JP3129604B2 - Constant air volume control device used for pneumatic transportation system - Google Patents

Constant air volume control device used for pneumatic transportation system

Info

Publication number
JP3129604B2
JP3129604B2 JP06143022A JP14302294A JP3129604B2 JP 3129604 B2 JP3129604 B2 JP 3129604B2 JP 06143022 A JP06143022 A JP 06143022A JP 14302294 A JP14302294 A JP 14302294A JP 3129604 B2 JP3129604 B2 JP 3129604B2
Authority
JP
Japan
Prior art keywords
air volume
constant
cone
air
constant air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP06143022A
Other languages
Japanese (ja)
Other versions
JPH0812075A (en
Inventor
山 佳 久 神
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nisshin Seifun Group Inc
Original Assignee
Nisshin Seifun Group Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Seifun Group Inc filed Critical Nisshin Seifun Group Inc
Priority to JP06143022A priority Critical patent/JP3129604B2/en
Publication of JPH0812075A publication Critical patent/JPH0812075A/en
Application granted granted Critical
Publication of JP3129604B2 publication Critical patent/JP3129604B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Air Transport Of Granular Materials (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、多管式空気輸送系に用
いられる定風量調節装置に関し、特に、集合管空気輸送
系の各枝管(輸送管)の所定箇所に設けられる定風量調
節装置(定風量バルブ)に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a constant air volume control device used in a multi-pipe air transport system, and more particularly to a constant air volume control device provided at a predetermined position of each branch pipe (transport pipe) of a collecting pipe air transport system. It relates to an apparatus (a constant air volume valve).

【0002】[0002]

【従来の技術】多管式空気輸送系は、多数の空気輸送管
(枝管)を有しているため、各輸送管において負荷変動
が発生した時、各輸送管の風量バランスがくずれてしま
うという問題を内在しているため、予め各輸送管の設定
風量は実際の定常空気輸送に必要な風量よりかなり大き
い風量に設定されていた。
2. Description of the Related Art Since a multipipe air transport system has a large number of air transport pipes (branches), when a load fluctuation occurs in each transport pipe, the air volume balance of each transport pipe is lost. Therefore, the set air volume of each transport pipe is previously set to an air volume considerably larger than the air volume required for actual steady air transport.

【0003】このため、本出願人は、負荷変動が生じて
も各輸送管の風量バランスを崩さず、設定風量を低く設
定でき、従って、風量および動力の節減が可能な多管式
空気輸送系を特公平1−34900号公報に、また、こ
のような空気輸送系を経済風速で運転するよう制御する
空気輸送方法を特公平1−17967号公報に開示して
いる。
[0003] For this reason, the applicant of the present invention can set the set air volume low without breaking the air volume balance of each transport pipe even if a load change occurs, and thus can reduce the air volume and the power, and thus can reduce the air volume and the power. And Japanese Patent Publication No. 1-17967 discloses a pneumatic transportation method for controlling such a pneumatic transportation system to operate at an economic wind speed.

【0004】ここに開示された多管式空気輸送系80
は、例えば、図6に示すように、ファン12と、フィル
タ14と、主管(集合管)Lとから構成され、主管Lは
多数の枝管(輸送管)L1 、L2 、・・・、Ln に分岐
し、各枝管L1 、L2 、・・・、Ln には、それぞれ定
風量調節装置(以下、定風量バルブと記述する。)
1、V2 、・・・、Vn と、サイクロンC1 、C2
・・・、Cn と、混合器M1、M2 、・・・、Mn とが
設けられている。また、この多管式空気輸送系80で
は、混合器M1 、M2 、・・・、Mn により粉粒体が適
度に混合された空気は、ファン12により各混合器
1 、M2 、・・・、Mn から各枝管L1 、L2 、・・
・、Ln 内に吸引され、サイクロンC1 、C2 、・・
・、Cn により粉粒体が分離され、フィルタ14により
除塵されて排気される。ここで、定風量バルブV 1 、・
・・、Vn は、定風量調節、即ち、各枝管における風量
を一定に保つ役目を果たすものである。
[0004] The multi-pipe air transport system 80 disclosed herein.
Is, for example, as shown in FIG.
And a main pipe (collecting pipe) L, and the main pipe L
Many branch pipes (transport pipes) L1, LTwo, ..., LnBranch to
And each branch pipe L1, LTwo, ..., LnIs set to
Air volume control device (hereinafter referred to as constant air volume valve)
V1, VTwo, ..., VnAnd cyclone C1, CTwo,
..., CnAnd the mixer M1, MTwo, ..., MnAnd
Is provided. Also, in this multi-pipe air transport system 80,
Is the mixer M1, MTwo, ..., MnSuitable for powder
The air mixed each time is supplied to each mixer by the fan 12.
M1, MTwo, ..., MnFrom each branch pipe L1, LTwo, ...
・, LnCyclone C1, CTwo, ...
・ 、 CnIs separated by the filter 14 and the filter 14
Dust is removed and exhausted. Here, the constant air volume valve V 1,
.., VnIs the constant air volume control, that is, the air volume in each branch pipe
It serves to keep the constant.

【0005】図7に、このような多管式空気輸送系80
の定風量バルブV1 、・・・、Vnとして用いられる、
本出願人の開示に係わる従来の定風量バルブの一例の模
式的断面図を示す。同図に示す定風量バルブ60は、絞
り部62を有するベンチュリ型ハウジング64を有し、
ハウジング64の絞り部付近には、流量調整部材である
コーン66がハウジング64の軸方向、即ち空気の流れ
方向に移動可能なように設置されている。また、コーン
66には1個の線形な圧縮コイルばね74が取り付けら
れ、空気流の上流方向(図中矢印と逆方向)へ付勢され
ている。なお、コーン66の基準位置は、粉粒体の輸送
量に応じて、流量調整基準値(設定風量値)を調整する
ことができるように、風量設定手段68を操作してシャ
フト70を軸方向に移動させることにより調節可能とな
っている。ここで参照符号72は、シャフト70の先端
に固定され、圧縮コイルばね74を受けるばね受けを表
す。
FIG. 7 shows such a multi-pipe air transport system 80.
Of constant air volume valve V 1, ···, it is used as V n,
1 shows a schematic cross-sectional view of an example of a conventional constant air volume valve according to the disclosure of the present applicant. The constant air volume valve 60 shown in the figure has a venturi-type housing 64 having a throttle portion 62,
A cone 66 as a flow rate adjusting member is installed near the throttle portion of the housing 64 so as to be movable in the axial direction of the housing 64, that is, in the direction of air flow. A single linear compression coil spring 74 is attached to the cone 66 and is urged in the upstream direction of the air flow (the direction opposite to the arrow in the figure). The reference position of the cone 66 is controlled by operating the air volume setting means 68 to move the shaft 70 in the axial direction so that the flow rate adjustment reference value (set air volume value) can be adjusted in accordance with the transported amount of the granular material. It can be adjusted by moving it. Here, reference numeral 72 denotes a spring receiver fixed to the tip of the shaft 70 and receiving the compression coil spring 74.

【0006】定風量バルブ60においては、コーン66
は、前記流量調整基準値に応じた基準位置を中心として
ハウジング64内の矢印で示すような空気流の風速が速
くなると、すなわち、空気の風圧が強まると、ばね74
が圧縮されて下流方向(図中矢印方向)に実線で示すよ
うに移動し、コーン66とハウジング64との隙間を狭
くし、すなわち絞り部62における流路の横断面積を減
少させて流れの抵抗を高め、風量を減ずる作用をする。
逆に、ハウジング64内の風速が減じて風圧が弱まる
と、ばね74は伸長してコーン66を上流方向(図中矢
印と逆方向)に点線で示すように移動させ、ハウジング
64との隙間を大きくし、すなわち絞り部62における
流路の横断面積を増大させて流れの抵抗を弱め、風量を
増大する作用をする。
In the constant air volume valve 60, the cone 66
When the wind speed of the air flow as indicated by an arrow in the housing 64 increases around the reference position corresponding to the flow rate adjustment reference value, that is, when the wind pressure of the air increases, the spring 74
Is compressed and moves in the downstream direction (the direction of the arrow in the figure) as shown by the solid line, and the gap between the cone 66 and the housing 64 is narrowed, that is, the cross-sectional area of the flow path in the throttle portion 62 is reduced to reduce the flow resistance. It acts to increase air flow and reduce air volume.
Conversely, when the wind speed in the housing 64 decreases and the wind pressure decreases, the spring 74 expands and moves the cone 66 in the upstream direction (the direction opposite to the arrow in the drawing) as indicated by the dotted line, and the gap with the housing 64 is reduced. It increases the cross-sectional area of the flow path in the throttle section 62 to reduce the flow resistance and increase the air volume.

【0007】このように、図7に示す定風量バルブ60
は、図6に示す多管式空気輸送系80において、各輸送
用枝管L1 、L2 、L3 、・・・、Ln に定風量調節装
置V 1 、V2 、V3 、・・・、Vn として設けられるこ
とにより、各輸送管の風量を各輸送用枝管毎に輸送され
る粉粒体の物性および輸送量に応じて設定された一定の
風量Q1 、Q2 、Q3 、・・・、Qn となるように自動
的に調節することができるものである。
As described above, the constant air volume valve 60 shown in FIG.
In the multipipe air transport system 80 shown in FIG.
Branch pipe L1, LTwo, LThree, ..., LnConstant air volume adjustment equipment
Place V 1, VTwo, VThree, ..., VnThis is provided as
With this, the air volume of each transport pipe is transported for each transport branch pipe.
Constant according to the physical properties and transport volume of
Air volume Q1, QTwo, QThree, ..., QnAutomatic to be
It can be adjusted dynamically.

【0008】しかし、図7に示す従来の定風量バルブ6
0では、一定に自動調節することのできる定風量域(定
風量バルブの差圧範囲)が限られ、図8に示す定風量バ
ルブ特性のグラフのように、定風量域が50〜300m
mAq程度が限界であり、300mmAq以上になると
著しく定風量精度が悪化する。粉粒体ストックの流量の
変動が激しい輸送ラインでは、定風量域が300mmA
qでは不足であるという問題があるが、定風量域を広げ
るためには、高圧側で、長時間、トラブルなく機能させ
るために耐久性を向上させる必要がある。また、定風量
精度は、設定風量値に対して±5%の範囲に納めるのが
好ましいが、同様に図8の従来の定風量バルブ60の特
性のグラフに示すように、従来の定風量バルブ60の定
風量精度は±10%前後であり、風量がばらつき、従っ
て輸送が不安定になるという問題もある。
However, the conventional constant air volume valve 6 shown in FIG.
At 0, the constant air volume range (differential pressure range of the constant air volume valve) that can be automatically adjusted to a constant value is limited, and as shown in the graph of the constant air volume valve characteristic shown in FIG.
The limit is about mAq, and when it is 300 mmAq or more, the accuracy of the constant air volume deteriorates remarkably. On a transportation line where the flow rate of the granular material stock fluctuates greatly, the constant air volume range is 300 mmA.
There is a problem that q is insufficient, but in order to extend the constant air volume range, it is necessary to improve the durability in order to function without trouble for a long time on the high pressure side. The accuracy of the constant air volume is preferably within a range of ± 5% of the set air volume value. Similarly, as shown in the characteristic graph of the conventional constant air volume valve 60 in FIG. The constant air volume accuracy of 60 is about ± 10%, and there is a problem that the air volume varies, and therefore, the transportation becomes unstable.

【0009】[0009]

【発明が解決しようとする課題】本発明の目的は、前記
従来技術に基づく種々の問題点をかえりみて、安価で、
定風量精度が高く、定風量域が広く、多管式空気輸送系
の各輸送用枝管の所定箇所に設けられて、各枝管の粉粒
体ストックの流量が変動しても、各枝管の空気流量を所
定比に保つことができ、各輸送用枝管の空気輸送バラン
スを崩すことなく安定した空気輸送をより少ない風量
で、従ってより小さい動力を使って行うことのできる空
気輸送系に用いられる定風量調節装置を提供することに
ある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a low cost,
High accuracy of constant air volume, wide constant air volume area, provided at a predetermined location of each transport branch pipe of the multi-pipe air transport system, each branch even if the flow rate of the granular material stock of each branch pipe fluctuates A pneumatic transport system that can maintain the air flow rate of the pipe at a predetermined ratio and can perform stable pneumatic transport with a smaller air volume and therefore with less power without breaking the pneumatic transport balance of each transport branch pipe. It is an object of the present invention to provide a constant air volume control device used for a vehicle.

【0010】[0010]

【課題を解決するための手段】本発明者らは、上記従来
技術の問題点を解決するために、定風量調節装置の定風
量特性の改善、特に定風量域の拡大と定風量精度の向上
について詳細に検討し、研究を重ねた結果、定風量バル
ブの定風量特性は、コーン内のばねの特性、ベンチュリ
形状および通過した粉粒体の付着および耐久性の問題か
らコーンの形状と表面性状と構成材料等々に影響を受け
るが、このうち大きな影響因子はばねの特性であると考
察した。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems of the prior art, the present inventors have improved the constant air volume characteristics of a constant air volume adjusting device, particularly, expanded the constant air volume range and improved the accuracy of the constant air volume. After examining in detail and conducting research, the constant air volume characteristics of the constant air volume valve were determined by the characteristics of the spring inside the cone, the shape of the cone and the surface properties from the problems of the venturi shape and the adhesion of the passing granular material and durability. And the constituent materials, etc., and we consider that the major influencing factor is the characteristics of the spring.

【0011】このため、本発明者らは、定風量バルブに
おいて、コーンの軸方向の変位を測定する変位変換器と
コーンにかかる荷重(風圧)を測定する荷重変換器とを
コーンに取り付けて、動作圧力範囲(コーン前後の差圧
範囲すなわち風量域)50〜700mmAq(水柱)に
亘って荷重(kgf)と変位(mm)とを測定し、図3
(a)に示すようにプロットした結果、コーンにかかる
荷重(kgf)とコーンの変位量(mm)は、線形では
なく、非線形性をもつことを知見した。この知見に基づ
いて、定風量バルブが50〜700mmAqの動作範囲
で高い定風量精度を得るためには、定風量バルブに図3
(a)に示す荷重−変位の非線形特性を示す圧縮ばねを
用いればよく、この非線形ばね特性は、長さの異なる3
本の圧縮ばねを組み合わせることによって近似すること
ができ、もしくは、1本の非線形圧縮ばねによって近似
できることを知見し、本発明に至ったものである。
For this reason, the present inventors attached a displacement transducer for measuring the axial displacement of the cone and a load transducer for measuring the load (wind pressure) applied to the cone to the cone in the constant air volume valve, The load (kgf) and the displacement (mm) were measured over the operating pressure range (differential pressure range before and after the cone, ie, the air volume range) 50 to 700 mmAq (water column), and FIG.
As a result of plotting as shown in (a), it was found that the load (kgf) applied to the cone and the displacement (mm) of the cone were not linear but non-linear. Based on this knowledge, in order for the constant air volume valve to obtain a high constant air volume accuracy in the operation range of 50 to 700 mmAq, the constant air volume valve must be configured as shown in FIG.
A compression spring exhibiting a non-linear load-displacement characteristic shown in (a) may be used.
The inventors have found that the approximation can be made by combining two compression springs, or that the approximation can be made with one non-linear compression spring, leading to the present invention.

【0012】すなわち、本発明は、主管に連通する多数
の枝管に空気を流して粉粒体を輸送する系において、各
枝管の所定箇所に設けられ、前記各枝管の空気流量を所
定比に保つように制御する定風量調節装置であって、絞
り部を有するベンチュリ型ハウジングと、このハウジン
グ内の前記絞り部付近に設置されハウジング軸方向に移
動可能な流量調節部材と、この流量調節部材を空気流の
上流方向へ付勢し、付勢力と変位量との関係が非線形で
ある付勢手段とを有し、この付勢手段により、前記流量
調節部材を基準位置から、空気流の流速に応じて自動的
に移動させ、流路の横断面積を増減することにより空気
流量を一定に調整するよう構成したことを特徴とする空
気輸送系に用いられる定風量調節装置を提供するもので
ある。
That is, the present invention is provided at a predetermined position in each branch pipe in a system for transporting powdery material by flowing air through a number of branch pipes communicating with the main pipe, and controlling the air flow rate of each branch pipe to a predetermined value. A constant-air-volume adjusting device for controlling the air flow so as to maintain the ratio, a venturi-type housing having a throttle, a flow adjusting member installed near the throttle in the housing and movable in an axial direction of the housing, Urging means for urging the member in the upstream direction of the air flow, and urging means having a non-linear relationship between the urging force and the amount of displacement, and the urging means moves the flow rate adjusting member from the reference position to the air flow. It provides a constant air volume control device used in an air transportation system, which is configured to automatically move according to a flow velocity and to adjust an air flow rate to be constant by increasing or decreasing a cross-sectional area of a flow path. is there.

【0013】また、前記付勢手段が、長さの異なる少な
くとも2個の圧縮ばねよりなるのが好ましい。さらに、
前記付勢手段が、非線形ばね定数を持つ1個の圧縮ばね
よりなるのが好ましい。また、前記流量調節部材の基準
位置を粉粒体の設定輸送量に応じた基準値とするために
移動可能にするのが好ましい。
Further, it is preferable that the biasing means comprises at least two compression springs having different lengths. further,
Preferably, the biasing means comprises a single compression spring having a non-linear spring constant. In addition, it is preferable that the reference position of the flow rate adjusting member is movable so as to be a reference value corresponding to the set transport amount of the granular material.

【0014】[0014]

【発明の作用】本発明の空気輸送系に用いられる定風量
調節装置(定風量バルブ)は、ファンによる吸引によっ
て空気と適度に混合された粉粒体とが、集合主管から分
岐する各枝管内を輸送される空気輸送系において、各枝
管の、粉粒体が分離されるサイクロンの出口側に設けら
れ、予め設定された空気流の風速の基準値より各枝管を
流れる空気流の風速が速くなると風量を減少させ、一
方、この基準値より各枝管を流れる空気流の風速が遅く
なると風量を増大させることにより、ある定風量域にお
いて各枝管における風量を常に一定に保つように作用す
るものであるが、ベンチュリ型ハウジング内の絞り部付
近において軸方向に移動してハウジング内を流れる空気
の流量(風量)を調節する流量調節部材(コーン)の移
動量を、この流量調節部材を空気流の上流方向へ付勢
し、この流量調節部材の受ける風速(風圧)に応じて調
節する付勢手段(圧縮ばね)の付勢力と変位量との関係
を、例えば互いに長さの異なる少なくとも2個の圧縮ば
ねを用いてもしくは1個の非線形圧縮ばねを用いて非線
形として、広い定風量域、すなわち風圧(動作圧力)範
囲に亘って定風量にすることができるものである。
The constant air volume adjusting device (constant air volume valve) used in the pneumatic transportation system of the present invention is provided in each of the branch pipes where the air and the powder appropriately mixed by the suction by the fan are branched from the collecting main pipe. In the air transport system for transporting air, the wind speed of the air flow flowing through each branch pipe is provided on the outlet side of the cyclone from which the granular material is separated, and is set based on a preset reference value of the wind speed of the air flow. Is faster, the airflow is reduced, while the airflow that flows through each branch pipe is slower than this reference value, and the airflow is increased so that the airflow in each branch pipe is always kept constant in a certain constant airflow range. The amount of movement of a flow control member (cone) that moves in the axial direction in the vicinity of the throttle portion in the Venturi-type housing to adjust the flow rate (air volume) of air flowing through the housing is determined by the flow rate adjustment. The relationship between the urging force of the urging means (compression spring) and the amount of displacement, which urges the member in the upstream direction of the air flow and adjusts it in accordance with the wind speed (wind pressure) received by the flow rate adjusting member, is, for example, the length of each other. By using at least two different compression springs or by using one non-linear compression spring, it is possible to make the air flow non-linear so as to make the air flow constant over a wide constant air volume range, that is, a wind pressure (operating pressure) range.

【0015】従って、本発明の空気輸送系に用いられる
定風量調節装置によれば、各枝管において風量を一定に
保つことができるのは勿論、安価に、定風量域を広くで
き、かつ、定風量精度を向上させることが可能である。
つまり、本発明の空気輸送系に用いられる定風量調節装
置によれば、各輸送管の粉粒体の流量の変動が激しい輸
送ラインにおいても、各輸送管の風量バランスを崩すこ
とは極めて少なく、その輸送量がばらつくことも極めて
少ない。その結果、本発明の定風量調節装置によれば、
各輸送管(枝管)の粉粒体の流量の変動が激しい空気輸
送系に用いても、各枝管の設定風速をより低い経済風速
に設定でき、従って、空気輸送系をより小さい動力で運
転することが可能となり、輸送コストの低減を用いるこ
とができる。
Therefore, according to the constant air volume adjusting device used in the pneumatic transportation system of the present invention, not only can the air volume in each branch pipe be kept constant, but also the constant air volume region can be widened at low cost, and It is possible to improve the constant air volume accuracy.
That is, according to the constant air volume adjusting device used in the pneumatic transportation system of the present invention, even in a transportation line in which the flow rate of the granular material in each transportation tube fluctuates drastically, the air volume balance of each transportation tube is extremely rarely broken. The amount of transport varies very little. As a result, according to the constant air volume adjusting device of the present invention,
Even when used in an air transport system in which the flow rate of the granular material in each transport pipe (branch pipe) fluctuates greatly, the set wind speed of each branch pipe can be set to a lower economic wind speed, and therefore, the pneumatic transport system requires less power. Driving is possible, and reduced transportation costs can be used.

【0016】[0016]

【実施例】本発明の空気輸送系に用いられる定風量調節
装置を、添付の図面に示す小麦製粉工程に使用した実施
例に基づいて以下に詳細に説明する。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view of a pneumatic conveying system according to the present invention.

【0017】図1は、本発明の空気輸送系に用いられる
定風量調節装置(以下、定風量バルブという)の一実施
例の断面模式図を示す。図2は、本発明の定風量バルブ
が用いられる空気輸送系の一実施例の模式的系統図であ
る。図1に示す本発明の定風量バルブ20の説明に先立
って、これが用いられる空気輸送系10について図2を
参照して説明する。
FIG. 1 is a schematic cross-sectional view of an embodiment of a constant air volume adjusting device (hereinafter, referred to as a constant air volume valve) used in the pneumatic transportation system of the present invention. FIG. 2 is a schematic system diagram of an embodiment of an air transportation system using the constant air volume valve of the present invention. Prior to the description of the constant air volume valve 20 of the present invention shown in FIG. 1, a pneumatic transport system 10 using the same will be described with reference to FIG.

【0018】図2に示すように、本発明の定風量バルブ
20が用いられる空気輸送系10は、主管Lと、主管L
内の流体(空気)を吸引するファン12と、ファン12
の下流に設けられるバグフィルタ14と、主管Lのファ
ン12の直前に設けられるメインバルブ16と、主管L
から分岐する多数の枝管L1 、L2 、・・・、Ln と、
枝管L1 、L2 、・・・、Ln に設けられる本発明の定
風量バルブ(20)V C1、VC2、・・・、VCnと、サイ
クロンC1 、C2 、・・・、Cn と、サイクロンC1
2 、・・・、Cn の下部に設けられるロータリバルブ
RV1 、RV2、・・・、RVn と、混入部M1
2 、・・・、Mn と、混入部M1 、M2 、・・・、M
n に粉粒体を粉砕し、供給するロール型粉砕機(ロール
ミル)RM1、RM2 、・・・、RMn とを有する。各
枝管L1 、L2 、・・・、Ln のうちのサイクロン
1 、C2 、・・・、Cn と混入部M1 、M2 、・・
・、Mn との間は、ロールミルRM1 、RM2 、・・
・、RMn によって粉砕された粉粒体の輸送管TL1
TL2 、・・・、TLn を構成する。混入部M1
2 、・・・、Mn では外部からの空気吸入口I1 、I
2 ・・・、In からの外気とロールミルRM1 、R
2 、・・・、RMn からの空気とともに粉砕物を輸送
管TL1 、TL2 、・・・、TLn に混入する。
As shown in FIG. 2, the constant air flow valve of the present invention
The pneumatic transportation system 10 using the main pipe L includes a main pipe L and a main pipe L.
A fan 12 for sucking fluid (air) in the fan,
And a bag filter 14 provided downstream of the main pipe L.
A main valve 16 provided immediately before the
Branch pipes L branching from1, LTwo, ..., LnWhen,
Branch pipe L1, LTwo, ..., LnThe present invention provided in
Air flow valve (20) V C1, VC2, ..., VCnAnd the rhino
Clon C1, CTwo, ..., CnAnd cyclone C1,
CTwo, ..., CnRotary valve provided in the lower part of
RV1, RVTwo, ..., RVnAnd mixing section M1,
MTwo, ..., MnAnd mixing section M1, MTwo, ..., M
nRoll-type crusher (roll)
Mill) RM1, RMTwo, ..., RMnAnd each
Branch pipe L1, LTwo, ..., LnCyclone of
C1, CTwo, ..., CnAnd mixing part M1, MTwo, ...
・ 、 MnRoll mill RM between1, RMTwo, ...
・ 、 RMnPipe TL for powder and granules crushed by1,
TLTwo, ..., TLnIs composed. Mixing part M1,
MTwo, ..., MnThen, air inlet I from outside1, I
Two..., InAir from outside and roll mill RM1, R
MTwo, ..., RMnCrushed material with air from
Tube TL1, TLTwo, ..., TLnMixed in.

【0019】このような空気輸送系10においては、1
つのファン12によって各枝管L1、L2 、・・・、L
n の空気吸入口I1 、I2 ・・・、In から空気が吸引
され、混入部M1 、M2 、・・・、Mn によってロール
ミルRM1 、RM2 、・・・、RMn から供給される粉
粒体をその種類、特性および量に応じて適度な混合比に
混合し、空気輸送管TL1 、TL2 、・・・、TLn
を空気輸送する。輸送管TL1 、TL2 、・・・、TL
n 内を空気輸送される粉粒体は、サイクロンC 1
2 、・・・、Cn において輸送用吸引空気と分離さ
れ、ロータリバルブRV1 、RV2 、・・・、RVn
通って図示しないがシフター等の下流側の機器へ供給さ
れる。
In such a pneumatic transport system 10, 1
Each branch pipe L by two fans 121, LTwo, ..., L
nAir inlet I1, ITwo..., InAir is sucked from
And mixed part M1, MTwo, ..., MnBy roll
Mill RM1, RMTwo, ..., RMnPowder supplied from
Granules at an appropriate mixing ratio according to their type, characteristics and amount
Mix and pneumatic transport tube TL1, TLTwo, ..., TLnInside
The air transport. Transport tube TL1, TLTwo, ..., TL
nThe pulverized material transported in the air is cyclone C 1,
CTwo, ..., CnSeparated from suction air for transportation in
And the rotary valve RV1, RVTwo, ..., RVnTo
(Not shown) and supplied to downstream equipment such as a shifter.
It is.

【0020】一方、サイクロンC1 、C2 、・・・、C
n で粉粒体と分離された吸引空気は、本発明の定風量バ
ルブVC1、VC2、・・・、VCnを通過後、主管(集合
管)Lに合流し、メインバルブ16を通り、ファン12
を通過後、バグフィルタ14でサイクロンC1 、C2
・・・、Cn で完全に分離できなかった粉粒体などを除
塵された後、大気中に排気される。ここで、定風量バル
ブVC1、VC2、・・・、VCnとしては、図1に示す定風
量バルブ20が用いられ、図2に示すように粉粒体を空
気輸送するロールミルRM 1 、RM2 、・・・、RMn
下の多管式(多管系吸引式)空気輸送系10の各空気輸
送管TL1 、TL2 、・・・、TLn を構成する枝管L
1 、L2 、・・・、Ln の途中に取り付けられ、各空気
輸送管TL1 、TL2 、・・・、TLn における粉粒体
の輸送変動があっても各空気輸送管TL1 、TL2 、・
・・、TLnの輸送バランスを保つように各枝管L1
2 、・・・、Ln の風量をそれぞれ設定された風量値
に一定に保つためのものである。
On the other hand, cyclone C1, CTwo, ..., C
nThe suction air separated from the granular material by the
Luv VC1, VC2, ..., VCnAfter passing through the main
Tube) L, passes through the main valve 16 and passes through the fan 12
After passing through, cyclone C with bag filter 141, CTwo,
..., CnRemove particles that could not be completely separated by
After being dusted, it is exhausted to the atmosphere. Where the constant air volume
Bu VC1, VC2, ..., VCnAs shown in Figure 1
A quantity valve 20 is used to evacuate the granular material as shown in FIG.
Roll mill RM for pneumatic transportation 1, RMTwo, ..., RMn
Each air transfer of the lower multi-tube (multi-tube suction type) air transport system 10
Transmission TL1, TLTwo, ..., TLnBranch pipe L
1, LTwo, ..., LnAttached in the middle of each air
Transport tube TL1, TLTwo, ..., TLnGranules in
Each air transport pipe TL1, TLTwo,
.., TLnEach branch pipe L to maintain the transport balance of1,
LTwo, ..., LnAirflow value set for each airflow
To keep it constant.

【0021】もともと、図2に示すような多管式空気輸
送系10は、定風量バルブVC1、V C2、・・・、VCn
ないと、多管系であるため、各輸送管TL1 、TL2
・・・、TLn において、各管において負荷変動が発生
したとき、各輸送管TL1 、TL2 、・・・、TLn
すなわち各枝管L1 、L2 、・・・、Ln の風量バラン
スが崩れ、例えば、ある輸送管の輸送量が増加すれば、
抵抗が増えるため空気が他の輸送管へ逃げてしまい、そ
の輸送管の風量は減少し、強く吸引してほしい輸送管は
吸引されなくなってしまう。これがひどくなると、チョ
ークが発生し、系全体の運転ができなくなり、大故障に
つながるため、定風量バルブを用いない場合には、この
チョークを防止するため、各輸送枝管L1 、L2 、・・
・、Lnの風量はかなり余裕を見込んで大きめに設定す
る必要があり、ファンの所要動力も大きくする必要があ
ったことは前述した通りである。
Originally, as shown in FIG.
The transmission system 10 has a constant air volume valve VC1, V C2, ..., VCnBut
If not, each transport pipe TL1, TLTwo,
..., TLn, Load fluctuation occurs in each pipe
When each transport pipe TL1, TLTwo, ..., TLn,
That is, each branch pipe L1, LTwo, ..., LnAirflow balun
Collapse, for example, if the transport volume of a certain transport pipe increases,
Due to the increased resistance, air escapes to other transport pipes,
The air volume in the transport pipes of
It will not be sucked. When this gets worse, cho
Cause the system to be unable to operate, resulting in a major failure.
If you do not use a constant air volume valve,
To prevent choke, each transport branch L1, LTwo, ...
・, LnSet a large air volume for
Need to increase the fan power requirements.
This is as described above.

【0022】また、このような空気輸送系10で各輸送
管TL1 、TL2 、・・・、TLnの負荷変動をなくす
ことは通常不可能である。運転のスタート時や挽砕原料
の切換時などに不可避的に生じる負荷変動があっても、
各輸送管TL1 、TL2 、・・・、TLn の風量バラン
スを崩さないように定風量バルブVC1、VC2、・・・、
Cnを用いることは、定風量バルブの圧損を生じさせて
もチョークなどを防止することはもちろん、各輸送管T
1 、TL2 、・・・、TLn の所要風量、ひいてはフ
ァンの所要風量、所要動力を減らす上で必要なことであ
る。また、所要風量の節減は、輸送系(輸送管TL1
TL2 、・・・、TLn 、サイクロンC 1 、C2 、・・
・、Cn 、バグフィルタ14)の圧損の低減にもつなが
るため、大幅な混合比の増加や所要動力の節減にもなっ
ている。
Each of the pneumatic transport systems 10 is used to transport
Tube TL1, TLTwo, ..., TLnEliminate load fluctuations
That is usually not possible. At the start of operation or when grinding raw materials
Even if there is a load fluctuation that inevitably occurs when switching
Each transport pipe TL1, TLTwo, ..., TLnAirflow balun
Constant air flow valve V so as not to breakC1, VC2, ...,
VCnThe use of causes the pressure loss of the constant air volume valve
Not only to prevent choke, etc., but also to
L1, TLTwo, ..., TLnRequired air volume, and
It is necessary to reduce the required air volume and required power of the fan.
You. In addition, the required air volume can be saved by the transportation system (transportation tube TL).1,
TLTwo, ..., TLn, Cyclone C 1, CTwo, ...
・ 、 CnTo reduce the pressure loss of the bag filter 14)
This greatly increases the mixing ratio and reduces the required power.
ing.

【0023】定風量バルブVC1、VC2、・・・、VCn
以上のような機能を有するもので、図2に示す空気輸送
系10などのような多管系吸引式空気輸送系に適用され
るものであるが、適用される空気輸送系は図示例に限定
されず、多管系であれば、どのような空気輸送系にも適
用可能なものである。図2に示す空気輸送系10の定風
量バルブVC1、VC2、・・・、VCnとして適用される本
発明の定風量バルブ20の一実施例の具体的構造を図1
に示す。
The constant air volume valves V C1 , V C2 ,..., V Cn have the functions described above, and are used in a multi-tube suction type pneumatic transport system such as the pneumatic transport system 10 shown in FIG. Although applied, the applied pneumatic transport system is not limited to the illustrated example, and can be applied to any pneumatic transport system as long as it is a multi-tube system. The specific structure of one embodiment of the constant air volume valve 20 of the present invention applied as the constant air volume valves V C1 , V C2 ,..., V Cn of the air transport system 10 shown in FIG.
Shown in

【0024】同図に示すように、定風量バルブ20は、
直円管部21とベンチュリ管よりなる絞り部22とを有
するベンチュリ型ハウジング24と、このハウジング2
4内の絞り部(ベンチュリ部)22付近に配置される流
量調節部材であるコーン26と、コーン26内に配置さ
れ、コーン26の受ける風圧に抗してコーン26を上流
側に付勢する付勢手段27と、空気流量を空気輸送され
る粉粒体の輸送量に応じた空気流量、すなわち流量調節
基準値に設定するために、コーン26の基準位置を流量
調節基準値(設定定風量値)に対応する位置に設定する
定風量設定器28を有する。
As shown in FIG.
A venturi-type housing 24 having a right circular tube portion 21 and a throttle portion 22 formed of a venturi tube;
A cone 26 which is a flow rate adjusting member disposed near the throttle (venturi) portion 22 in the inside 4, and a cone which is disposed in the cone 26 and urges the cone 26 upstream against the wind pressure received by the cone 26. In order to set the air flow rate to an air flow rate corresponding to the transport amount of the pneumatically conveyed granular material, that is, a flow rate adjustment reference value, the reference position of the cone 26 is set to a flow rate adjustment reference value (set constant air volume value). ) Is provided at a position corresponding to the constant air volume setting device 28.

【0025】ハウジング24は、ベンチュリ管よりなる
絞り部22側の端部が枝管の下流側(吸引源側)に接続
され、他方の直管部21側の端部が枝管の上流側(空気
輸送管側、すなわちサイクロン側)に接続されるよう
に、両端部にフランジ24aおよび24bが設けられて
いる。絞り部22は、ベンチュリ管から構成され、後述
するコーン26の形状およびコーン26の移動量(スト
ローク)に応じて適切な形状および長さ(寸法)を適宜
選定すればよい。
The end of the housing 24 on the side of the throttle section 22 formed of a Venturi pipe is connected to the downstream side (suction source side) of the branch pipe, and the other end of the housing 24 on the side of the straight pipe section 21 is located on the upstream side of the branch pipe ( Flanges 24a and 24b are provided at both ends so as to be connected to the air transport pipe side (that is, the cyclone side). The throttle unit 22 is formed of a Venturi tube, and an appropriate shape and length (dimension) may be appropriately selected according to the shape of the cone 26 described later and the movement amount (stroke) of the cone 26.

【0026】ここで、コーン26は、例えばアルミニウ
ム製であって、風圧を受ける前部が球面状、後部がコー
ン(円錐)面状をなし、前部中央には開口を有し、この
開口に樹脂ベアリングを介して挿通されるシャフト30
によってハウジング24の軸方向(以下、単に軸方向と
いう)に移動可能に支持される。シャフト30の先端に
はばね受け32が固定され、コーン26の内部において
このばね受け32とコーン前面中央のばね支持部33と
の間に付勢手段27が配置される。付勢手段27は、互
いに長さの異なる3種類のコイル状圧縮ばね34、36
および38からなり、これらの圧縮ばね34、36、3
8は、いずれもばね支持部33に取り付けられている。
なお、これらの圧縮コイルばねのうちの最長の圧縮コイ
ルばね34はその他方の端部がばね受け32に係合され
ている。
Here, the cone 26 is made of, for example, aluminum and has a spherical front portion receiving wind pressure, a cone (conical) surface rear portion, and an opening in the center of the front portion. Shaft 30 inserted through resin bearing
Accordingly, the housing 24 is movably supported in an axial direction (hereinafter, simply referred to as an axial direction). A spring receiver 32 is fixed to the tip of the shaft 30, and an urging means 27 is disposed inside the cone 26 between the spring receiver 32 and a spring support 33 at the center of the front surface of the cone. The urging means 27 includes three types of coiled compression springs 34 and 36 having different lengths from each other.
And 38, these compression springs 34, 36, 3
8 are all attached to the spring support 33.
The longest compression coil spring 34 among these compression coil springs has the other end engaged with the spring receiver 32.

【0027】コーン26を移動可能に支持するシャフト
30は、ハウジング24の直管部21内に固定されるシ
ャフト支持金具23aおよび23bによってハウジング
24の中心部にその軸方向に移動可能に支持される。シ
ャフト30の途中には垂直に突出するシャフトピン29
が取り付けられている。
The shaft 30 movably supporting the cone 26 is movably supported in the axial direction at the center of the housing 24 by shaft support fittings 23a and 23b fixed in the straight pipe portion 21 of the housing 24. . In the middle of the shaft 30, a vertically protruding shaft pin 29 is provided.
Is attached.

【0028】定風量設定器28は、本発明の定風量調節
装置20が調節すべき一定の空気流量(定風量)、すな
わち流量調節基準値を設定するためのもので、本発明の
定風量設定手段を構成するものであって、ハウジング2
4の直管部21に設けられ、シャフト30の軸方向の位
置、すなわち、ベンチュリ部22におけるコーン26
(のハウジング24の軸方向)の基準位置を調節し、設
定する位置調節手段として機能する。このような定風量
設定器28は、直管部21の外周に固定されるケーシン
グ40と、ケーシング40の軸方向の両端部の支柱42
a、42bに回転可能に支持されるボールねじ44と、
ボールねじ44の一端に取り付けられた風量設定ダイヤ
ル46と、ボールねじ44とその軸方向の中間位置に螺
合する移動ナット48と、この移動ナット48に固定さ
れ、垂直に突出するピン49と、ハウジング24の主管
部21に固定されたケーシング40の底板41に設けら
れた支点ピン43に回動可能に係合し、その両端部がU
字状の凹部を有し、この凹部によってシャフト30のシ
ャフトピン29とボールねじ44の突出ピン49とに係
合するダイヤルフレーム50とを有する。
The constant air volume setting device 28 is for setting a constant air flow (constant air volume) to be adjusted by the constant air volume adjusting device 20 of the present invention, that is, a flow control standard value. The housing 2
4 is provided in the straight pipe section 21, and is located in the axial direction of the shaft 30, that is, the cone 26 in the venturi section 22.
It functions as a position adjusting means for adjusting and setting the reference position (in the axial direction of the housing 24). Such a constant air volume setting device 28 includes a casing 40 fixed to the outer periphery of the straight pipe portion 21 and columns 42 at both ends of the casing 40 in the axial direction.
a, a ball screw 44 rotatably supported by 42b;
An air volume setting dial 46 attached to one end of the ball screw 44, a moving nut 48 screwed into the ball screw 44 and an intermediate position in the axial direction thereof, a pin 49 fixed to the moving nut 48 and protruding vertically, A fulcrum pin 43 provided on a bottom plate 41 of a casing 40 fixed to the main pipe portion 21 of the housing 24 is rotatably engaged, and both ends thereof are U-shaped.
It has a U-shaped concave portion, and has a dial frame 50 that engages with the shaft pin 29 of the shaft 30 and the projecting pin 49 of the ball screw 44 by this concave portion.

【0029】定風量設定器28においては、本発明の定
風量バルブ20が用いられる多管式空気輸送系の空気輸
送管を輸送される粉粒体の種類および量に応じて決定さ
れる設定空気流量(風量)を示す目盛まで風量設定ダイ
ヤル46が回転される。風量設定ダイヤル46の回転に
よってボールねじ44が回転し、ボールねじ44に螺合
する移動ナット48が軸方向に移動する。移動ナット4
8の移動によって移動ナット48に固定されたピン49
にその一端が係合するダイヤルフレーム50がその支点
ピン43を中心に回動し、ダイヤルフレーム50の他端
と係合するシャフトピン29が固定されたシャフト30
をその軸方向に移動させ、シャフト30の先端に移動可
能に係合されたコーン26を設定風量に応じた所定基準
位置まで移動させる。
In the constant air volume setting device 28, the set air determined according to the type and amount of the powder and granules transported through the air transport pipe of the multi-pipe air transport system using the constant air volume valve 20 of the present invention. The air volume setting dial 46 is rotated to a scale indicating the flow rate (air volume). The rotation of the air volume setting dial 46 rotates the ball screw 44, and the moving nut 48 screwed to the ball screw 44 moves in the axial direction. Moving nut 4
8 is fixed to the moving nut 48 by the movement of the pin 49.
The shaft 30 on which one end is engaged rotates around the fulcrum pin 43 and the shaft pin 29 which engages with the other end of the dial frame 50 is fixed.
Is moved in the axial direction, and the cone 26 movably engaged with the tip of the shaft 30 is moved to a predetermined reference position corresponding to the set airflow.

【0030】こうして、コーン26が設定風量に応じた
基準位置に設定され、この基準位置を中心にしてコーン
26はその受ける風圧に応じて軸方向に移動し、ハウジ
ング24のベンチュリ部22の内壁とコーン26との間
の隙間が適切に調整され、この隙間を通過する風量が風
圧の変動にかかわらず一定(定風量)に維持される。す
なわち、シャフト30が風量設定器28によって設定す
べき定風量値に応じた所定基準位置に設定されると、コ
ーン26は、ベンチュリ部22内において風圧を受けて
いない状態における設定基準位置に配置される。
In this manner, the cone 26 is set at the reference position corresponding to the set air volume, and the cone 26 moves in the axial direction about the reference position according to the wind pressure received by the cone, and contacts the inner wall of the venturi portion 22 of the housing 24 with the inner wall. The gap between the cone 26 and the cone 26 is appropriately adjusted, and the amount of air passing through the gap is kept constant (constant air volume) irrespective of fluctuations in wind pressure. That is, when the shaft 30 is set at the predetermined reference position corresponding to the constant air volume value to be set by the air volume setting device 28, the cone 26 is disposed at the set reference position in the state where the wind pressure is not received in the venturi section 22. You.

【0031】ここで、コーン26が風圧を受けていない
状態では、ばね34、36、38は伸びた状態で配置さ
れているが、コーン26が風圧を受けると、その圧力に
応じてまず、圧縮ばね34が収縮し、コーン26は図中
矢印方向(右方向)に移動し、コーン26とベンチュリ
部22におけるハウジング24の内壁との間の隙間を狭
ばめ、予め設定された所定風量の通過が可能な位置まで
コーン26は移動することになる。さらに、コーン26
の受ける風圧が強まると、ばね34が収縮し、ばね36
の先端がばね受け32に当接し、コーン26の受ける風
圧を2本のばね34および36で受け、さらに風圧が強
まると、ばね34および36が収縮し、ばね38の先端
がばね受け32に当接し、コーン26の受ける風圧を3
本のばね34、36および38で受け、通過風量を前述
した所定値とする位置までコーン26は移動する。こう
してコーン26は風圧に応じて自動的に移動し、空気流
量(風量)の通過を一定に調節する。
Here, when the cone 26 is not subjected to wind pressure, the springs 34, 36, 38 are arranged in an extended state. However, when the cone 26 is subjected to wind pressure, the cone 26 is first compressed according to the pressure. The spring 34 contracts, and the cone 26 moves in the direction of the arrow (rightward) in the figure, narrowing the gap between the cone 26 and the inner wall of the housing 24 in the venturi section 22, and passing the predetermined air volume. The cone 26 will move to a position where is possible. In addition, corn 26
When the wind pressure received by the spring increases, the spring 34 contracts and the spring 36
The tip of the spring abuts against the spring receiver 32, the wind pressure received by the cone 26 is received by the two springs 34 and 36, and when the wind pressure further increases, the springs 34 and 36 contract, and the tip of the spring 38 abuts against the spring receiver 32. And the wind pressure received by the cone 26 is 3
The cone 26 is received by the springs 34, 36, and 38 and moves to a position where the amount of air passing therethrough has the predetermined value described above. Thus, the cone 26 automatically moves in accordance with the wind pressure, and regulates the passage of the air flow rate (air volume) to a constant value.

【0032】ところで前述したように、本発明者らの研
究によれば、図1に示すある寸法の定風量バルブ10に
おいてはコーン26が受ける風圧(荷重)とコーン26
の変位置との関係は図3(a)にドットで示すようにな
ることが判明した。コーン26が受ける荷重は荷重変換
器、変位置は変位変換器によって計測した。計測は動作
圧力範囲、すなわち、風量域50〜700mmAqの範
囲で行った。
As described above, according to the study of the present inventors, in the constant air volume valve 10 having a certain size shown in FIG.
It has been found that the relationship with the change position is indicated by dots in FIG. The load applied to the cone 26 was measured by a load transducer, and the displacement position was measured by a displacement transducer. The measurement was performed in an operating pressure range, that is, in an air volume range of 50 to 700 mmAq.

【0033】さらに、本発明者らは、定風量バルブを図
4に示すようにモデル化して理論解析し、図3(b)に
示す変位−荷重特性曲線を得、上記知見が正しいことを
裏付けた。なお、理論解析においては、図4に示すよう
にコーンを球形として、コーンにかかる力およびコーン
の自重と、圧力および摩擦力とが釣り合っており、下記
式が成り立つとした。
Further, the present inventors modeled the constant air volume valve as shown in FIG. 4 and performed a theoretical analysis to obtain a displacement-load characteristic curve shown in FIG. 3B, supporting that the above findings were correct. Was. In the theoretical analysis, it is assumed that the cone is spherical as shown in FIG. 4, and the force acting on the cone and the weight of the cone are balanced with the pressure and frictional force, and the following equation is established.

【0034】[0034]

【数1】 (Equation 1)

【0035】ここで、Fはコーンにかかる力、P1 はコ
ーン下部(上流側)圧力、P3 はコーン上部(下流側)
圧力、Df はコーン最大径、Af はコーンの中心断面積
(πDf 2 /4)、Ff はコーン単位長さ当りにかかる
摩擦力、Fs は空気がコーンとベンチュリの隙間に流入
する際に生ずる力、mはコーンの重さ、gは重力加速
度、Qは風量(空気流量)、Aはコーンとベンチュリの
隙間の面積(πH(Df+H)、H:隙間の間隔)、γ
は空気の密度である。
Here, F is the force applied to the cone, P 1 is the pressure at the lower part of the cone (upstream side), and P 3 is the upper part of the cone (downstream side).
Pressure, D f cone maximum diameter, A f is the center cross-sectional area of the cone (πD f 2/4), F f is the frictional force exerted per cone unit length, F s is incoming air into the gap of the cone and venturi M, the weight of the cone, g is the gravitational acceleration, Q is the air volume (air flow), A is the area of the gap between the cone and the venturi (πH (D f + H), H is the gap between the gap), γ
Is the density of air.

【0036】このような理論解析によって裏付けられた
定風量バルブ20の付勢手段(圧縮ばね)27に必要な
非線型ばね特性を図示例においては、図3(a)に実線
で示すような非線型ばね特性を線型ばね定数K1,K
2,K3を持つ3本の線型ばね34、36および38を
組み合わせることによって実現している。このように定
風量バルブ20に3本の圧縮ばね34、36、38を組
み合わせることにより可変ばね定数を持つ付勢手段27
を持つコーン26を用いることにより、例えば図2に示
す空気輸送系10の輸送管TL1 ,・・・TLn の負荷
変動に起因するコーン26への風圧(負荷)の変動が生
じても、それに応じてコーン26とベンチュリ部22と
の間の隙間を適切に自動調節するので、定風量バルブ2
0を通過する風量を30〜700mmAqの広い風量域
において、それぞれ設定された値に一定に保つことがで
きる。従って、このようなばね特性を持つ付勢手段27
を備えることにより、最良の定風量特性、すなわち、広
い定風量域および高い定風量精度を持つ定風量バルブ2
0とすることができる。
In the illustrated example, the non-linear spring characteristics required for the urging means (compression spring) 27 of the constant air volume valve 20 supported by such a theoretical analysis are shown in FIG. The linear spring characteristics are defined by the linear spring constants K1 and K
This is realized by combining three linear springs 34, 36 and 38 having K2 and K3. By combining the three compression springs 34, 36, 38 with the constant air volume valve 20 in this manner, the urging means 27 having a variable spring constant
By using a cone 26 having, for example, transport tube TL 1 air transport system 10 shown in FIG. 2, even when variations in wind pressure (load) of the cone 26 due to load change · · · TL n, Accordingly, the gap between the cone 26 and the venturi section 22 is appropriately and automatically adjusted.
The air flow passing through 0 can be kept constant at a set value in a wide air flow range of 30 to 700 mmAq. Therefore, the urging means 27 having such a spring characteristic is used.
To provide a constant air volume characteristic, that is, a constant air volume valve 2 having a wide constant air volume range and high constant air volume accuracy.
It can be set to 0.

【0037】ここで、図3(a)において、(A)に示
す荷重範囲では、圧縮ばね34のみによりコーン26を
支えており、この範囲のばね定数は圧縮ばね34のばね
定数K1である。同様に、(B)に示す荷重範囲では、
圧縮ばね34および36によりコーン26を支えてお
り、この範囲のばね定数は圧縮ばね34および36のば
ね定数の和K1+K2である。また、(C)に示す荷重
範囲では、圧縮ばね34、36および38によりコーン
26を支えており、この範囲のばね定数は圧縮ばね3
4、36および38のばね定数の和K1+K2+K3で
ある。なお、本発明の空気輸送系に用いられる定風量バ
ルブ20において使用する圧縮ばねは、図示例の3本に
限定されず、例えば、2本でも4本でも良く、定風量性
を保持するのに必要な非線型ばね定数を有する付勢手段
27のばね特性を、互いに長さの異なる少なくとも2個
の圧縮ばねを用いて近似できれば何本使用しても良い。
ここで付勢手段27として用いる少なくとも2個の圧縮
ばねは、同じばね定数を持つものであってもよいし、異
なるばね定数を持つものであってもよい。さらに、図3
(a)または(b)に示す荷重−変位の非線型特性を示
す付勢手段27としては、長さの異なる少なくとも2個
の圧縮ばねを組み合わせたものに限定されず、図示の非
線型ばね特性を持つ1個の非線型圧縮ばねであってもよ
い。なお、コストの点からは可変ばね定数を持つ非線型
圧縮ばねを用いるより、2個以上の線型ばねを組み合わ
せて非線型特性を得るのが好ましい。
Here, in FIG. 3A, in the load range shown in FIG. 3A, the cone 26 is supported only by the compression spring 34, and the spring constant in this range is the spring constant K1 of the compression spring 34. Similarly, in the load range shown in (B),
The cone 26 is supported by the compression springs 34 and 36, and the spring constant in this range is the sum K1 + K2 of the spring constants of the compression springs 34 and 36. Further, in the load range shown in (C), the cone 26 is supported by the compression springs 34, 36, and 38, and the spring constant in this range is
The sum of the spring constants of 4, 36 and 38 is K1 + K2 + K3. Note that the number of compression springs used in the constant air volume valve 20 used in the pneumatic transportation system of the present invention is not limited to three in the illustrated example. For example, two or four compression springs may be used. Any number of springs may be used as long as the spring characteristics of the urging means 27 having a necessary non-linear spring constant can be approximated using at least two compression springs having different lengths.
Here, at least two compression springs used as the urging means 27 may have the same spring constant or may have different spring constants. Further, FIG.
The biasing means 27 exhibiting the non-linear load-displacement characteristic shown in (a) or (b) is not limited to a combination of at least two compression springs having different lengths. May be a single non-linear compression spring. From the viewpoint of cost, it is preferable to obtain nonlinear characteristics by combining two or more linear springs, rather than using a non-linear compression spring having a variable spring constant.

【0038】以上のように構成される定風量バルブ20
においては、空気輸送系10の運転スタートに先立っ
て、空気輸送する粉粒体の種類、特性、量に応じて輸送
管に流す風量、すなわち定風量バルブ20に流すべき風
量をダイヤル46を回転させてシャフト30およびコー
ン26の位置を決めることにより設定する。運転がスタ
ートすると、ファン12が駆動され、空気の吸引が開始
され、定風量バルブ20のコーン26に風圧がかかり、
まず、コーン26内部の圧縮ばね34が圧縮され、コー
ン26はベンチュリ部22内において軸方向下流側に移
動し、安定な定常流では設定風量に応じた流量調節基準
位置で停止する。ここで、設定風量によっては、圧縮ば
ね34のみならず、圧縮ばね36、さらには圧縮ばね3
8も圧縮されたコーン26の位置が流量調節基準位置と
なる。
The constant air volume valve 20 constructed as described above
Prior to the start of operation of the pneumatic transport system 10, the dial 46 is rotated to determine the amount of air flowing through the transport pipe, that is, the amount of air to be flown through the constant air volume valve 20, in accordance with the type, characteristics, and amount of the granular material to be pneumatically transported. The position is determined by determining the positions of the shaft 30 and the cone 26. When the operation is started, the fan 12 is driven, the suction of air is started, and a wind pressure is applied to the cone 26 of the constant air volume valve 20,
First, the compression spring 34 inside the cone 26 is compressed, and the cone 26 moves downstream in the axial direction in the venturi section 22 and stops at a flow adjustment reference position corresponding to the set airflow in a stable steady flow. Here, depending on the set air volume, not only the compression spring 34 but also the compression spring 36, and further the compression spring 3
8, the position of the compressed cone 26 becomes the flow rate adjustment reference position.

【0039】このようにして設定された風量に応じた基
準位置を中心にしてコーン26は風圧、すなわち流速に
応じてベンチュリ部22内を移動し、コーン26とベン
チュリ部22との隙間を調節して一定風量に保つ。すな
わち、定風量バルブ20内を流れる空気流の流速が定常
値よりも低下すると、コーン26の負荷が低下するため
コーン26は付勢手段27によって押し戻され、基準位
置から下流側へ移動し、ハウジング24のベンチュリ部
22とコーン26との間の隙間を広げ、流速の低下に伴
う風量の低下を補って、通過風量を一定に保つ。逆に空
気流の流速が定常値より増大すると、コーン26の作用
は全く逆になり、隙間を狭めて、流速の増大に伴う風量
の増大を抑制し、通過風量を一定に保つ。なお、運転中
に設定風量を変更する場合にも、コーン26は全く同様
にベンチュリ部22内を設定された風量と風速に釣り合
う基準位置に移動し、この基準位置を中心に負荷変動に
応じて移動して通過風量を一定に維持することができ
る。
The cone 26 moves in the venturi 22 in accordance with the wind pressure, that is, the flow velocity, about the reference position corresponding to the air volume set in this way, and adjusts the gap between the cone 26 and the venturi 22. To maintain a constant air flow. That is, when the flow rate of the airflow flowing through the constant air volume valve 20 becomes lower than the steady value, the load on the cone 26 is reduced, so that the cone 26 is pushed back by the urging means 27 and moves from the reference position to the downstream side. The gap between the Venturi portion 24 and the cone 26 is widened to compensate for the decrease in the airflow due to the decrease in the flow velocity, and keep the passing airflow constant. Conversely, when the flow velocity of the airflow increases from the steady value, the action of the cone 26 is completely reversed, the gap is narrowed, the increase in the airflow due to the increase in the flow velocity is suppressed, and the passing airflow is kept constant. Even when the set air volume is changed during operation, the cone 26 moves in the same manner in the venturi unit 22 to a reference position that matches the set air volume and wind speed, and the cone 26 moves around the reference position according to a load change. It can be moved to maintain a constant flow rate.

【0040】図3(a)のばね特性を有する3本の圧縮
ばね34、36、38を用いる図1に示す定風量バルブ
20の定風量特性を図5に示す。図5から明らかなよう
に、本発明の定風量バルブ20は、図8に示す定風量特
性をもつ図7に示す定風量バルブ60に比べ、50〜7
00mmAqにわたる広い定風量域および±5%程度の
高い定風量精度を達成できることがわかる。従って、本
発明の定風量バルブ20は、粉粒体の流量変動、負荷変
動が大きいあるいは激しい輸送ライン、すなわち、多管
式空気輸送系においても各輸送管の風量を各設定風量に
一定、例えば図5に示すグラフでは定風量精度を設定風
量値に対して最大±5%程度にすることができ、各輸送
管における粉粒体輸送量の変動を少なくすることができ
る。
FIG. 5 shows the constant air volume characteristic of the constant air volume valve 20 shown in FIG. 1 using three compression springs 34, 36, and 38 having the spring characteristics of FIG. As is clear from FIG. 5, the constant air volume valve 20 of the present invention has a constant air volume characteristic shown in FIG.
It can be seen that a wide constant air volume range over 00 mmAq and a high constant air volume accuracy of about ± 5% can be achieved. Therefore, the constant air volume valve 20 of the present invention is capable of maintaining the air volume of each transport pipe constant at each set air volume even in a multi-pipe air transport system in a transport line in which the flow rate fluctuation of the granular material and the load fluctuation are large or severe, that is, for example, In the graph shown in FIG. 5, the accuracy of the constant air volume can be set to about ± 5% at the maximum with respect to the set air volume value, and the variation of the transport amount of the granular material in each transport pipe can be reduced.

【0041】なお、定風量域を広くするために、コーン
26のストローク量(コーン26が基準位置を起点とし
て移動する範囲)が長くなるので、ベンチュリ型ハウジ
ング24のベンチュリ部22を長くしておくのがよい。
また、定風量域を広くすると、コーン26にかかる負荷
が大きくなるので、高風圧で、長時間、トラブルなく機
能させるために耐久性を向上させておくのがよい。例え
ば、コーン26を支えるためにコーン26の内部に挿入
されるシャフト30の直径を大きくしたり、コーン26
へのシャフト30の挿入口に樹脂ベアリングを用いてコ
ーン26内のチューブとピストンの磨耗を減らすように
したり、コーン26の板厚を厚くしたりするのが好まし
い。また、定風量特性向上にはコーン26への粉粒体の
付着を防止するのが好ましいが、この粉粒体の付着防止
については、例えば、コーン26前部にバフ研磨を施し
たり、コーン26後部の段差をなくす形状とするのが好
ましい。なお、本発明においては、従来のコーン26へ
の粉粒体の付着量と比較して、コーン26前部にバフ研
磨を施すことにより付着量を35%減、同様に、コーン
26後部の段差をなくす形状とすることにより付着量を
25%減とすることができている。
Since the stroke amount of the cone 26 (the range in which the cone 26 moves from the reference position as a starting point) becomes long in order to widen the constant air volume region, the venturi portion 22 of the venturi-type housing 24 is made long. Is good.
In addition, if the constant air volume region is widened, the load applied to the cone 26 increases. Therefore, it is preferable to improve the durability in order to function at a high wind pressure for a long time without any trouble. For example, the diameter of the shaft 30 inserted into the cone 26 to support the cone 26 may be increased,
It is preferable to use a resin bearing at the insertion port of the shaft 30 to reduce wear of the tube and the piston in the cone 26, and to increase the thickness of the cone 26. In order to improve the constant air volume characteristics, it is preferable to prevent the adhesion of the granular material to the cone 26. For preventing the adhesion of the granular material, for example, buffing is performed on the front of the cone 26, It is preferable to adopt a shape that eliminates the step at the rear. In the present invention, the buffing is applied to the front of the cone 26 to reduce the amount of adhesion by 35% as compared with the conventional amount of the granular material adhering to the cone 26. By removing the shape, the amount of adhesion can be reduced by 25%.

【0042】[0042]

【発明の効果】以上詳細に説明した様に、本発明によれ
ば、風量を一定に保つことができるのはもちろん、安価
に、定風量域を広く、かつ、定風量精度を向上させるこ
とができる。すなわち、本発明によれば、粉粒体の流量
の変動が激しい輸送ライン、例えば多管式空気輸送系に
おいても、何ら問題なく使用できるし、その輸送量のば
らつきを少なくできるばかりか、多管式空気輸送系の各
枝管(輸送管)の設定風速をより低い経済風速に設定で
き、ファンによる吸引空気流の流速を低減でき、ファン
の動力を低くすることが可能となり、従って、空気輸送
系をより小さい動力で運転することができる。このた
め、本発明の定風量バルブを用いることにより、輸送コ
ストの低減を図ることができる。
As described in detail above, according to the present invention, not only can the air volume be kept constant, but also the constant air volume range can be widened at low cost and the accuracy of the constant air volume can be improved. it can. That is, according to the present invention, even in a transportation line in which the flow rate of the granular material fluctuates drastically, for example, in a multi-pipe air transportation system, it can be used without any problem, and not only can the variation in the transport amount be reduced, but also the multi-pipe The set wind speed of each branch pipe (transport pipe) of the pneumatic transport system can be set to a lower economic wind speed, the flow rate of the suction air flow by the fan can be reduced, and the power of the fan can be reduced, and therefore, the pneumatic transport The system can be operated with less power. For this reason, by using the constant air volume valve of the present invention, the transportation cost can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明に係る空気輸送系に用いられる定風量
バルブの一実施例の断面模式図である。
FIG. 1 is a schematic cross-sectional view of one embodiment of a constant air volume valve used in a pneumatic transportation system according to the present invention.

【図2】 本発明の定風量バルブが用いられる多管系吸
引式空気輸送系の一実施例の模式的系統図である。
FIG. 2 is a schematic system diagram of one embodiment of a multi-tube suction air transport system using the constant air volume valve of the present invention.

【図3】 (a)および(b)は、本発明の定風量バル
ブの付勢手段のバネ特性(荷重と変位との関係)を示す
グラフであり、(a)はその実測値および(b)は理論
解析値である。
3 (a) and 3 (b) are graphs showing spring characteristics (relation between load and displacement) of the urging means of the constant air volume valve of the present invention, where (a) is the measured value and (b) ) Are theoretical analysis values.

【図4】 本発明の定風量バルブの理論解析モデルを示
す線図である。
FIG. 4 is a diagram showing a theoretical analysis model of the constant air volume valve of the present invention.

【図5】 本発明の空気輸送系に用いられる定風量バル
ブの特性を示す一例のグラフである。
FIG. 5 is an example graph showing characteristics of a constant air volume valve used in the pneumatic transportation system of the present invention.

【図6】 空気輸送系の一例の模式的系統図である。FIG. 6 is a schematic system diagram of an example of a pneumatic transportation system.

【図7】 従来の空気輸送系に用いられる定風量バルブ
の断面模式図である。
FIG. 7 is a schematic cross-sectional view of a constant air volume valve used in a conventional pneumatic transportation system.

【図8】 従来の空気輸送系に用いられる定風量バルブ
の特性を示すグラフである。
FIG. 8 is a graph showing characteristics of a constant air volume valve used in a conventional pneumatic transportation system.

【符号の説明】[Explanation of symbols]

L 主管 L1 、L2 、・・・、Ln 枝管 TL1 、TL2 、・・・、TLn 空気輸送管 RM1 、RM2 、・・・、RMn ロールミル M1 、M2 、・・・、Mn 混入部 C1 、C2 、・・・、Cn サイクロン RV1 、RV2 、・・・、RVn ロータリバルブ I1 、I2 、・・・、In 空気吸引口 Vc1、Vc2、・・・、Vcn 定風量バルブ(定風量調節
装置) 10 空気輸送系 12 ファン 14 バグフィルタ 16 メインバルブ 20 定風量バルブ(定風量調節装置) 21 直管部 22 絞り部(ベンチュリ部) 23a,23b シャフト支持金具 24 ベンチュリ型ハウジング 24a,24b フランジ 26 コーン(流量調節部材) 27 付勢手段 28 風量設定器 29 シャフトピン 30 シャフト 32 ばね受け 33 ばね支持部 34、36、38 圧縮ばね 40 ケーシング 41 底板 42a,42b 支柱 43 支点ピン 44 ボールねじ 46 風量設定ダイヤル 48 移動ナット 49 ピン 50 ダイヤルフレーム
L main L 1, L 2, ···, L n branch TL 1, TL 2, ···, TL n air transport tube RM 1, RM 2, ···, RM n roll mill M 1, M 2, · · ·, M n aeration unit C 1, C 2, ···, C n cyclone RV 1, RV 2, ···, RV n rotary valve I 1, I 2, ···, I n the air suction port V c1, V c2, ···, V cn constant air volume valve (constant air volume regulating device) 10 air transport system 12 fan 14 bag filter 16 the main valve 20 constant air volume valve (constant air volume regulating device) 21 straight pipe 22 throttle portion (Venturi part) 23a, 23b Shaft support fitting 24 Venturi type housing 24a, 24b Flange 26 Cone (flow rate adjusting member) 27 Energizing means 28 Air volume setting unit 29 Shaft pin 30 Shaft 32 Spring receiver 33 Spring support 34, 36, 38 compression Spring 40 Casing 41 Bottom plate 42a, 42b Support column 43 Support pin 44 Ball screw 46 Air flow setting dial 48 Moving nut 49 Pin 50 Dial frame

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】主管に連通する多数の枝管に空気を流して
粉粒体を輸送する系において、各枝管の所定箇所に設け
られ、前記各枝管の空気流量を所定比に保つように制御
する定風量調節装置であって、 絞り部を有するベンチュリ型ハウジングと、このハウジ
ング内の前記絞り部付近に設置されハウジング軸方向に
移動可能な流量調節部材と、この流量調節部材を空気流
の上流方向へ付勢し、付勢力と変位量との関係が非線形
である付勢手段とを有し、この付勢手段により、前記流
量調節部材を基準位置から、空気流の流速に応じて自動
的に移動させ、流路の横断面積を増減することにより空
気流量を一定に調整するよう構成したことを特徴とする
空気輸送系に用いられる定風量調節装置。
1. A system in which air flows through a large number of branch pipes communicating with a main pipe to transport a granular material is provided at a predetermined position of each branch pipe so that an air flow rate of each branch pipe is maintained at a predetermined ratio. A venturi-type housing having a throttle, a flow control member installed near the throttle in the housing and movable in the axial direction of the housing, and an air flow control device. Urging means in the upstream direction, the urging means having a non-linear relationship between the urging force and the displacement amount, and the urging means moves the flow rate adjusting member from a reference position in accordance with the flow rate of the air flow. A constant air volume adjusting device used in an air transportation system, wherein the air volume is adjusted automatically by moving automatically and increasing or decreasing the cross-sectional area of the flow path.
【請求項2】前記付勢手段が、長さの異なる少なくとも
2個の圧縮ばねよりなる請求項1に記載の定風量調節装
置。
2. The constant air volume adjusting device according to claim 1, wherein said urging means comprises at least two compression springs having different lengths.
【請求項3】前記付勢手段が、非線形ばね定数を持つ1
個の圧縮ばねよりなる請求項1に記載の定風量調節装
置。
3. The apparatus according to claim 1, wherein said urging means has a non-linear spring constant.
The constant air volume adjusting device according to claim 1, comprising a plurality of compression springs.
【請求項4】前記流量調節部材の基準位置を粉粒体の設
定輸送量に応じた基準値とするために移動可能にしたこ
とを特徴とする請求項1〜3のいずれかに記載の定風量
調節装置。
4. The constant according to claim 1, wherein the reference position of the flow rate adjusting member is movable to a reference value corresponding to the set transport amount of the granular material. Air flow control device.
JP06143022A 1994-06-24 1994-06-24 Constant air volume control device used for pneumatic transportation system Expired - Lifetime JP3129604B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06143022A JP3129604B2 (en) 1994-06-24 1994-06-24 Constant air volume control device used for pneumatic transportation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06143022A JP3129604B2 (en) 1994-06-24 1994-06-24 Constant air volume control device used for pneumatic transportation system

Publications (2)

Publication Number Publication Date
JPH0812075A JPH0812075A (en) 1996-01-16
JP3129604B2 true JP3129604B2 (en) 2001-01-31

Family

ID=15329104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06143022A Expired - Lifetime JP3129604B2 (en) 1994-06-24 1994-06-24 Constant air volume control device used for pneumatic transportation system

Country Status (1)

Country Link
JP (1) JP3129604B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5203768B2 (en) * 2008-03-28 2013-06-05 アズビル株式会社 Ventilation system and method for controlling ventilation system
JP5582448B2 (en) * 2009-12-25 2014-09-03 株式会社サタケ Pneumatic conveying device for powder in milling roll machine
WO2012070453A1 (en) * 2010-11-25 2012-05-31 三菱重工業株式会社 Bin system and char collection device
US20140231239A1 (en) * 2011-11-25 2014-08-21 Mitsubishi Heavy Industries, Ltd. Bin system and char recovery apparatus
CN102785938B (en) * 2012-07-16 2015-04-01 北京国电富通科技发展有限责任公司 Disturbing device for conveying materials and pneumatic conveying device
JP5868839B2 (en) * 2012-12-27 2016-02-24 三菱重工業株式会社 Char discharge pipe
CN114992830B (en) * 2021-03-02 2024-02-09 中国石油化工股份有限公司 Nozzle for exhaust system and nozzle wind speed adjusting method

Also Published As

Publication number Publication date
JPH0812075A (en) 1996-01-16

Similar Documents

Publication Publication Date Title
JP3129604B2 (en) Constant air volume control device used for pneumatic transportation system
US6132207A (en) Discharge system for a reactor, and process system provided with a discharge system of this kind
US5388968A (en) Compressor inlet valve
US20110110729A1 (en) Continuous Semi-Dense Pneumatic Conveying System and Method
SE429640B (en) ROR POST STATION INCLUDING AN ADJUSTABLE ROD LENGTH
JPH07151093A (en) Ventilation mechanism and blower
US4705457A (en) Monitoring of fluid flow
SE8300168L (en) COMPRESSOR CONTROL DEVICE
JPH09502546A (en) Compressed air control system
US3403941A (en) Pneumatic conveying system
GB2124781A (en) Measurement of solid particle/gas suspension flow rates
US6481935B2 (en) Device for establishing optimal material flow rate for unloading materials
US3967642A (en) Air volume regulator for air conditioning systems
HU202448B (en) Air allowance controlling unit and method for controlling the air allowance
JP2002523215A (en) Powder spray coating equipment
JPS5832137B2 (en) Flour pneumatic system
CN1067417A (en) Control method and device to pneumatic conveying equipment delivery duct air feed
AU2018418036B2 (en) System and method for pneumatic conveying with accurate pressurization
US5352098A (en) Turn valve control system for a rotary screw compressor
JPH0117967B2 (en)
JPS62201729A (en) Supply control method for granular powder fixed quantity supply device
US3378191A (en) Air compressor control system responsive to air flow
JP2655431B2 (en) Constant flow control device for centrifugal compressor
JPS58104839A (en) Fixed quantity supply mechanism for equipment for continuously supplying fixed quantity of powder
EP1391662A1 (en) Gas flow control system

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20001017

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081117

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081117

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091117

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111117

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131117

Year of fee payment: 13

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term