edge kink is constituted by combining an inner wing portion including a rhombus wing and an outer wing portion of a forward wing. The main wing is provided with an elevon at the trailing edge of the inner wing and an aileron at the trailing edge of the outer wing, so that the rhombic wing and forward wing function to maintain the effectiveness of elevon and aileron steering and roll damping up to a high angle of attack. Thus, it is possible to obtain a wing shape of a tailless aircraft excellent in high angle of flight.

【0027】又、高迎角飛行時にエレボンの操舵力が維
持されることにより従来必要であったカナードを省略で
き、高迎角飛行時における主翼とカナードのカップリン
グの困難さを回避でき、操舵制御が容易になり、かつ、
RCS減少によるステルス性能の向上を図ることができ
る。
In addition, since the steering force of the elevon is maintained during the flight at a high angle of attack, the canard which was conventionally required can be omitted, and the difficulty of coupling of the main wing and the canard during the flight at a high angle of attack can be avoided. Control becomes easier, and
Stealth performance can be improved by reducing the RCS.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による翼形状を有する無尾翼航空機の一
実施例を示した平面図。
FIG. 1 is a plan view showing an embodiment of a tailless aircraft having a wing shape according to the present invention.

【図2】本発明による無尾翼航空機の翼形状の渦流剥離
の様子を説明した図。
FIG. 2 is a diagram illustrating a state of vortex separation of a wing shape of a tailless aircraft according to the present invention.

【図3】デルタ翼の前縁後退角Λs と主翼後縁において
前縁剥離渦のブレイクダウンを生じる角度αBD-TE の関
係を示したグラフ。
Figure 3 is a graph showing the angle α relationship BD-TE resulting in breakdown of the leading edge separation vortices at the leading edge sweep angle lambda s the wing trailing edge of the delta wing.

【図4】翼根部と翼端部で実用的にバランス良い剥離を
生じる翼形状の領域を示したグラフ。
FIG. 4 is a graph showing a wing-shaped region where practically well-balanced separation occurs at a blade root portion and a blade tip portion.

【符号の説明】[Explanation of symbols]

1 無尾翼航空機 3 主翼 5 菱形翼 6 内翼部 7 外翼部 8 エレボン 9 エルロン −ΛFSW 前進角 Λs 前縁後退角 η’LEKINK 前縁キンクのスパン位置DESCRIPTION OF SYMBOLS 1 Tailless aircraft 3 Main wing 5 Diamond wing 6 Inner wing part 7 Outer wing part 8 Elevon 9 Aileron -Λ FSW advance angle s s Leading edge receding angle η ' LEKINK Span position of leading edge kink

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) B64C 3/00 - 3/16 B64C 39/00 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) B64C 3/00-3/16 B64C 39/00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】無尾翼航空機の翼形状において、菱形翼
(5)を含む内翼部(6)と前進翼の外翼部(7)を一
体に組み合わせて前縁キンク(a)を有する主翼(3)
を構成し、主翼(3)の内翼部後縁にエレボン(8)、
外翼部後縁にエルロン(9)を設け、外翼部(7)の前
進翼の前進角(−ΛFSW )を34°ないし40°、内翼
部(6)の菱形翼(5)の前縁後退角(ΛS )を68°
ないし78°、前縁キンク(a) のスパン位置(η’
LEKINK)をエクスポーズドウィングの35%ないし56
%としたことを特徴とする無尾翼航空機の翼形状。
A wing having a leading edge kink (a) by integrally combining an inner wing (6) including a rhombus wing (5) and an outer wing (7) of a forward wing in a wing shape of a tailless aircraft. (3)
And an elevon (8) on the trailing edge of the inner wing portion of the main wing (3),
An aileron (9) is provided at the trailing edge of the outer wing, the advancing angle (−Λ FSW ) of the forward wing of the outer wing (7) is 34 ° to 40 °, and the rhombus (5) of the inner wing (6) is before edge sweep angle (Λ S) 68 °
To 78 °, the span position of the leading edge kink (a) (η '
LEKINK ) 35% to 56% of the exposed wing
Wing shape of tailless aircraft.
JP05042708A 1993-03-03 1993-03-03 Wing shape of tailless aircraft Expired - Fee Related JP3130698B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05042708A JP3130698B2 (en) 1993-03-03 1993-03-03 Wing shape of tailless aircraft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05042708A JP3130698B2 (en) 1993-03-03 1993-03-03 Wing shape of tailless aircraft

Publications (2)

Publication Number Publication Date
JPH06255588A JPH06255588A (en) 1994-09-13
JP3130698B2 true JP3130698B2 (en) 2001-01-31

Family

ID=12643576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05042708A Expired - Fee Related JP3130698B2 (en) 1993-03-03 1993-03-03 Wing shape of tailless aircraft

Country Status (1)

Country Link
JP (1) JP3130698B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7303694B2 (en) * 2019-08-07 2023-07-05 株式会社Subaru moving body

Also Published As

Publication number Publication date
JPH06255588A (en) 1994-09-13

Similar Documents

Publication Publication Date Title
US6098923A (en) Aircraft structure to improve directional stability
JP2933949B2 (en) Helicopter rotor blade, helicopter main rotor and helicopter
US4674709A (en) Airframe design
US4671473A (en) Airfoil
JP2624785B2 (en) Aircraft rotor blades
US4739957A (en) Strake fence flap
US4545552A (en) Airframe design
US6168383B1 (en) Rotor blade for rotary-wing aircraft
JP2001233295A (en) Rotor blade of rotor aircraft
US4378922A (en) Aircraft having improved strake configuration
US20070262205A1 (en) Retractable multiple winglet
JP4831337B2 (en) Vortex generator
JPS62299466A (en) Propeller
US4176813A (en) Shark nose for aircraft
US5062595A (en) Delta wing with lift enhancing flap
US6318677B1 (en) Method and apparatus for generating a stable leading-edge lifting-vortex controller
US4606519A (en) Airfoil
US11685519B2 (en) Wing tips and wing tip construction and design methods
JP4520306B2 (en) Transonic cruise aircraft
JPH1035591A (en) Propeller
JP4676633B2 (en) Rotor blade of rotorcraft
JP3130698B2 (en) Wing shape of tailless aircraft
JP2622670B2 (en) Supersonic aircraft wing
JP3644497B2 (en) Rotor blade of rotorcraft
JPS58500892A (en) leading edge vortex flap for wing

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071117

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081117

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091117

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091117

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees