JP3128095B2 - Recording / playback method - Google Patents

Recording / playback method

Info

Publication number
JP3128095B2
JP3128095B2 JP22648892A JP22648892A JP3128095B2 JP 3128095 B2 JP3128095 B2 JP 3128095B2 JP 22648892 A JP22648892 A JP 22648892A JP 22648892 A JP22648892 A JP 22648892A JP 3128095 B2 JP3128095 B2 JP 3128095B2
Authority
JP
Japan
Prior art keywords
magnetization
information
temperature
recording
magnetic material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP22648892A
Other languages
Japanese (ja)
Other versions
JPH0660303A (en
Inventor
佳光 大谷
哲生 飯島
巌 畠山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP22648892A priority Critical patent/JP3128095B2/en
Publication of JPH0660303A publication Critical patent/JPH0660303A/en
Application granted granted Critical
Publication of JP3128095B2 publication Critical patent/JP3128095B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Recording Or Reproducing By Magnetic Means (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、光ディスク,磁気ディ
スクなどの情報の書き換え可能な不揮発記憶の分野にお
ける記録再生方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a recording / reproducing method in the field of rewritable nonvolatile storage of information such as an optical disk and a magnetic disk.

【0002】[0002]

【従来の技術】情報のファイル記憶の分野では、書き換
えが可能で、高密度な記憶方式として、磁気ディスクや
光ディスクが用いられている。これらは年々記録密度の
増加が図られているが、再生の際のSNを確保するのが
難しく限界に近づきつつある。また、これら方式におい
ては、媒体1枚の記録情報を他の媒体に複写する際に
は、逐次元の情報を読み取り、複写先の媒体に書き込む
操作が必要であり、大量の情報を一括で複写する方法の
開発が望まれていた。
2. Description of the Related Art In the field of information file storage, magnetic disks and optical disks are used as rewritable and high-density storage systems. Although the recording density of each of these is increasing year by year, it is difficult to secure the SN at the time of reproduction, and it is approaching its limit. In addition, in these methods, when copying the recorded information of one medium to another medium, it is necessary to read the information one-dimensionally and write it to the copy destination medium. The development of a method to do this was desired.

【0003】[0003]

【発明が解決しようとする課題】本発明は、上記問題点
に鑑みて提案されたもので、高密度記録においても高い
SNを示す記録再生の方法を提供すること、ならびに簡
便に情報の一括複写を可能にする技術を提供することを
目的としている。
SUMMARY OF THE INVENTION The present invention has been proposed in view of the above problems, and it is an object of the present invention to provide a recording / reproducing method exhibiting a high SN even in high-density recording. It aims to provide technology that enables

【0004】[0004]

【課題を解決するための手段】上記の目的を達成するた
め、本発明は反強磁性―強磁性遷移を生じ、加熱時と冷
却時では前記遷移温度が異なるヒステリシス現象を示す
磁性材料を、加熱時に前記遷移を生ずる温度t より低
く、かつ冷却時に前記遷移を生ずる温度t よりも高い
温度t 保持しつつ、前記磁性材料を局所的に温度t
以上に加熱し、前記加熱部分強磁性または反強磁性
を生じせしめて情報の記録を行い、その後、前記加熱
分の磁化量,磁化変化あるいは磁化の方向等の状態量を
検出することによって情報の再生を行うことを特徴とす
る記憶再生方法を発明の要旨とするものである。さら
に、本発明は反強磁性−強磁性遷移を生ずる第1の磁性
材料を、前記遷移を生ずる温度範囲に保持しつつ、前記
磁性材料を局所的に加熱して、前記加熱部分に強磁性あ
るいは反強磁性を生じせしめて情報の記録を行った後、
前記温度範囲にて第2の磁性材料を密着させて前記情報
が記録された第1の磁性材料からの情報を第2の磁性材
料に転写させ、密着状態および脱着状態にて前記第2の
磁性材料からの磁化量,磁化変化あるいは磁化の方向等
の状態量を検出することによって情報の再生を行うこと
を特徴とする記録再生方法を発明の要旨とするものであ
る。
To achieve the above object, according to an aspect of the present invention is antiferromagnetic - Ji raw ferromagnetic transition, the heating time and cooling
The <br/> magnetic material exhibiting hysteresis, wherein the transition temperature is different in却時, lower than the temperature t 2 causing the transition upon heating
Ku, and higher than the temperature t 1 to produce the transition upon cooling
While maintaining the temperature t b, local temperature t of the magnetic material
Heat is applied to two or more portions to generate ferromagnetism or antiferromagnetism in the heated portion , and information is recorded. Thereafter, the amount of magnetization of the heated portion, a change in magnetization, or a state amount such as a direction of magnetization, etc. SUMMARY OF THE INVENTION The gist of the present invention is a storage / reproduction method characterized in that information is reproduced by detecting the information. Further, the present invention locally heats the magnetic material while maintaining the first magnetic material that causes an antiferromagnetic-ferromagnetic transition in a temperature range in which the transition occurs, so that the heated portion is ferromagnetic or ferromagnetic. After recording information by causing antiferromagnetism,
The second magnetic material is brought into close contact in the temperature range to transfer information from the first magnetic material on which the information is recorded to the second magnetic material, and the second magnetic material is brought into close contact with and detached from the second magnetic material. The gist of the invention is a recording / reproducing method characterized in that information is reproduced by detecting a state quantity such as a magnetization amount, a magnetization change, or a magnetization direction from a material.

【0005】[0005]

【作用】本発明によれば、磁化のヒステリシス現象を利
用して記録再生を行うため、高記録密度で高いSN再生
及び多値記録を可能とすることができる。
According to the present invention, recording and reproduction are performed using the hysteresis phenomenon of magnetization, so that high SN reproduction and multi-value recording at a high recording density can be realized.

【0006】まず、本発明の記録再生方法の原理を説明
する。反強磁性−強磁性遷移はFeRh合金,HfTa
Fe2 ,SoTiFe2 ,Co(FeAl)2 系の金属
間化合物,Mn3 Pt規則合金等で発生し、ある温度に
おいて急激に反強磁性から強磁性へ、あるいは強磁性か
ら反強磁性へと変化する現象である。この遷移は一般的
にヒステリシス現象を示し、加熱時と冷却時ではその遷
移温度が異なる。本発明はこのヒステリシス現象を利用
して新しい記録再生方法を実現するものである。
First, the principle of the recording / reproducing method of the present invention will be described. Antiferromagnetic-ferromagnetic transition is FeRh alloy, HfTa
Occurs in Fe 2 , SoTiFe 2 , Co (FeAl) 2 -based intermetallic compounds, Mn 3 Pt ordered alloys, etc., and rapidly changes from antiferromagnetic to ferromagnetic or from ferromagnetic to antiferromagnetic at a certain temperature It is a phenomenon that does. This transition generally shows a hysteresis phenomenon, and the transition temperature differs between heating and cooling. The present invention realizes a new recording / reproducing method using this hysteresis phenomenon.

【0007】図1には反強磁性−強磁性遷移の温度に対
する磁化の変化の例を模式的に示した。まず、低温にお
いては反強磁性状態であるために、磁化はほとんど無い
が、t2 の温度において強磁性に遷移するために、磁化
が発生する。一度t2 以上に加熱した後にはt2 よりも
低い温度t1 において強磁性から反強磁性に遷移し、温
度に対してヒステリシスを示す。ここで、反強磁性−強
磁性遷移を示す材料を、ヒステリシスを示す領域の温度
b の環境に保持し、記録したい部分をt2 以上に加熱
すると、一度加熱されてからtb に戻った領域のみM2
の磁化を有することとなる。このtb の温度状態に保っ
ていれば、この磁化M2 の記録ビットは保持できる。温
度tb 、あるいはヒステリシスの開始,終了温度t2
1 は合金系,添加元素,圧力,印加磁場等によって、
容易に制御することができる。また、t1 を室温以下
に、t2 を室温以上に設定すれば、バイアス温度を特別
に設定しなくても、通常温度下での記録保持が可能であ
る。情報消去にあたっては、tb 状態からt1 以下の温
度にすれば、全体の磁化がM1 となるために、記録ビッ
トは消去される。また、t2 以上に加熱しても同様に全
体がM2 となり、消去が可能である。従来の磁気ディス
クや光ディスク等における記録状態とここで大きく異な
ることは、記録された領域と、そうでない部分とでは、
磁化そのものの有無の状態が保持されていることであ
る。このため、磁気ヘッドや磁気抵抗効果素子で再生す
ると、ノイズレベルを非常に小さくでき、小さいビット
でも敏感に再生ができる。磁気ディスク,光ディスクに
おける記録媒体はある一定の磁化を有しており、この磁
化の方向を媒体の垂直方向、あるいは水平方向に変化さ
せて、ビットを記録する方式になっている。
FIG. 1 schematically shows an example of the change in magnetization with respect to the temperature of the antiferromagnetic-ferromagnetic transition. First, at a low temperature, there is almost no magnetization due to the antiferromagnetic state, but at the temperature of t 2 , magnetization is generated due to transition to ferromagnetism. Once heated to at least t 2 , transition from ferromagnetic to antiferromagnetic occurs at a temperature t 1 lower than t 2 , showing hysteresis with respect to temperature. Here, the antiferromagnetic - a material showing ferromagnetic transition, held at environmental temperature t b of the indicated area of hysteresis, heating the portion to be recorded t 2 or more, returning after being heated once to t b Area only M 2
Has the magnetization of If this temperature state of t b is maintained, the recording bit of the magnetization M 2 can be maintained. Temperature t b , or the start and end temperature t 2 of the hysteresis,
t 1 depends on the alloy system, additive element, pressure, applied magnetic field, etc.
Can be easily controlled. Further, if t 1 is set to be equal to or lower than the room temperature and t 2 is set to be equal to or higher than the room temperature, it is possible to hold the record at the normal temperature without specially setting the bias temperature. When erasing information, if the temperature is changed from the state t b to a temperature equal to or lower than t 1 , the recording bit is erased because the entire magnetization becomes M 1 . Further, even if the heating is performed for t 2 or more, the entirety becomes M 2 in the same manner, and erasing is possible. The major difference here from the recording state of conventional magnetic disks and optical disks is that the recorded area and the non-recorded area
That is, the state of the presence or absence of the magnetization itself is maintained. Therefore, when reproduction is performed using a magnetic head or a magnetoresistive element, the noise level can be extremely reduced, and reproduction can be performed even with small bits. A recording medium in a magnetic disk or an optical disk has a certain magnetization, and the direction of this magnetization is changed in a vertical direction or a horizontal direction of the medium to record bits.

【0008】図2は従来の磁気ディスク,光ディスクに
おける媒体の記録状態を示すもので、(a)は磁気記録
における記録ビットの状態を示す。ここに矢印は磁化の
方向を示す。(b)は光記録における記録ビットの状態
を示すものである。このため記録ビットとそうでない部
分との境界部分あるいは記録が不十分である領域は、記
録しようとするビットの磁化の方向とは異なる、逆方向
の磁化情報が存在することとなり、磁気ヘッドや光磁気
ヘッド等の磁気センサで再生する場合には直接のビット
情報とは逆のノイズ情報として検出されるため、SN比
の低下の原因となるという、本質的な問題がある。これ
に対して、本発明においては、記録ビット以外の領域は
磁化そのものがない、あるいは、記録ビットのみ磁化が
ない、という状態を保持するため、磁気センサによる再
生では、ビット以外からのノイズは本質的に存在せず、
高記録密度で記録しても高SN再生が実現できる。
FIG. 2 shows a recording state of a medium in a conventional magnetic disk or optical disk. FIG. 2A shows a state of recording bits in magnetic recording. Here, the arrow indicates the direction of magnetization. (B) shows the state of recording bits in optical recording. For this reason, a boundary portion between a recording bit and a non-recording bit or a region where recording is insufficient has magnetization information in a direction opposite to the direction of magnetization of the bit to be recorded, and the magnetic head and the optical head. In the case of reproduction by a magnetic sensor such as a magnetic head, since the bit information is detected as noise information opposite to the direct bit information, there is an essential problem of causing a reduction in the SN ratio. On the other hand, in the present invention, since the region other than the recording bit has no magnetization itself or only the recording bit has no magnetization, noise from other than the bit is essentially eliminated in reproduction by the magnetic sensor. Does not exist,
Even if recording is performed at a high recording density, high SN reproduction can be realized.

【0009】図3は本発明における磁場印加書き込みに
よる多値記録の例を示すもので、(a)は記録の状態を
上から見た図であり、(b)は断面の状態を示すもの
で、(c)は光ヘッドによる再生波形の状態を示す。こ
のように書き込みの際に磁場を印加しておくと、記録ビ
ットの磁化の方向が固定されるので、記録情報は磁化の
有無だけではなく、磁化の方向の情報としても蓄積記憶
ができる。このため、多値情報記録方式としても利用で
きる。これらに加えての利点として、以下の点が挙げら
れる。すなわち、反強磁性−強磁性遷移による磁化変化
は、従来の磁気ディスク,光ディスク媒体における記録
磁化量と比較して非常に大きいため、記録情報を容易に
他の磁性材料に転写することができる。たとえば磁気デ
ィスク媒体の残留磁化は2500〜10000G、光磁
気ディスク媒体の残留磁化は2000G以下であるが、
反強磁性−強磁性遷移材料であるFeRhでは約140
00Gの磁化が生じる。本発明の記録方法において、T
bFe,GdTbFeなどのアモルファス磁性薄膜、あ
るいはYGdGaFeO等のガーネット磁性薄膜を密着
した2層の構成にすれば、反強磁性−強磁性遷移材料の
記録情報を2次元的に一括に複写することができる、と
いう従来困難であった情報複写が可能となるものであ
る。
FIGS. 3A and 3B show an example of multi-level recording by applying a magnetic field according to the present invention, wherein FIG. 3A is a diagram showing a recording state viewed from above, and FIG. (C) shows the state of the waveform reproduced by the optical head. If a magnetic field is applied during writing in this manner, the direction of magnetization of the recording bit is fixed, so that the recorded information can be stored and stored as information on the direction of magnetization as well as the presence or absence of magnetization. Therefore, it can also be used as a multi-valued information recording method. Additional advantages include the following. That is, since the change in magnetization due to the antiferromagnetic-ferromagnetic transition is very large as compared with the amount of recorded magnetization in a conventional magnetic disk or optical disk medium, recorded information can be easily transferred to another magnetic material. For example, a magnetic disk medium has a residual magnetization of 2500 to 10000 G, and a magneto-optical disk medium has a residual magnetization of 2000 G or less.
About 140 for FeRh, an antiferromagnetic-ferromagnetic transition material
00G magnetization occurs. In the recording method of the present invention, T
By forming a two-layer structure in which an amorphous magnetic thin film such as bFe or GdTbFe or a garnet magnetic thin film such as YGdGaFeO is adhered, recorded information of an antiferromagnetic-ferromagnetic transition material can be copied two-dimensionally and collectively. , Which makes it difficult to copy information.

【0010】[0010]

【実施例】次に本発明の実施例について説明する。 〔実施例1〕ガラスディスク基板上にスパッタにて膜厚
約1000ÅのFe0.5 Rh0.5 合金薄膜を形成した。
図4はFe0.5 Rh0.5 薄膜の温度−磁化の関係を示す
もので、横軸に温度、縦軸に磁化の状態を示す。この薄
膜の磁化の温度変化は図4に示すように、t2が80
℃、t1 が−15℃、強磁性状態の磁化M2 約1000
G、反強磁性領域での磁化M1 約12Gとなるヒステリ
シスを示した。波長833nmの半導体レーザによる力
−効果の温度依存性も図5のようなヒステリシスを示し
た。図5はFe0.5 Rh0.5 薄膜の温度−力−回転角
(波長833nm)の関係を示す。この薄膜を室温状態
に保持しつつ、半導体レーザの光ヘッドにより円周方向
に1μmの間隔で60mWで加熱を行い、15mWで再
生したところ、CN比52dBの再生ができた。また、
連続的に15mWで照射することで、消去が可能であっ
た。
Next, an embodiment of the present invention will be described. [Example 1] An Fe 0.5 Rh 0.5 alloy thin film having a thickness of about 1000 ° was formed on a glass disk substrate by sputtering.
FIG. 4 shows the relationship between the temperature and the magnetization of the Fe 0.5 Rh 0.5 thin film. The horizontal axis shows the temperature, and the vertical axis shows the state of the magnetization. As shown in FIG. 4, the temperature change of the magnetization of the thin film is 80 at t 2.
° C, t 1 is −15 ° C., magnetization M 2 in a ferromagnetic state is about 1000
G shows a hysteresis of about 12 G of magnetization M 1 in the antiferromagnetic region. The temperature dependence of the force-effect by the semiconductor laser having a wavelength of 833 nm also showed hysteresis as shown in FIG. FIG. 5 shows the relationship between the temperature, force, and rotation angle (wavelength: 833 nm) of the Fe 0.5 Rh 0.5 thin film. While maintaining the thin film at room temperature, the semiconductor laser was heated at 60 mW at an interval of 1 μm in the circumferential direction by an optical head of a semiconductor laser, and was reproduced at 15 mW. Also,
Erasing was possible by continuously irradiating with 15 mW.

【0011】〔実施例2〕Hf0.8 Ta0.2 Fe2 薄膜
をガラス上に膜厚3000Å形成した。磁化の温度変化
は図6のようになった。実施例1とは異なり、tb=−
90℃保持状態で局所的に加熱すると、加熱領域の磁化
が消失する。雰囲気温度を−90℃に保ちつつ、Arレ
ーザで10μm間隔で加熱し、光ヘッドで再生したとこ
ろ、再生が可能であった。
Example 2 A thin film of Hf 0.8 Ta 0.2 Fe 2 was formed to a thickness of 3000 ° on glass. The temperature change of the magnetization was as shown in FIG. Unlike the first embodiment, tb = −
When heating is locally performed while maintaining the temperature at 90 ° C., the magnetization of the heated region disappears. While the atmosphere temperature was kept at -90 ° C., heating was performed with an Ar laser at intervals of 10 μm and reproduction was performed with an optical head. As a result, reproduction was possible.

【0012】〔実施例3〕Fe0.52Rh0.48合金薄膜3
000Åを実施例1と同様にガラスディスク基板上に形
成した。磁化温度変化は図7に示した。この薄膜につい
て、雰囲気温度を60℃にして、膜面垂直に600Gの
磁場を5kHzで極性を変化させて、これに同期させな
がら、半導体レーザで80mWで記録した。これを同ヘ
ッド10mWで再生した波形を図8に示す。記録磁化が
膜面下部を向いているビットからの情報、膜面上部を向
いているヒットからの再生情報、記録しない領域からの
情報の3値のシグナルが明瞭に認められ、多値情報記録
が実現できた。なお、バイアス磁場は膜面内方向に印加
することもできる。
[Embodiment 3] Fe 0.52 Rh 0.48 alloy thin film 3
000 ° was formed on a glass disk substrate in the same manner as in Example 1. The change in magnetization temperature is shown in FIG. This thin film was recorded at 80 mW with a semiconductor laser while changing the polarity at 5 kHz with a 600 G magnetic field perpendicular to the film surface at an ambient temperature of 60 ° C. FIG. 8 shows a waveform reproduced from the same with the head of 10 mW. The ternary signal of information from the bit whose recording magnetization is directed to the lower part of the film surface, the reproduction information from the hit which is directed to the upper part of the film surface, and the information from the non-recording area are clearly recognized, and the multi-valued information recording is performed. I realized it. The bias magnetic field can be applied in the in-plane direction of the film.

【0013】〔実施例4〕第2層と組み合わせた記録,
転写,再生の実施例を示す。図9は転写の状態を示すも
ので、図において、1はガラス基板、2はGdTbFe
Co薄膜、3はFeRh薄膜、4はガラス基板、5は記
録ビットを示す。実施例3で用いた薄膜について、同様
に60℃の雰囲気下で、膜面垂直方向に5kOeの磁場
を印加しながら、80mWのレーザビームにてビットを
記録した。加熱部分のみ垂直方向に磁化を有する領域が
形成,保持されている。この後に、あらかじめFeRh
薄膜に記録する際の磁場と反対方向に磁化させた第2の
磁性薄膜Gd11.7Tb8.6 Fe71.1Co8.6 (膜厚:1
500Å)をFeRh薄膜に相対するように密着させ
た。このGd11.7Tb8.6 Fe71.1Co8.6 薄膜は力−
効果が大きく、垂直磁気異方性を有しており、図10に
示す磁気特性の温度が生じる。図において、Hc は保持
力、Ms は飽和磁化を示す。環境温度60℃において
は、保磁力約400Oeであり、図7の磁化状態M2
記録ビットからの漏洩磁場によりビット情報のみがGd
11.7Tb8.6 Fe71.1Co8.6 薄膜に転写された。密着
した状態で第2層の方向から(図9では上部から)光ヘ
ッドを用いて再生が可能であり、第1層のみのビットの
再生よりも高感度で検出できた。さらに密着状態から引
き離し、室温の環境下においても、Gd11.7Tb8.6
71.1Co8.6 薄膜の保磁力は室温にてさらに増大する
ため、情報はさらに安定化され保存ができる。第2層単
独でも記録状態を再生できる。また、同様にして、ヒー
トペンでまず、FeRh薄膜に絵や文字を記録し、Gd
TbFeCo薄膜を密着させることにより、これらも転
写することができた。上記のように、第1層に記録後、
第2層を密着させることによって、再生感度の向上が
はかれる。第1層の情報をオリジナルとして、何枚で
も2次元情報を一括に転写ができる、という効果が現れ
てくることが実証された。
[Embodiment 4] Recording combined with the second layer,
An example of transfer and reproduction will be described. FIG. 9 shows a state of transfer, in which 1 is a glass substrate, 2 is GdTbFe
Co thin film, 3 a FeRh thin film, 4 a glass substrate, 5 a recording bit. For the thin film used in Example 3, bits were recorded with an 80 mW laser beam while applying a magnetic field of 5 kOe in a direction perpendicular to the film surface in an atmosphere of 60 ° C. in the same manner. A region having magnetization in the vertical direction only in the heated portion is formed and held. After this, FeRh
Second magnetic thin film Gd 11.7 Tb 8.6 Fe 71.1 Co 8.6 (thickness: 1) magnetized in a direction opposite to the magnetic field when recording on the thin film
(500 °) was brought into close contact with the FeRh thin film. This Gd 11.7 Tb 8.6 Fe 71.1 Co 8.6 thin film is
It has a great effect and has perpendicular magnetic anisotropy, and the temperature of the magnetic characteristics shown in FIG. 10 is generated. In FIG., H c is the holding force, M s denotes the saturation magnetization. At an ambient temperature of 60 ° C., the coercive force is about 400 Oe, and only the bit information is Gd due to the leakage magnetic field from the recording bit in the magnetization state M 2 in FIG.
Transferred to 11.7 Tb 8.6 Fe 71.1 Co 8.6 thin film. Reproduction was possible using the optical head from the direction of the second layer (from above in FIG. 9) in the state of close contact, and detection was possible with higher sensitivity than reproduction of bits of only the first layer. Gd 11.7 Tb 8.6 F
The coercivity of the e 71.1 Co 8.6 thin film is further increased at room temperature, so that the information is further stabilized and can be stored. The recorded state can be reproduced even with the second layer alone. Similarly, first, a picture or a character is recorded on the FeRh thin film with a heat pen, and Gd
These were also transferred by bringing the TbFeCo thin film into close contact. As described above, after recording on the first layer,
By bringing the second layer into close contact, the reproduction sensitivity is improved. It has been proved that an effect that any two-dimensional information can be transferred at once by using the information of the first layer as an original appears.

【0014】[0014]

【発明の効果】以上説明したように、反強磁性―強磁性
遷移を生じ、加熱時と冷却時では前記遷移温度が異なる
ヒステリシス現象を示す磁性材料を、加熱時に前記遷移
を生ずる温度t より低く、かつ冷却時に前記遷移を生
ずる温度t よりも高い温度t 保持しつつ、前記磁
性材料を局所的に温度t 以上に加熱し、前記加熱部分
強磁性または反強磁性を生じせしめて情報の記録を行
い、その後、前記加熱部分の磁化量,磁化変化あるいは
磁化の方向等の状態量を検出する本発明の記録再生方法
を用いれば、高記録密度の高SN再生、多値記録が可能
であり、また情報の2次元的な一括複写が可能となる。
As described above, according to the present invention, the antiferromagnetic - ferromagnetic transition Ji live, the transition temperature is different at the time of cooling and during heating
When a magnetic material showing a hysteresis phenomenon is heated,
Lower than the temperature t 2 which produces and raw said transition upon cooling
While maintaining the high temperature t b than cunning temperature t 1, locally heated to a temperature t 2 than the magnetic material, the heating portion
And allowed rise to ferromagnetic or antiferromagnetic to perform recording of information, then the magnetization of the heated portion, by using the recording and reproducing method of the present invention to detect the state quantity such as the direction of magnetization change or magnetization, high High SN reproduction and multi-level recording with a high recording density are possible, and two-dimensional batch copying of information is also possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】反強磁性−強磁性遷移磁性材料の磁化の温度変
化の例を示す。
FIG. 1 shows an example of a temperature change of magnetization of an antiferromagnetic-ferromagnetic transition magnetic material.

【図2】従来の磁気ディスク,光ディスクにおける媒体
の記録状態を示す。
FIG. 2 shows a recording state of a medium in a conventional magnetic disk or optical disk.

【図3】本発明における磁場印加書き込みによる、多値
記録の例を示す。
FIG. 3 shows an example of multilevel recording by magnetic field application writing according to the present invention.

【図4】実施例1で用いたFe0.5 Rh0.5 薄膜の温度
−磁化の関係を示す。
FIG. 4 shows a temperature-magnetization relationship of the Fe 0.5 Rh 0.5 thin film used in Example 1.

【図5】実施例1で用いたFe0.5 Rh0.5 薄膜の温度
−力−回転角(波長833nm)の関係を示す。
FIG. 5 shows a relationship between temperature, force, and rotation angle (wavelength: 833 nm) of the Fe 0.5 Rh 0.5 thin film used in Example 1.

【図6】実施例2で用いたHf0.8 Ta0.2 Fe2 薄膜
の温度−磁化の関係を示す。
FIG. 6 shows a temperature-magnetization relationship of the Hf 0.8 Ta 0.2 Fe 2 thin film used in Example 2.

【図7】実施例3で用いたFe0.52Rh0.48薄膜の温度
−磁化の関係を示す。
FIG. 7 shows a temperature-magnetization relationship of the Fe 0.52 Rh 0.48 thin film used in Example 3.

【図8】実施例3における再生波形を示す。FIG. 8 shows a reproduced waveform in the third embodiment.

【図9】実施例4の転写方法を示す。FIG. 9 shows a transfer method according to a fourth embodiment.

【図10】実施例4におけるGdTbFeCo薄膜の磁
気特性の温度変化を示す。
FIG. 10 shows a temperature change of magnetic characteristics of a GdTbFeCo thin film in Example 4.

【符号の説明】[Explanation of symbols]

1 ガラス基板 2 GdTbFeCo薄膜 3 FeRh薄膜 4 ガラス基板 5 記録ビット REFERENCE SIGNS LIST 1 glass substrate 2 GdTbFeCo thin film 3 FeRh thin film 4 glass substrate 5 recording bit

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−179902(JP,A) 実開 昭57−201346(JP,U) (58)調査した分野(Int.Cl.7,DB名) G11B 5/02 H01F 13/00 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-2-179902 (JP, A) JP-A-57-201346 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB name) G11B 5/02 H01F 13/00

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 反強磁性―強磁性遷移を生じ、加熱時と
冷却時では前記遷移温度が異なるヒステリシス現象を示
磁性材料を、加熱時に前記遷移を生ずる温度t より
低く、かつ冷却時に前記遷移を生ずる温度t よりも高
い温度t 保持しつつ、前記磁性材料を局所的に温度
以上に加熱し、前記加熱部分強磁性または反強磁
性を生じせしめて情報の記録を行い、その後、前記加熱
部分の磁化量,磁化変化あるいは磁化の方向等の状態量
を検出することによって情報の再生を行うことを特徴と
する記憶再生方法。
1. A antiferromagnetic - Ji raw ferromagnetic transition, the time of heating
During cooling, the transition temperatures show different hysteresis phenomena.
The magnetic material is heated from the temperature t 2 at which the transition occurs when heated.
Low and high than the temperature t 1 to produce the transition upon cooling
While maintaining the stomach temperature t b, local temperature of the magnetic material
was heated to t 2 or more, the the heating portion brought rise to ferromagnetic or antiferromagnetic performs recording of information, then the magnetization amount of the heating <br/> portion, the state quantities such as the direction of magnetization change or magnetization And reproducing the information by detecting the information.
【請求項2】 前記磁性材料を温度t 以上または温度
以下にすることにより、記録情報の消去を行うこと
を特徴とする請求項1記載の記憶再生方法。
Wherein said magnetic material temperature t 2 or more or a temperature
By the t 1 below, storing and reproducing method according to claim 1, wherein the erasing of the recorded information.
【請求項3】 情報の記録の際に、前記磁性材料の面に
対して、垂直方向あるいは面内方向に、一定のバイアス
磁場あるいは周期的に変化する交番磁場を印可すること
を特徴とする請求項1記載の記録再生方法。
3. A method according to claim 1 , wherein a constant bias magnetic field or a periodically changing alternating magnetic field is applied to a surface of said magnetic material in a perpendicular direction or an in-plane direction when recording information. Item 2. The recording / reproducing method according to Item 1.
【請求項4】 反強磁性−強磁性遷移を生ずる第1の磁
性材料を、前記遷移を生ずる温度範囲に保持しつつ、前
記磁性材料を局所的に加熱して、前記加熱部分に強磁性
あるいは反強磁性を生じせしめて情報の記録を行った
後、前記温度範囲にて第2の磁性材料を密着させて前記
情報が記録された第1の磁性材料からの情報を第2の磁
性材料に転写させ、密着状態および脱着状態にて前記第
2の磁性材料からの磁化量,磁化変化あるいは磁化の方
向等の状態量を検出することによって情報の再生を行う
ことを特徴とする記録再生方法。
4. The method according to claim 1, wherein the magnetic material is locally heated while maintaining the first magnetic material causing an antiferromagnetic-ferromagnetic transition in a temperature range in which the transition occurs. After recording information by causing antiferromagnetism, a second magnetic material is brought into close contact with the temperature range to transfer the information from the first magnetic material on which the information is recorded to the second magnetic material. A recording / reproducing method, wherein the information is reproduced by detecting the amount of magnetization from the second magnetic material, the change in magnetization, or the state amount such as the direction of magnetization in the adhered state and the detached state.
JP22648892A 1992-08-03 1992-08-03 Recording / playback method Expired - Lifetime JP3128095B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22648892A JP3128095B2 (en) 1992-08-03 1992-08-03 Recording / playback method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22648892A JP3128095B2 (en) 1992-08-03 1992-08-03 Recording / playback method

Publications (2)

Publication Number Publication Date
JPH0660303A JPH0660303A (en) 1994-03-04
JP3128095B2 true JP3128095B2 (en) 2001-01-29

Family

ID=16845887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22648892A Expired - Lifetime JP3128095B2 (en) 1992-08-03 1992-08-03 Recording / playback method

Country Status (1)

Country Link
JP (1) JP3128095B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010211876A (en) * 2009-03-11 2010-09-24 Showa Denko Kk Information storage medium and information storage device

Also Published As

Publication number Publication date
JPH0660303A (en) 1994-03-04

Similar Documents

Publication Publication Date Title
JP2910250B2 (en) Magneto-optical recording medium
JP3786426B2 (en) Magneto-optical recording medium and reproducing method thereof
JP3128095B2 (en) Recording / playback method
JPH05198029A (en) Photomagnetic recording medium
JPS5857646A (en) Vertical magnetic recording and reproducing method
JPH0237501A (en) Magnetic recording system and magnetic recording device
JPS63276731A (en) Method for writing to magneto-optical recording medium
JP2661472B2 (en) Recording medium and its recording / reproducing method
JP3186217B2 (en) Magneto-optical recording medium and recording and reproducing method using the medium
EP0575738A2 (en) System and method for improving long term stability of exchange-coupled optical media
JP2714085B2 (en) Information recording method
JPS59168954A (en) Optical magnetic recording medium
JP2607476B2 (en) Magneto-optical recording method
JP2812113B2 (en) Recording medium and its recording / reproducing method
JP3467574B2 (en) Magneto-optical recording medium and data recording method
JP3823696B2 (en) Magnetic recording / reproducing device
JPH08153345A (en) Magneto-optical recording medium
JP2749537B2 (en) Magneto-optical recording medium for short wavelength
JP3454955B2 (en) Magneto-optical recording medium and magneto-optical recording medium reproducing apparatus
JP2589451B2 (en) Magneto-optical recording / reproducing device
JP2001195702A (en) Information recording method, information record reproducing method and information recording medium
JP2005116076A (en) Magnetic recording medium having two recording layers and magnetic recording/reproducing device
JPH05325295A (en) Magneto-optical recording system
JPH1139737A (en) Magneto-optical recording medium and its recording/ reproducing method
JPS6139250A (en) Recording medium and its recording and reproducing method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071110

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081110

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091110

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101110

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101110

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111110

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111110

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121110

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121110

Year of fee payment: 12